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Abstract: Hydrogen is a great sourcez of energy due to having zero emission of carbon-based contents.
It is found primarily in water, which is abundant and renewable. For electrochemical splitting of
water molecules, it is necessary to use catalytic materials that minimize energy consumption. As
a famous carbon material, graphitic carbon nitride, with its excellent physicochemical properties
and diversified functionalities, presents great potential in electrocatalytic sensing. In the present
work, graphitic carbon nitride-fabricated metal tungstate nanocomposites are synthesized by the
hydrothermal method to study their applications in catalysis, electrochemical sensing, and water
splitting for hydrogen production. Nanocomposites using different metals, such as cobalt, manganese,
strontium, tin, and nickel, were used as a precursor are synthesized via the hydrothermal process.
The synthesized materials (g-C3N4/NiWO4, g-C3N4/MnWO4, g-C3N4/CoWO4, g-C3N4/SnWO4,
g-C3N4/SrWO4) were characterized using different techniques, such as FTIR and XRD. The presence
of a functional groups between the metal and tungstate groups was confirmed by the FTIR spectra.
All the nanocomposites show a tungstate peak at 600 cm−1, while the vibrational absorption bands
for metals appear in the range of 400–600 cm−1. X-ray diffraction (XRD) shows that the characteristic
peaks matched with the JCPDS in the literature, which confirmed the successful formation of all
nanocomposites. The electrochemical active surface area is calculated by taking cyclic voltammo-
grams of the potassium–ferrocyanide redox couple. Among the entire series of metal tungstate, the
g-C3N4/NiWO4 has a large surface area owing to the high conductive properties towards water oxi-
dation. In order to study the electrocatalytic activity of the as-synthesized materials, electrochemical
water splitting is performed by cyclic voltammetry in alkaline medium. All the synthesized materials
proved to be efficient catalysts with enhanced conductive properties towards water oxidation. Among
the entire series, g-C3N4-NiWO4 is a very efficient electrocatalyst owing to its higher active surface
area and conductive activity. The order of electrocatalytic sensing of the different composites is:
g-C3N4-NiWO4 > g-C3N4-SrWO4 > g-C3N4-CoWO4 > g-C3N4-SnWO4 > g-C3N4-MnWO4. Studies
on electrochemically synthesized electrocatalysts revealed their catalytic activity, indicating their
potential as electrode materials for direct hydrogen evolution for power generation.
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1. Introduction

