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Abstract: The study was based on understanding the relationship between titanium (Ti) doping
amount and magnetic heating performance of magnetite (Fe3O4). Superparamagnetic nanosized
Ti-doped magnetite ((Fe1−x,Tix)3O4; x = 0.02, 0.03 and 0.05) particles were synthesized by sol-gel
technique. In addition to (Fe1−x,Tix)3O4 nanoparticles, SiO2 coated (Fe1−x,Tix)3O4 nanoparticles
were produced as core-shell structures to understand the effects of silica coating on the magnetic
properties of nanoparticles. Moreover, the magnetic properties were associated with the Néel
relaxation mechanism due to the magnetic heating ability of single-domain state nanoparticles. In
terms of results, it was observed that the induced RF magnetic field for SiO2 coated (Fe0.97,Ti0.03)3O4

nanoparticles caused an increase in temperature difference (∆T), which reached up to 22 ◦C in 10 min.
The ∆T values of SiO2 coated (Fe0.97,Ti0.03)3O4 nanoparticles were very close to the values of uncoated
Fe3O4 nanoparticles.

Keywords: oxide semiconductor; point defects; Néel relaxation; magnetic hyperthermia;
superparamagnetic nanoparticles

1. Introduction

The crystal structure of magnetite (Fe3O4) has a spinel cubic structure with Fd-3m
space group [1,2]. Fe3O4 crystal structures obtain tetrahedral and octahedral sublattices,
occupied by Fe2+ and Fe3+ cations coordinated with 32 oxygen atoms [1,2]. Ferrimagnetic
properties are governed by the coupling of cation spins in octahedral and tetrahedral
sites [1,2]. Properties, such as low toxicity, suitable magnetic properties, and easy fab-
rication, make the ferrite particles suitable for hyperthermia usages [3]. Each magnetic
domain in a magnetic nanoparticle is oriented along the direction of the externally applied
magnetic field. Also, especially for single-domain magnetic nanoparticles, all particles can
be oriented in the direction of the magnetic field (Brownian motion), and the magnetic
domains inside a particle can rotate without rotating the magnetic particle (Neel motion) [4].
In both cases, due to the desire to be in line with the external magnetic field, alternating
magnetic fields initiate heating in and around single-domain magnetic particles.
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During the last few decades, magnetic hyperthermia has become a widely researched
topic (especially for cancer treatments) [5–11]. In recent technological applications, ferrite
nanoparticles have emerged as the most popular candidate for magnetic hyperthermia
applications. The heating performance of magnetic nanoparticles is investigated mainly de-
pending on size and magnetic domain number in the particle [12]. The heating performance
of multi-domain magnetic nanoparticles is related to energy losses from magnetic hysteresis
due to the domain wall motions and eddy currents induced in magnetic grains [12,13].
Unlike multidomain nanosized particles, the magneto-heating performance of single mag-
netic domain nanosized particles is mainly correlated with magnetic anisotropy, inter/intra
particles interactions and homogeny distributed magnetic nanoparticles [14]. Magnetic re-
laxation is generally the dominant mechanism in magnetic anisotropy and thus in magneto
heating performance of nanoparticles. The magneto-heating performance of single mag-
netic domain nanosized particles is associated with two mechanisms, Néel and Brownian
relaxations [15–17]. Brownian motion is created by mechanical fluctuation that performing
by an entire nanoparticle rotating its own axis. On the other hand, the Néel relaxation
mechanism is independent from the rotational motion of particles. The internal flip of
spins with respect to the crystalline lattice creates magnetic heating associated with Néel
relaxation [18–20]. Both relaxation mechanisms cause an increase in the temperature of
magnetic nanoparticles. Even though magneto-heating can be observed with temperature
increase, the magneto-heating performance of magnetic nanoparticles can be measured by
specific absorption rate (SAR) values. SAR values can be defined by absorbed/converted
magnetic energy into thermal energy and in technological applications (especially in cancer
treatments) mainly modified properties of magnetic nanoparticles [3]. For magnetic hyper-
thermia applications, Néel relaxation has certain advantages due to its high SAR values [3].
On the other hand, Brownian relaxation is largely dependent on the viscosity of the medium
surrounded by particles, and in cancer treatment SAR value is not enough for magneto-
heating processes [3]. Liquid environmental conditions, such as different viscosities of the
medium, agglomeration of nanoparticles within different cells, or fixation of nanoparticles
in cell membranes (or extracellular tissue), weaken or inhibit the mechanical rotation of
magnetic nanoparticles [21]. During the cancer treatments, due to the lack of movement
or fluctuation of magnetic nanoparticles inside cancer cells Néel relaxation became the
dominant factor for magnetic heating in compare to Brownian movement [3,20,21].

