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Abstract: The flexible and wearable capacitive sensors have captured tremendous interest due to
their enormous potential for healthcare monitoring, soft robotics, and human−computer interface.
However, despite recent progress, there are still pressing challenges to develop a fully integrated
textile sensor array with good comfort, high sensitivity, multisensing capabilities, and ultra-light de-
tection. Here, we demonstrate a pressure and non-contact bimodal fabric-only capacitive sensor with
highly sensitive and ultralight detection. The graphene nanoplatelets-decorated multidimensional
honeycomb fabric and nickel-plated woven fabric serve as the dielectric layer and electrode, respec-
tively. Our textile-only capacitive bimodal sensor exhibits an excellent pressure-sensing sensitivity of
0.38 kPa−1, an ultralow detection limit (1.23 Pa), and cycling stability. Moreover, the sensor exhibits
superior non-contact detection performance with a detection distance of 15 cm and a maximum
relative capacitance change of 10%. The sensor can successfully detect human motion, such as finger
bending, saliva swallowing, etc. Furthermore, a 4× 4 (16 units) textile-only capacitive bimodal sensor
array was prepared and has excellent spatial resolution and response performance, showing great
potential for the wearable applications.

Keywords: wearable capacitive sensor; multifunctional; pressure; touchless; fabric

1. Introduction

Flexible and wearable electronic devices with various functionality and suitability
for the human body have recently attracted considerable research interest with the rapid
growth of artificial intelligence [1–3]. Flexible sensors, as a key element of wearable
devices [4–6], have become one of the research hotspots due to their various promising
applications [7,8], such as in human−machine interfaces, electronic skin, timely health
monitoring, and soft robotics [9]. Based on the signal transition mechanisms, flexible
sensors can be classified into capacitive [10,11], piezoelectric [12], resistive [13,14], and
triboelectric types [15,16]. Among these, the capacitive sensors had been widely applied
based on the advantages of outstanding temperature insensitivity, low power consumption,
rapid dynamic response, and simple architecture design [17]. However, an urgent problem
still exists for capacitive sensors to simultaneously achieve flexibility, wearability, comfort,
and excellent multifunctional sensing capabilities (e.g., pressure, strain, temperature, etc.).

For improving the flexibility and wearability of the capacitive sensors, polymer elas-
tomers, including polydimethylsiloxane (PDMS) [18], polyethylene terephthalate (PET) [19],
polyimide (PI) [20], polyvinyl alcohol (PVA) [21], Eco-flex, and polyvinylidene fluoride
(PVDF) [22,23], are often used to prepare the flexible electrodes and dielectric layers [24,25].
However, their pressure sensitivity performance still needs further improvement. Therefore,
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a simple method of incorporating conductive fillers into the dielectric layer of polymer elas-
tomers to effectively improve their pressure sensitivity performance has been extensively
studied [26,27]. Under applied pressure, the addition of a conductive filler could increase
the dielectric constant, owing to the percolation threshold theory [28], which cause a change
in capacitance [29]. Additionally, in the non-contact detection mode, the sensor can perceive
and track the shape and position of the object without physical contact and realize the inter-
action with the surrounding environment, reflecting its unique advantages in the context
of the COVID-19 pandemic. Zhang et al. [30] developed a stretchable dual-mode sensor
array, exhibiting a 4% relative capacitance variation with a non-contact distance of 10 cm
that could still be clearly detected. Sarwar et al. [17] reported a transparent tactile sensor
based on a hydrogel electrode with an absolute value of 15% maximum capacitance relative
change. However, limited by the structure and material characteristics of the traditional
film-based or resin-based capacitive sensor, their poor air permeability is not conducive
to sweat evaporation, which greatly hinders the long-term application of this capacitive
sensor in the field of wearable electronics. Hence, flexible capacitive sensors with high
breathability are still necessary for the improvement of comfort and durability.