The rapid growth of energy use demands more sustainable and renewable energy
production. The primary renewable energy resources such as solar and wind power are
ecofriendly, but they possess seasonal intermittence and variabilities due to regional differ-
ences. To avoid such problems, such unstable energy sources should be replaced with the
stable hydrogen energy [1]. The production of hydrogen is becoming increasingly popular
due to its environment-friendly qualities and potential as a source of energy that is clean,
non-polluting, and recyclable. In coping with the future energy crisis, hydrogen can play
an important role [2]. In view of hydrogen generation, water electrolysis is a common and
efficient method. Generally, water splitting is based on the two half processes: the cathodic
oxygen evolution reaction (OER) and the anodic hydrogen evolution reaction (HER). Al-
though water electrocatalysis produces very pure and ecofriendly hydrogen, due to the
sluggish kinetics of OER and HER and large overpotential value, the practice of energy
generation via water splitting is limited [3]. To solve this problem, the use of electrocatalysts
should be implemented in order to minimize the overpotential value for cathodic hydrogen
evolution (HER) and anodic oxygen evolution (OER) [4]. The electrocatalysts make the
water splitting an energy-efficient process [5]. Recently, research on electrochemical water
splitting using various electrocatalysts has been conducted to achieve this objective [4]. The
noble metals such as platinum-, iridium-, and ruthenium-based nanomaterials proved to
be efficient regarding HER and ORE processes [6,7]. The existence of such catalysts makes
them indispensable for many technologically significant chemical processes, although their
spontaneous aggregation and growth limit the lifetime and efficiency. Additionally, the
ultrahigh price of noble metals has severely limited their future use. Due to the rapid devel-
opment of modern industry, a critical need of today is highly active, stable, low-cost, and
recyclable nanomaterial alternatives to these noble metals, designed for water splitting [8].
Recently, the conductive polymers (CPs) have been shown as a potential alternative to
Pt-based materials due to their high electrical properties, large surface area, and greater
physical and chemical stability [9–11]. Among the 2D CPs, graphitic carbon nitride (g-C3N4)
is a graphene-like material having excellent structural features, such as high porosity, large
surface area, and greater content of nitrogen. g-C3N4 has wide applications in electrochemi-
cal sensing, optoelectronics, electrochemical oxidations, and energy storage and conversion
devices [12,13]. g-C3N4 can be used as a good supportive material for manufacturing 3D
nanomaterials for different electrochemical applications. Doping of different nanomaterials
with g-C3N4 generates highly active electrode materials by connection within hybrids [14].
In the past few years, scientists have enhanced the properties of CPs by doping with tran-
sition metals/metal oxides [15]. Recently, a series of low-cost metal tungstates, such as
Bi2WO6, CuWO4, NiWO4, and CoWO4, have been extensively studied as efficient dopants,
with g-C3N4 showing various applications because of its outstanding optical, magnetic, and
catalytic properties [16]. Hence, from these studies, it seems that by doping g-C3N4 with
CoWO4 [17] and NiWO4 [18], its photocatalytic activity is enhanced. Similarly, strontium,
tin, manganese, zirconium, and cobalt are the most promising transition metals and are
reported as dopants with g-C3N4 for numerous applications [15,19,20]. These metals have a
large bandgap, rendering them with weak ion transport kinetics as semiconductors or even
insulators [19], and electrode film pulverization as a result of the pronounced expansion
and contraction of volume during the charging/discharging processes [20].

Motivated by these results, we have designed this research work to explore the catalytic
activity of transition metal tungstate-fabricated graphitic carbon nitride for electrochemical
applications. In this work, the nanocomposites (g-C3N4-NiWO4, g-C3N4-MnWO4, g-C3N4-
SnWO4, g-C3N4-CoWO4, g-C3N4-SrWO4) were synthesized via the hydrothermal method
and characterized by XRD, FTIR, and electrochemical cyclic voltammetry. The study of
the electrocatalytic splitting of water for hydrogen production was carried out in alkaline
medium via cyclic voltammetry. All the synthesized nanocomposites represent excellent
catalytic activity towards water oxidation.
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2. Materials and Methods
2.1. Materials

Melamine (purity: 99.95%), cyanuric acid (purity: >99%), sodium tungstate (Sigma
Aldrich, St. Louis, MO, USA), sodium hydroxide (Sigma Aldrich), potassium hexacyanofer-
rate (III) (K4[Fe(CN)6]), alumina powder, nafion, and different metal precursors were used.
All chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA).

2.2. Preparation of g-C3N4

Following the protocol of Vilian et al., C3N4 was prepared [21]. The melamine and
cyanuric acid were dissolved in water (75 mL) and ultrasonically maintained for 4 h. An
oven (Memmert, Germany) was used at 200 ◦C for 12 h to heat the solution after sonication
in a 100 mL stainless Teflon lining. Centrifugation, followed by cleaning with ethanol and
water, was performed to eradicate any remaining contaminations from the precipitate, then
centrifuging was carried out at 5000 RPM for 30 min (Figure 1). After drying at 100 ◦C
for 24 h, the precipitate was removed. Consequently, g-C3N4 (Vilian et al., 2020) was
synthesized [21].
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Figure 1. Schematic representation of the formation of graphitic carbon nitride (g-C3N4).