The study is based on the evaluation of the magneto heating performance of individual,
non-interacting, and monodisperse particles in highly viscous environments confirming
the Néel relaxation mechanism. The magneto heating mechanism is investigated for super-
paramagnetic Fe3O4 nanoparticles doped with Ti atoms. The magneto heating performance
of magnetic nanoparticles is not sufficient for cancer treatments, and therefore the surface
of magnetic nanoparticles must be functionalized by ligands [22,23]. The general way to
improve the surface modification and functionalization ability of magnetic nanoparticles
is to coat each nanoparticle with a SiO2 shell [23]. Optical transparency, highly biocom-
patibility, biodegradability, and manufacturability with porous surfaces make SiO2 very
useful as a biomaterial [24]. The study also includes understanding the effect of SiO2 on
the heating performance of (Fe1−x,Tix)3O4 nanoparticles. Although coating with SiO2 has
no effect on crystal structures, the SiO2 thickness has caused a remarkable decrease in
internal magnetization value of Fe3O4 [25]. One of the consequences of the reduction of
internal magnetization can be observed as a decrease in the magneto heating performance
of magnetic nanoparticles [26,27]. On the other hand, SiO2 coating reduces interparticle
interactions and inhibits aggregation, thereby increasing the heating capabilities of mag-
netic nanoparticles in AC fields [28–30]. Therefore, the magneto heating performance of
magnetic nanoparticles is correlated with interacting or non-interacting particles [26–30].

The magnetic nanoparticles such as Fe3O4 seem as efficient nano-heaters in biomedical
applications [31–33]. Surface modified (Fe1-x,Tix)3O4 nanoparticles are expected to be
potential bio-materials which suitable for loading anticancer drugs and heating under both
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excitations, RF magnetic field, and UV radiation, which utilize the magnetic nanoparticles
useful at clinical hyperthermia applications.

2. Experimental

Magnetite nanoparticles were prepared via the co-precipitation method. Ferrous
chloride tetrahydrate (FeCl2·4H2O) and ferric chloride (FeCl3) were used as iron precursors
containing different valance states. On the other hand, Tetraisopropil Ortotinatate (TIPO)
was used as a Titanium source. Natrium hydroxide (NaOH: 25% by weight) in H2O and
hydrochloric acid in water (HCl) were used as the precipitating agent. To prevent the
agglomeration of magnetic nanoparticles, nanoparticles were coated with oleic acid at the
end of the process. Ethanol and DI water were used to remove excessive coating agent.
The schematic diagram of the procedure was demonstrated in Figure 1. The synthesis was
performed on magnetic stirrer at 90 ◦C. Firstly, ferrous and ferric chloride iron salts were
dissolved in water with HCl under Argon gas flow. Secondly, after half an hour, TIPO and
NaOH were dropped into the solution. Oleic acid was added to the solution as the last step.
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Figure 1. The schematic diagram of the synthesis procedure of pure and Ti-doped magnetite. Figure 1. The schematic diagram of the synthesis procedure of pure and Ti-doped magnetite.

The coated nanoparticles were washed with DI water and ethanol to remove chloride
ions and excessive coating materials. Furthermore, the same procedure was performed for
the synthesis of the pure magnetite nanoparticles.

The nanoparticles were also coated with SiO2 by base-catalyzed silica formation
from tetraethylorthosilicate (TEOS) in a water-in-oil microemulsion technique, which was
mentioned in previous study [34]. The resulting mixture was vigorously stirred for 24 h.

The crystal structures of samples were investigated by x-ray powder diffractometer
(XRD), employing a MiniFlex model XRD, produced by Rigaku Corporation (Tokyo, Japan).
The XRD patterns were taken under Cu Kα radiation (1.5406 Å) in 2θ range from 10◦
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to 90◦. A JEM-2010F high-resolution transmission electron microscope (HR-TEM) (JEOL
Ltd., Tokyo, Japan) was used to picture the structural morphologies of nanoparticles. Dc
magnetization (σ (H)) measurements were performed at 300 K temperatures in a magnetic
field range of ± 2 T.

Magneto-thermal characterization was taken by a homemade setup constructed using
the equipment with a frequency of 150 kHz (power generator, thermometer, etc.). Experi-
ments were performed in a custom-made setup with an alcohol thermometer, a covered
glass tube, a water-cooled magnetic coil (diameter 50 mm and four turns for 160 Oe), and
an AC power generator (Istanbul, Turkey) with a constant frequency of 150 kHz. The
SAR measurements were conducted in non-adiabatic conditions as in many publications.
The colloidal solution was put into a glass tube and the tube was placed in the coil. The
thermometer was directly inserted into the solution. The temperature was measured using
the thermometer as a function of time for a duration of 15 min. The filling level of the
solution in the tube was adapted to the half-length of the coil to minimize the effects of
magnetic field inhomogenity. Between the glass tube and the coils, we used styrofoam as
an insulating material.