For addressing these challenges, textile-based capacitive sensors, which could be
divided into fiber-based [31] and fabric-based [32] capacitive sensors, have been reported
to improve the permeability of flexible capacitive sensors due to their inherent nature
of light weight, breathability, discretion, deformability, softness, and comfort [33–36].
Lee et al. fabricated a capacitive textile pressure sensor with a sensitivity of 0.21 kPa−1

by coating PDMS on the surface of the conductive fiber as a dielectric layer and vertically
stacking the two PDMS-coated fibers [37]. Chen et al. assembled textile-based capacitive
sensors by electrospinning the electrode and nylon dielectric constant, which can accurately
detect human joint motion [38]. Therefore, textile-based capacitive sensors are in favor
to simultaneously achieve flexibility, wearability, comfort, and excellent multifunctional
sensing capabilities, which is a very meaningful research direction in the field of flexible
and wearable capacitive sensors. However, the corresponding work is rarely reported,
especially for fabric-based capacitive sensors with multifunctional sensing. Thus, the
potential of fabric-based capacitive sensors for the multifunctional signal sensing should be
further developed.

Among various textile materials, the 3D honeycomb fabric consisting of two separate
mesh knitted fabrics and a supporting yarn layer has excellent wearing comfort and
compression [39,40], making it a potential material for flexible electronics [41]. Herein,
we report a pressure and non-contact bimodal all-fabric-based capacitive (BAFC) sensor
fabricated by a feasible and simple low-cost manufacturing method. The BAFC sensor is
assembled by the 3D honeycomb fabric dielectric layer and the top and bottom conductive
Ni-plated woven electrodes, giving the sensor an excellent pressure-sensing sensitivity
(0.38 kPa−1) and ultralow detection limit (1.23 Pa). Additionally, this textile-based sensor
has an outstanding non-contact detection performance with a detection distance of 15 cm
and a maximum relative capacitance change of 10%. Moreover, we demonstrate that our
sensor is capable of detecting human motion, such as joint bending, saliva swallowing, etc.
The low-cost, fabric-only capacitive bimodal sensor arrays have excellent spatial resolution
and response performance, showing great potential for the wearable applications.

2. Experiments
2.1. Materials and Characterization

The multidimensional honeycomb fabric (thickness: ~3 mm, weight: 230 g/m2) was
provided by Shaoxing Yunfa Needle Textile Co., Ltd (Shaoxing, China). The honeycomb
fabric has a three-dimensional structure, consisting of an upper honeycomb knitting struc-
ture, lower knitting coil structure, and intermediate support yarn (Figure S1a–c). The mesh
size of the upper honeycomb knitting fabric is approximately 2 × 2 mm. The honeycomb
fabric is prepared by a polyethylene terephthalate (PET) fiber, which is a kind of high
molecular compound produced by esterification polycondensation of monoethylene glycol
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and terephthalic acid (Figure S1d). The nickel-plated fabric (thickness: ~3 mm, ≤0.05 Ω/sq)
was provided by Lutai Textile Co., P.R. (Zibo, China). The nickel-plated fabric substrate
is woven from polyethylene terephthalate (PET) filaments, which have the same compo-
sition as honeycomb fabric. The graphene dispersion was supplied by Ningbo Morsh
Technology.Co.,Ltd. (Ningbo, China).

The microscopic morphologies were characterized by field emission scanning electron
microscopy (FESEM, REGULUS8100, Hitachi Production Institute of Zhuzhou Society,
tokyo, Japan). The capacitance variation of the sensor was measured using a LCR digital
bridge tester (ECA200A, Creek Valley Polymer Technology Co., Ltd, Beijing, China) at
200 kHz frequency with a 1 V AC signal. The LCR digital bridge tester has a frequency range
of 20 Hz to 200 kHz and a basic accuracy of 0.1%. An electronic universal testing machine
(50N, ZQ-990B, Dongguan Smart Precision Instrument Co., Ltd, Dongguan, China) was
used to apply pressure to the sensors. A computer was employed to record the compression
distances, forces, and capacitances. The capacitance equation of the parallel-plate capacitor
is defined as follows:

C =
εrS

4πkd
(1)

where d, S, and εr denote the distance between the top and the bottom electrodes, the elec-
trode overlap area, and the dielectric constant, respectively. The increase of the capacitance
of the BAFC sensor is the combined effect of εr and d. The sensor electrode distance d
decreases under pressure (Figure S2a). Moreover, the addition of GNPs give rise to an
increase of εr in the dielectric layer for the BAFC sensor. The effective dielectric constant
can be defined according to the percolation theory model [42]:

εr = εD/ | fc − f |s (2)

where εD is the conductivity of the dielectric phases, and fc and f denote the percolation
threshold and filling factor, respectively. The effective conduction path of the dielectric
layer increases under compression, which is beneficial to improving the effective dielectric
constant εr [28] (Figure S2b).

The sensitivity (SPre) of the sensor is calculated by differentiating the curve or depicting
the tangent of the curve, which is defined as:

SPre =
δ(∆C/C0)

δP
(3)

where ∆C denotes the capacitance change, C0 denotes the initial capacitance value, and P
represents the applied external pressure.

In the non-contact mode, the capacitance is logarithmically related to the distance
between the hand and the top electrode of the BATC sensor, corresponding to the model
developed by Garbini:

C = (4 ε′W ln(2H/h)/π (4)

where W and H stand for the width and height of the approaching conductor, h is the
distance between the bottom of the conductor and the top electrode, and ε′ is a constant
factor. In the non-contact mode, a capacitance CF is formed between the nickel-plated fabric
electrode and the finger in the touchless mode [17], which is coupled with CM between the
BAFC sensor (Figure S3). The fringing electric field of the bimodal sensor is disturbed and
partially intercepted by the finger as the third electrode [33].

2.2. Fabrication of BAFC Sensor Based on 3D Honeycomb Fabric

The fabrication approach of the BAFC sensor is schematically illustrated in Figure 1.
The commercial multidimensional honeycomb fabric (HF) and nickel-plated conductive
fabrics can be tailored into arbitrary shapes and sizes for different applications. Here,
the HF and nickel-plated conductive fabric were cut into a desirable size (2 × 2 cm2) for
convenient assembling by using a laser cutter (WE-6040). The HF was immersed into the
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graphene dispersion (1 mg/mL) and ultrasonically treated for 10 min to make the graphene
uniformly deposited on the fabric, followed by complete drying at 80 ◦C for about 50 min.
Then, the nickel-plated conductive fabric was fixed on the GNPs-decorated 3D honeycomb
fabric (GHF) dielectric layer to assemble the BAFC sensor.

Figure 1. Schematical illustration of the preparation procedure for the BAFC sensor.

3. Results and Discussion

Figure 2 illustrates photographs and the typical surface morphology of the GHF
dielectric layer and nickel-plating fabric electrode. As shown in Figure 2a–c, the GHF
dielectric layer is constructed by an upper honeycomb knitted structure, lower knitted coil
structure, and intermediate support yarns, giving fabric excellent resilience, softness, air
permeability, and moisture permeability. The honeycomb and stereoscopic structure are
particularly conductive to the free flow of air and water, forming a microcirculation air
layer. Furthermore, the supporting yarns and lower compact knitted structure provide
outstanding mechanical properties. The enlarged images in Figure 2b,c showed that GNPs
were successfully deposited on the surface of the HF fibers without agglomeration, which
was beneficial to the improvement of the effective dielectric constant. The nickel-plating
fabric is a plain weave structure, exhibiting the advantages of a smooth surface, strong
texture, lightweight, and superior permeability (Figure 2d). Additionally, Figure 2e,f shows
that nickel is uniformly wrapped on the fiber, offering the superior electrical conductivity.