2.3. Preparation of g-C3N4/Metal Tungstate Composite

The graphitic carbon nitride g-C3N4/MetalWO4 nanocomposite was synthesized by
utilizing a simple hydrothermal procedure without any surfactants. Initially, a solution
of sodium tungstate and graphitic carbon nitride was made. For this purpose, 0.01 g of g-
C3N4 and 15 mM of Na2WO4·2H2O were placed in 37 mL of deionized water. This solution
was then kept under sonication for 20 min. The temperature was set at room temperature.
After sonication, the mixture was placed aside. Then, 15 mM of salt solution in deionized
water was prepared and added into the above mixture to form a homogeneous solution,
and 1 mL of aqueous NaOH solution (0.1 M) was gradually added to the homogeneous
solution. The mixture solution was then dispensed into an autoclave and heated at 180 ◦C
for 12 h. After autoclaving, the resulting mixture was centrifuged to obtain the maximum
analyte. To extract the excess unreacted starting materials, the obtained precipitate was
collected and thoroughly rinsed three times with ethanol and water and desiccated at 60 ◦C.
Finally, the resulting precipitation was strengthened in a vacuum oven at 300 ◦C for five
hours to attain the g-C3N4/MetalWO4 nanocomposites. The obtained g-C3N4/MetalWO4
nanocomposite was circulated in ethanol to perform electrochemical measurements in
Figure 2.
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2.4. Electrochemical Studies

The electrochemical water oxidation of all synthesized nanocomposites was studied
by using the Gamry Potentiostat interface 1000 (Gamry, Warminster, PA, USA) with a
3-electrode cell (100 mL) assembly in alkaline medium. The working electrode was glassy
carbon (GC), the counter electrode was platinum wire (Pt), and the reference electrode was
silver/silver chloride (Ag/AgCl). Before modification, the surface of glassy carbon was
cleaned with alumina slurry by polishing the electrode in a figure eight motion for 5 min.
Then, it was rinsed with deionized water and sonicated for 1 min in deionized water to
remove remnants of alumina powder. It was dried at room temperature. The catalyst was
then deposited on the GC surface by the drop casting method, where 5% nafion was used
as a binder.

3. Characterization Studies
3.1. Fourier-Transform Infrared (FTIR) Spectroscopy

The chemical and structural characteristics of nanocomposites, as well as their atomic
and molecular vibrations, were investigated using FTIR (Nicolet 5PC, Nicolet Analytical
Instrument (Protea, Cambridgeshire, UK) in a 500 to 4000 cm−1 range. The FTIR spectrum
of the cobalt tungstate-fabricated nanocomposite is depicted in Figure 3, where the two
prominent peaks appeared at 1627.5 and 3350 cm−1, representing N-H bond and hydroxyl
bond stretching vibration, respectively [22]. The conjugated g-C3N4-based heterocycles
are represented by several absorption peaks in the 1600–1200 cm−1 region [21], which
appeared in nearly all spectra of g-C3N4/MetalWO4. The band at 611.8 cm−1 corresponds
to Co-O-W symmetric vibration [23].

Figure 4 presents the FTIR spectrum of g-C3N4/MnWO4. There should be obvious
peaks at 875, 827, 710, 605, and 512 cm−1 for pristine MnWO4. The peaks at 870, 704,
621, and 514 cm−1 correspond to the W–O (symmetric), W–O (asymmetric), Mn–O, and
Mn–O–Mn stretching vibrations, respectively, which confirms the formation of manganese
tungstate [21]. In Figure 4, two strong peaks appeared at 794 and 670 cm−1, demonstrating
W–O (symmetric) and Mn–O–Mn stretching vibrations, respectively. Hence, Figure 4
confirms the successful preparation of g-C3N4/MnWO4.