3. Result and Discussions

The structural analyses were performed employing XRD patterns for SiO2 coated and
uncoated particles as shown in Figure 2a,b respectively. The patterns were in an agreement
with Fe3O4 diffraction pattern shown in ICDD card (PDF# 74-0748). No contamination
or unexpected phase such as TiO2 based structures, was detected on the XRD patterns.
As seen in Figure 2b, even though having high background intensity, originating from
the amorphous phase of SiO2, the Fe3O4 patterns were distinctly distinguished at each
XRD pattern.
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Not observing Ti elements or compounds in the xrd patterns indicated the displace-
ment of Ti atoms inside of Fe3O4 lattice. The ionic radius of Ti4+ is approximately 0.61Å,
which is close to the ionic radius of Fe3+ (0.64 Å). Thus, Ti4+ ions are expected to settle
instead of by Fe3+ ions in the octahedral lattice sites. Due to charge neutrality, a Ti4+ ion re-
placement in an octahedral site gives rise to change the valence state of Fe3+ ion to Fe2+ ion
as shown in the chemical equation of (1) [35]. Due to its charge neutrality, the substitution of
Ti4+, a tetravalent positive ion, causes an Fe3+ ion to change its valency into Fe2+. Chemical
Equations (1) and (2) assign the charge neutrality occurring in (Fe1−x,Tix)3O4 lattice.

Fe2+↔Fe3+ + e− (1)

2Fe3+→Ti4+ + Fe2+ (2)

Increase in Ti4+ substitution amount (0.01 ≤ x ≤ 0.025) in (Fe1−x,Tix)3O4 lattice cause
to formation of Fe2+

A(Fe2+, Ti4+)BO4 (A, tetrahedral side; B, octahedral side), which inhibits
the hopping mechanism between iron ionic states. And thus, the new configuration
cause to increase in magnetic anisotropy as mentioned in literature [35,36]. Excessive Ti4+

substitution (x ≥ 0.025) easily bypasses Fe2+ ions, resulting in the formation of differential
vacancies [35].

After understanding the crystal structure and possible defects in a lattice, the particle
size distributions were investigated employing TEM micrographs. TEM Figures assigned
homogeny distributed nanoparticles. In addition, due to covering with oleic acid, no
agglomeration across the entire particle distribution was realized as seen in Figure 3.
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Figure 3. TEM micrographs of (a) uncoated and (b) coated (Fe0.97,Ti0.03)3O4 nanoparticles.

The size frequencies of particles were calculated by the subprogram of Image-J2.
Particles with high differences in particle size were selected in the calculations. As shown
on Figure 4, the particles size distributions which were confirmed by ImageJ, were found as
10.3± 0.6 nm and 18.7± 0.5 nm for uncoated and coated (Fe0.97,Ti0.03)3O4, respectively. The
particles’ size distribution indicated that the particles were in superparamagnetic regions.

The magnetization (σ (H)) measurements at the room temperature were illustrated in
the Figure 5 for both samples uncoated and coated (Fe1−x,Tix)3O4. As seen from the Figure,
the zero remanent magnetization assign the overcoming thermal energy to the magnetic
anisotropy energy barrier at all samples. For both coated and uncoated (Fe1−x,Tix)3O4
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particles, only difference in magnetization curves was the decrease in magnetization value
by Ti amount in lattice. In order to understand the magnetic domain states of particles,
room temperature magnetic hysteresis curves were obtained as shown in Figure 5.
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Figure 5. The magnetization measurements of (a) uncoated and (b) SiO2 coated pure and Ti-
doped magnetite.

Not observing coercivity and remanence values on hysteresis curves at room tem-
perature proved that the particles were in superparamagnetic states [37,38]. Heating
performance of an individual, non-interacting, and monodisperse particles have high
SAR value due to dominating of Néel relaxation in a highly viscous environment. In the
superparamagnetic state at room temperature, the magnetic interaction decreased to the
lowest values with the effect of thermal energy. Nanoparticle size, anisotropy and interpar-
ticle interaction are the principal factors that influence heat generation [39,40]. Moreover,
agglomerations between the magnetic nanoparticles occur due to strong magnetic dipole–
dipole interactions between particles. As seen in Figure 5, coating with SiO2 and doping
with Ti atoms reduced the magnetization of the particles. A possible mechanism reducing
the magnetization of particles is the number of vacancies in the crystal structure. The
vacancies may form non-magnetic regions on the particle surface [41]. In addition, the
magnetic anisotropy of the easy-axis is another parameter affecting the magnetization
values that can be different either parallel or perpendicular to the easy-axis orientation of
the domains [42]. These parameters manage the SAR values of particles.