The basic pressure-sensing properties of the BAFC sensor are quantitatively inves-
tigated in Figure 3. Figure 3a exhibits the variation of capacitance in a wide pressure
detection range of 0–120 kPa. The results show that the BAFC sensor has a high-pressure
sensitivity of 0.038 kPa−1. The BAFC sensor was tested in three successive load/unload
cycles at each of three external pressures (8, 40, and 90 kPa), demonstrating a stable and
sequential capacitance response (Figure 3b). The ultralow detection limit of the bimodal
G@HF-based capacitive sensor is worthy of concern. It was evaluated by using a small
paper (1.23 Pa). The BAFC sensor can achieve relative capacitance changes (∆C/C0) of
0.37%, denoting the superior low pressure detection capability (Figure 3c). To further inves-
tigate the durability and stability of the sensor, the capacitance variations were recorded
by applying repeated loading/unloading pressure (6 kPa) over 2000 cycles (Figure 3d).
The sensor retained a stable response with no significant drift. In addition, the spatial
distinguishing ability of the sensor array is crucial to the field of artificial intelligence, such
as human−computer interaction. Here, a 4× 4 (16 units) BAFC sensor array was fabricated
for the following experimental tests. In order to verify its perception ability of detecting
spatial pressure distribution, a red bean (0.72 g) was placed on the array, corresponding
to ∆C/C0 of 2.5% (Figure 3e). This result demonstrates that the sensor array can achieve
high-resolution pressure mapping and object localization. To explore wearable applications
in dynamic response and human motion recognition, relevant preliminary research tests
were conducted. The sensor was fixed on the finger joint, and the relationship between the
capacitance variations and finger bending angles is displayed in Figure 3f,g. The capaci-
tance of the BAFC sensor increases with the increase of the finger bending angle. The BAFC
sensor was attached to the surface of the wrist to measure its sensing performance. As
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shown in Figure 3h, the BAFC sensor exhibits a repeatable and reliable sensing performance
under repetitive bending/relaxation motions.

Figure 2. Photographs of the typical surface morphology: (a) upper honeycomb structure images
of the GHF dielectric layer; FESEM images of (b) the lower compact knitted structure and (c) the
supporting yarn of the GHF; (d,e) the woven structure; (f) energy dispersive spectroscopy (EDS)
mapping of the nickel-plating fabric electrode.

The performance of the BAFC sensor for proximity monitoring is displayed in Figure 4.
A hand vertically approached the sensor to determine the touchless detection capability
of the BAFC sensor. As can be observed from Figure 4a, the bimodal sensor has a large
detection range (0–15 cm), with a relative capacitance variation of up to 10%. Furthermore,
a maximum sensitivity of 0.023 cm−1 is computed for the low distance range (<2 cm).
Moreover, Figure 4b shows that the capacitance variations are steadily maintained when
a hand is hovered at different distances, demonstrating a steady non-contact sensing
response of the BAFC sensor. The BAFC sensor can successfully transmit information or
emergency signals through the Morse code (Figure 4c). Furthermore, Figure 4d,e shows
that the capacitance change rate of the corresponding sensor unit is 10% when the finger
is suspended above the 42 sensor array unit. This proves that the BAFC sensor array can
accurately locate the finger and has an excellent non-contact spatial response performance.