The FTIR spectrum of graphitic carbon nitride fabricated on nickel tungstate is shown
in Figure 5. Strong peaks appeared at 1621 and 3322 cm−1, showing conjugation between
graphitic carbon nitride and metal oxide, as in previous spectra. Peaks in the series below
500 cm−1 are due to the vibrations of the NiO6 polyhedron [24], which is not observed in
this figure as the spectrum range is from 500 to 1500 cm−1.
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The FTIR of the tin tungstate–graphitic carbon nitride sample in Figure 6 depicts a
band at 1000 cm−1 which is due to the W=O bond. The band at 650 cm−1 corresponds to
Sn-O vibrational modes, which slightly appeared in Figure 6.
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3.2. X-ray Diffraction (XRD)

X-ray diffraction (PANalytical X’PERT High Score’s diffractometer, Malvern, UK)
patterns of nanocomposites prepared by the hydrothermal method are shown in Figure 8.
All the diffraction peaks in Figure 8 are sharp, indicating the good crystallinity of the
material. Figure 8a represents the peaks of 2θ for g-C3N4/SnWO4 at 28.3◦ and 53.1◦ with
crystallographic plans of (121) and (161), with JCPDS card No. 29-1354 [26], which confirms
the formation of orthorhombic α-SnWO4. The spectrum in Figure 8b shows the XRD of
g-C3N4/MnWO4, which shows intensity peaks for MnWO4 at 30.1◦, 30.57◦, 36.25◦, and
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67.1◦, with crystal lattice (−111), (111), (120), and (140), respectively, with JCPDS card
No. 72-0478 [27], along with the low-intensity peak of g-C3N4 at 26.7◦ (002). This spectrum
in Figure 8b depicts the formation of g-C3N4/MnWO4. The XRD spectrum in Figure 8c of
g-C3N4/CoWO4 shows the characteristic peak of g-C3N4 at 13.1◦, indexed as (100) with
JCPDS card No. 50-1512 [28], and this is due to the in-plane structural packing motif. The
peaks for CoWO4 appeared at 30.8◦, 36.4◦, and 54.3◦, indexed as (111), (200), and (202),
respectively, with JCPDS card No. 72-0479 [29]. The peaks of g-C3N4/SrWO4 presented in
Figure 8d are 33.6◦ and 55.8◦, with corresponding miller indices (204) and (312) and JCPDS
card No. 08-0490, which agree well with the reported data of SrWO4 for Scheelite phase [30].
Figure 8e represents the XRD spectrum of g-C3N4/NiWO4, having peaks at 31.1◦, 36.2◦,
55.4◦, and 65.2◦ for NiWO4 with JCPDS card No. 15-0755 [31]; thus, this confirmed the
synthesis of g-C3N4/NiWO4. The intensity of the peaks in many spectra decreased and
the peak width increased, which indicated the interaction between metal tungstate and
C3N4 nanoparticles, and thus confirmed the successful formation of nanocomposites. No
characteristic peaks for other impurity phases were observed in all five XRD patterns,
showing that the selected synthetic method is a feasible route to prepare pure phases
of catalysts.
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and (e) g-C3N4/NiWO4 nanocomposites.

The size of the prepared materials was calculated by using the Debye–Scherrer equa-
tion [32]:

Davrg =
kλ

β cos θ
(1)

where Davrg is equal to the average crystallite size, λ is the X-ray wavelength, θ is the
Bragg angle of the desired peak, and β is the line broadening evaluated from the peak
width at half height. The average crystalline size of all synthesized particles is presented
in Table 1. In XRD patterns, the peak width is inversely proportional to the crystallite
size. Normally, nanoparticles of small-sized peaks have a small particle size, while those
of sharp peaks have large particle sizes. The small particle size is responsible for more
catalytic activity [33].
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Table 1. Calculated values of Davrg.

Samples Davrg (XRD) (nm)

g-C3N4/SnWO4 9.0

g-C3N4/MnWO4 16.3

g-C3N4/CoWO4 52.6

g-C3N4/SrWO4 84.4

g-C3N4/NiWO4 30.3

3.3. Estimation of Active Surface Area of Modified Electrode

To determine the active surface area of electrodes, which is altered by catalysts having
diverse loadings of nanocomposites, cyclic voltammograms were recorded at a scan rate of
100 mV s−1 in a 0.1 M KCl solution, with 5 mM of potassium ferrocyanide as a model redox
mediator (Figure 9). The peak currents show that the highest value corresponds to the
NiWO4-modified electrode. This means that the sample NiWO4-presents better conductive
properties towards the redox probe as related to the rest of the catalysts.
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the supporting electrolyte at a 100 mV s−1 sweep rate at the surface of the modified GC.