Being predominant of thermal energy to magnetic energy at room temperature indi-
cated that the nanoparticles were in superparamagnetic region. Since the particles were in
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superparamagnetic state size, the Néel magnetic relaxation was expected to dominate the
magneto heating performance of the particles.

In Figure 6, the heating performance of particles was investigated under an ac magnetic
field, approximately 13 kA/m field intensity and frequency of 150 kHz (the biological limits
are 5 × 109 A/(m.s). The magneto heating measurements were taken immediately after
arranging nanoparticles as magnetic fluids in 1 ml ethanol media. As seen on the Figure,
the temperature difference (∆T) reach up to 30 ◦C for pure Fe3O4 and for the same time
interval Ti doping lowered the ∆T value down to 20 ◦C ((Fe0.97,Ti0.03)3O4 nanoparticles).
For (Fe0.97,Ti0.03)3O4 nanoparticles, the ∆T value was measured as 22 ◦C, which was good
enough for use in vivo studies.
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Figure 6. The magnetic heating performance of (a) uncoated and (b) SiO2 coated pure and Ti
doped Fe3O4.

Then, for each particle, the SAR value was calculated as shown in Table 1. The
physical quantity of SAR value was determined by defined as the heat released from
colloidal magnetic nanoparticles in unit time by Equation (3) [43].

SAR =
Q

∆t mmag
(3)

where Q = mc∆T, mmag is the mass of magnetic nanoparticle, c is the specific heat of the
colloid (only ethanol is taken into account, the contribution of magnetic nanoparticles, oleic
acid, and SiO2 to the specific heat are neglected). The calculations were performed for the
heat capacity and the density of ethanol 2.57 kJ/(kgK), 0.789 g/mL, respectively.

Table 1. SAR values of (Fe1−x,Tix)3O4 (x = 0.00, 0.02 and 0.03) nanoparticles.

Nanoparticles SAR (W/g)

Fe3O4 155

x = 0.02 70

x = 0.03 3

SiO2 coated Fe3O4 104

x = 0.02 (SiO2 coated) 34

x = 0.03 (SiO2 coated) 116

The SAR values were illustrated in Table 1. As understood from Table 1, coating with
SiO2 lowered the SAR values of (Fe1−x,Tix)3O4 nanoparticles. However, for SiO2 coated
samples increase in Ti4+ ions amount in lattice caused an increase in SAR value, which
getting closer to the value of pure Fe3O4 nanoparticles.
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4. Conclusions

In the study, homogeny size distributed (Fe1−x,Tix)3O4 ferrite nanoparticles in oleic
acid and at SiO2 matrix were synthesized via a chemical route. The particles were obtained
as superparamagnetic Fe3O4 nanoparticles to dominate the Néel relaxation over Brownian
relaxation mechanism. Furthermore, lowering the particle size down to superparamagnetic
region, coating with SiO2 and Ti doping into the lattice was the tuned parameters to produce
individual, non-interacting, and monodisperse particles. Then, the heating mechanism
of SiO2 coated Ti doped Fe3O4 nanoparticles were only correlated with Ti atoms amount
in the lattice. Due to the expected coupling between Ti4+-Fe2+ ions in the octahedral site,
the heating performance by Ti doping was lower than pure Fe3O4. On the other hand,
for SiO2 coated (Fe0.97,Ti0.03)3O4 nanoparticles, the increase in the amount of Ti4+ ions in
lattice cause an increase in SAR value (∆T = 22 ◦C in 10 min), while decreasing for uncoated
nanoparticles. The heating performance of (Fe0.97,Ti0.03)3O4 nanoparticles coated with SiO2
was almost close to the heating performance of pure magnetite.

Author Contributions: Conceptualization, M.M.C.; methodology, M.M.C.; formal analysis, M.M.C.;
investigation, M.M.C., D.S.K., Z.A. and M.O.Ö.; resources, M.M.C.; data curation, M.M.C., C.B. and
S.A.; writing—original draft preparation, M.M.C.; writing—review and editing, M.M.C., S.A., D.S.K.,
S.K., Z.A. and M.O.Ö.; visualization, M.M.C.; supervision, M.M.C.; project administration, M.M.C.;
All authors have read and agreed to the published version of the manuscript.

Funding: This work was also supported by Scientific Research Projects Coordination Unit of Istanbul
University with project number FBG-2018-28289.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
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