The BAFC sensor was evaluated to detect subtle pressure, such as weak airflow, swal-
lowing, blinking, etc. Mechanical bending and vibration detection (contact-type detection)
can be used to detect human physiological signal, and airflow detection (non-contact pres-
sure detection) can be used to detect the direction and intensity of the airflow. Therefore,
both non-contact pressure sensing and contact pressure sensing have important research
significance in the wearable field. Furthermore, airflow detection is widely needed in
meteorological monitoring, biomedical engineering, aerospace, and mining enterprises [43].
However, non-contact pressure detection property of sensors is often overlooked. There-
fore, the airflow sensation, one of the important human perception functions [44], was also
evaluated. Figure 5a shows that the sensor can sense and convert pressure mechanical
signals generated by airflow from the blower into electrical signals. Figure 5b,c present the
capacitance response of the BAFC sensor attached to the throat during saliva swallowing.
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The various peak intensities are determined by the different extents of the vibration of the
intrinsic laryngeal muscles. Similarly, the sensor was attached to the forehead to monitor
the human facial muscles changes. As shown in Figure 5d, when the volunteers frowned,
the BAFC sensor clearly showed the growth rate of a 1–1.5% relative capacitance change.
Moreover, the capacitance of the sensor returned to the initial value when volunteers
relaxed their eyebrows. This proves that the sensor promptly sensed the occurrence of
frown movements. Additionally, the BAFC sensor was also applied to detect eye muscle
movement (Figure 5e). The BAFC sensor showed a growth rate of a 0.6% relative capaci-
tance change with volunteers’ eyes closed, which showed that it accurately captured the
compressive stress generated by the opening/closing movement of the eyes. The repetitive
capacitance change signal caused by repeated blink movement confirmed that the BAFC
sensor could be well used to detect abnormal convulsion caused by eye diseases. These
results demonstrate the BAFC can identify human facial expression changes, exhibiting
enormous potentiality in wearable flexible electronics.

Figure 3. Pressure-sensing performance of the BAFC sensor: (a) relative capacitance response and
sensitivity of the BAFC sensor; (b) capacitive response of the sensor for different loads of 8, 40, and
90 kPa; (c) ultra-light pressure responses; (d) durability of the capacitance response of the BAFC
sensor to 2000 cycles under a loading pressure of 6 kPa; (e) pressure spatial mapping of a red bean;
(f,g) capacitance change of the BAFC sensor according to wrist bending motion; (h) representative
capacitance signal during the bending and unbending of finger to angles of 15, 30, 45, 60, 90, and 120◦.
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Figure 4. Non-contact sensing performance of the BAFC sensor: (a) relative capacitance change
responding to the approaching hand; (b) static capacitance response at different distances between the
hand and the sensor array; (c) international Morse password signal; (d,e) non-contact functionality of
the BAFC sensor for the positioning finger.

Figure 5. The micropressure monitoring of the BAFC sensor: (a) electrical signal of air flow detection;
(b) photographs of the sensor attached to detect muscle movement during saliva swallowing. Time-
dependent capacitance responses for the corresponding (c) saliva swallowing, (d) frowning, and
(e) eye blinking movements.
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4. Conclusions

In summary, this paper has reported a bimodal all-fabric-based capacitive sensor with
a non-contact and pressure stimulus response via a feasible and simple low-cost manu-
facturing method. This all-fabric-based construction, constructed by the 3D honeycomb
knitted fabric dielectric layer and nickel-plated plain-woven fabric electrode, endows the
sensor with superior breathability, moisture permeability, and mechanical stability. The
GHF-based bimodal sensor can successfully monitor dual non-contact and pressure-sensing
responses. Moreover, it has an excellent pressure-sensing sensitivity (0.38 kPa−1) and non-
contact detection performance (detection distance: 15 cm, maximum relative capacitance
change: 10%). This bimodal wearable sensor also exhibits an ultralow detection limit
(1.23 Pa) and cycling stability (>2000). In addition, the BAFC sensor array can achieve
high-resolution pressure and non-contact mapping and object localization. Furthermore,
our BAFC sensor can accurately monitor the human motion and physiological signals in
real-time, exhibiting great potential in wearable, flexible electronics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/coatings12030302/s1, Figure S1. (a) Upper honeycomb structure, (b) lower knitted structure
and (c) support yarns FESEM images of the HF. Figure S2. The mechanism diagram of pressure
sensing. (a) The variation of electrode distance (d) under external pressure. (b) Schematic illustration
of the hybrid conductive network constructed by GNPs. Figure S3. The mechanism diagram of
non-contact sensing.
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