The active surface area was estimated using the Randles–Sevcik equation for reversible
reactions [34]:

Ipa = 2.69 × 105n3/2 AD1/2υ1/2C (2)

where D is the diffusion coefficient (0.76 × 10−5 cm2s−1), n = 1, and C is the concentration
of analytes (5 mM).

From Table 2, it can be seen that g-C3N4 with nickel tungstate presented a higher
surface area as compared to the other metal tungstates. This means that the nickel tungstate-
fabricated graphitic carbon nitride is an efficient electrocatalyst towards an electrochemical
redox reaction.
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Table 2. Active surface area calculated for modified electrodes.

Samples Active Surface Area (cm−2)

g-C3N4/SnWO4 0.061

g-C3N4/MnWO4 0.050

g-C3N4/CoWO4 0.068

g-C3N4/SrWO4 0.081

g-C3N4/NiWO4 0.088

4. Electrochemical Water Oxidation

CV (Gamry Interface 1000) was used to perform electrochemical studies, such as
water oxidation. Three electrodes were utilized for the experiment: modified GC as a
working electrode, Pt-wire as a counter electrode, and silver-silver chloride as a reference
electrode. Water oxidation was carried out in a 1 M KOH solution in a potential window
ranging from 0.5 to 1.8 V at different scan rates (10 to 100 mV s−1). The cyclic voltam-
metry behaviors of nanocomposites were used to investigate the redox kinetics of the
electrodes (Figure 10a–e). The anodic peak current with a growing scan rate from 10 to
100 mV s−1 was represented, which shows that the current increased with the increas-
ing sweep rate, from 1.25 to 4.46 mA for g-C3N4-CoWO4/GC, from 0.17 to 0.45 mA for
g-C3N4/MnWO4/GC, from 0.2 to 1.7 mA for g-C3N4-SnWO4/GC, from 2.5 to 6.5 mA for g-
C3N4-NiWO4/GC, and from 2.0 to 5.5 mA for g-C3N4-SrWO4/GC, and the peak potential
shifted towards higher (anodic) potentials. The onset potential for all five nanocomposites
is presented in Table 3. The reported onset potential for water oxidation on CoWO4 was
~1.54 V (NHE) [35], while CoWO4-fabricated g-C3N4 was 1.12 V (NHE). An ideal potential
value for the water oxidation reaction is 1.23 V (NHE) [36–38]. From Table 3, it can be
seen that all synthesized electrocatalysts presented lower onset potential values (NHE) for
OER, which revealed that all the nanocomposites performed well in cyclic voltammetry,
inherently possessing superior oxygen evolution activity. The peak current of different
synthesized nanocomposites is shown in Figure 10f and Table 3, which was in the order:
g-C3N4/NiWO4 > g-C3N4/SrWO4 > g-C3N4/CoWO4 > g-C3N4/SnWO4 > g-C3N4/MnWO4.
Hence, these synthesized nanocomposites are favorable for being excellent electrochemical
catalysts towards water oxidation.

Table 3. Kinetics parameters for water oxidation at g-C3N4/MetalWO4/GC.

Samples Eonset (V) Ipa (mA) α Do/10−6 cm2s−1

g-C3N4/SnWO4 1.08 (NHE =1.23) 1.5 0.2 40.72

g-C3N4/MnWO4 0.999 (NHE = 1.19) 0.45 0.3 14.09

g-C3N4/CoWO4 0.92 (NHE = 1.12) 4.5 0.2 130.00

g-C3N4/SrWO4 0.86 (NHE = 1.06) 5.3 0.2 132.06

g-C3N4/NiWO4 0.80 (NHE = 1.01) 6.5 0.1 133.3

The linear relationship between peak current (Ipa) and scan rates (υ1/2) is presented
in Figure 11 and illustrates that the water oxidation on the surface of metal oxide catalysts
is diffusion-controlled.

Determination of Diffusion Coefficient (Do)

The diffusion coefficient was determined by using the Randles–Sevcik formula for
irreversible reactions [32]:

Ipa = 2.69 × 105 n 3/2 AC × (1 − a) n D1/2 ν1/2 (3)
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where A is the surface area of the electrode (0.07 cm2), C is the concentration of KOH (1 M),
N is the number of electrons for OER (2), and α is the transfer coefficient (0.2–0.7). From
the slope of the plot of Ipa vs. ν1/2, we obtained the diffusion coefficients tabulated in
Table 3. Table 3 depicts that g-C3N4/NiWO4 has a higher value of the diffusion coefficient
as compared to the other catalysts, showing that g-C3N4/NiWO4 nanoparticles are an
excellent candidate for rapid redox reactions towards water oxidation.
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Figure 10. CV curves of water oxidation in 1 M KOH at different sweep rates (10–100 mVs−1) of: (a) 
g-C3N4-SnWO4, (b) g-C3N4-MnWO4, (c) gC3N4-CoWO4, (d) g-C3N4-SrWO4, and (e) g-C3N4-NiWO4. 
(f) Comparative peak current of all nanocomposites at 100 mVs−1 in 0.1 M KOH. 

Table 3. Kinetics parameters for water oxidation at g-C3N4/MetalWO4/GC. 

Samples Eonset (V) Ipa (mA) α Do/10−6 cm2s−1 

g-C3N4/SnWO4 1.08 (NHE =1.23) 1.5 0.2 40.72 
g-C3N4/MnWO4 0.999 (NHE = 1.19) 0.45 0.3 14.09 
g-C3N4/CoWO4 0.92 (NHE = 1.12) 4.5 0.2 130.00 
g-C3N4/SrWO4 0.86 (NHE = 1.06)  5.3 0.2 132.06 
g-C3N4/NiWO4 0.80 (NHE = 1.01) 6.5 0.1 133.3 

Figure 10. CV curves of water oxidation in 1 M KOH at different sweep rates (10–100 mV s−1) of: (a) g-
C3N4-SnWO4, (b) g-C3N4-MnWO4, (c) gC3N4-CoWO4, (d) g-C3N4-SrWO4, and (e) g-C3N4-NiWO4.
(f) Comparative peak current of all nanocomposites at 100 mV s−1 in 0.1 M KOH.
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5. Conclusions

The present study presented a simple fabrication strategy for the fabrication of g-C3N4
on metal tungstates as a potential electrode material for the electrochemical splitting of
water samples. Metal tungstates (nickel tungstate, copper tungstate, stannous tungstate,
strontium tungstate, and manganese tungstate) were distributed on the graphitic carbon
nitride surface. The composites were successfully formed, as revealed by XRD and FTIR
analysis. In FTIR spectroscopy for functional group detection, all the composites showed a
tungstate peak at 600 cm−1. X-ray diffraction (XRD) was performed at 2 theta, showing
characteristic peaks according to their JCPDS card numbers. The electrochemical properties
of the electrodes were confirmed via cyclic voltammetry. The g-C3N4-NiWO4 composite
electrode displayed a unique electrochemical sensing behavior compared to the other
composite electrodes, exhibiting a high peak current and low peak potential. The order
of electrocatalytic sensing of different composites towards water oxidation was: g-C3N4-
NiWO4 > g-C3N4 SrWO4 > g-C3N4-CoWO4 > g-C3N4-SnWO4 > g-C3N4-MnWO4. Based
on the results from the fabricated electrochemical sensor, the g-C3N4/NiWO4 composite
displayed the highest active surface area at 0.088 cm−2. In this case, the peak current was
higher and the sensitivity was also high. Aside from this, g-C3N4/NiWO4 can also be
employed in the manufacture of electrodes used in clinical, pharmaceutical, and medical
applications. As a result, the proposed modified electrode can be employed in the long
term for electrocatalytic sensing, with good selectivity and reproducibility. The findings
indicated that the investigated approach could be useful in regular analytical applications.
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