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Abstract: In order to achieve a comprehensive and accurate evaluation of the safety of compression
members made of circular steel tubes, image processing technology is commonly utilized to extract
the morphology of the steel tubes before and after rust removal. The obtained results have validated
the feasibility and applicability of employing digital cameras and image processing technology to
analyze the images of the steel tubes before and after rust removal and to extract useful structural
mechanics features. The feature values of the apparent morphology before rust removal grow with
the increase of the corrosion depth, while after rust removal, the feature values first increase and
then decrease with the growth of the corrosion depth. Based on this fact, a simplified equation
is proposed to quantify the relationship between the feature values of the apparent morphology
before and after rust removal and the corrosion depth. In continuing, a simple, fairly accurate, and
comprehensive safety evaluation methodology for corroded circular steel tubes under compression
is established. Finally, an example is illustrated to check the applicability and effectiveness of the
proposed approach.

Keywords: corroded circular steel tubes (CCSTs); image processing; feature value extraction; safety
evaluation; comprehensive evaluation method

1. Introduction

Corroded circular steel tubes (CCSTs) under compression are often exploited in off-
shore or marine environments such as bridge structures and offshore wind power structures.
Corrosion of the steel members is inevitable in such severe environments, particularly in
the presence of high temperature, high humidity, and high chloride ion concentrations.
Present studies of CCST-based members [1–5] reveal that corrosion directly influences the
effective section and load-carrying capacity of steel members, thereby affecting the overall
safety of the whole structure. Therefore, a convenient and accurate evaluation approach for
detecting hidden corrosion sooner and avoiding economic losses in CCST-based structures
is very important.

Corrosion detection can be performed in various ways according to the instruments
and equipment utilized as well as the evaluation target [6–10]. Currently, the most com-
mon methods include ultrasonic detection, X-ray, eddy current detection, magnetic flux
leakage detection, electrochemical detection, and image processing. Particularly, due to
the advantages of simple operation, low cost, and automatic detection and classification,
image processing technology has been extensively employed in corrosion detection of
aluminum alloy, carbon steel, magnesium alloy, and other metals [11–15] as well as various
steel structures, including aircraft, carbon steel storage tanks, pipelines, and others [16–23].
However, this methodology has high requirements for the extracted features, and mostly a
single feature is exploited as the corrosion indicator. Additionally, it does not associate with
the degradation of mechanical properties of corroded steel components. These limitations
hinder the further application of image processing technology in the corrosion detection of
steel structures.
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Current research results of corrosion assessment methods [24–30] and specifications [31–33]
for steel members are mostly focused on components such as underground pipelines,
bridge cables, and steel gates, while few studies have been conducted on circular steel tube
members. Additionally, the evaluation indicators and parameters employed in existing
explorations are different. Most investigations utilized only a single indicator, and some
indicators, including member load-carrying capacity and corrosion depth, are difficult to
obtain. Thus, it is very challenging to achieve comprehensive assessment of corroded steel
members quickly and systematically. Herein, based on the image processing technology, we
extract various image feature values of the apparent morphology of CCSTs under compres-
sion before and after rust removal. Subsequently, by taking into account the degradation of
load-carrying capacity, the corrosion depth, and the morphological characteristics before
and after rust removal, a comprehensive corrosion evaluation approach for the safety of
CCSTs under compression is proposed.

2. Corrosion Image Acquisition

According to Wu et al. [1], accelerated corrosion of CCSTs under both uniform corro-
sion and compression is achieved by manually spraying the steel tubes. Uniform corrosion
assumption is adopted for CCSTs, that is, the corrosion ratio and corrosion depth of the
same CCST are the same. Images of the corroded steel tubes are captured using a digital
camera (Canon EOS600D, Canon, Tokyo, Japan) before and after rust removal. The shooting
angle and distance are kept the same during image acquisition. The distance from the target
is 22 cm± 1 cm, the image resolution is 3456× 5184, and the image format is *.JPG. Figure 1
demonstrates image acquisition equipment and schematic representation of members.
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Figure 1. Image acquisition equipment and schematic representation of members: (a) Schematic 
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weather, shooting angle, and lighting conditions on image quality, the images are pre-

processed by implementing normalization, Gaussian filter denoising, and histogram 

equalization. Figure 2 shows a typical example of image preprocessing. 

Figure 1. Image acquisition equipment and schematic representation of members: (a) Schematic
representation of CCSTs, (b) Canon EOS600D.

3. Image Preprocessing

In order to facilitate the extraction of image features and reduce the influence of
weather, shooting angle, and lighting conditions on image quality, the images are prepro-
cessed by implementing normalization, Gaussian filter denoising, and histogram equaliza-
tion. Figure 2 shows a typical example of image preprocessing.
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Figure 2. Preprocessing of the collected images: (a) image normalization, (b) Gaussian filter denoising,
(c) histogram equalization.

4. Feature Extraction

Based on the existing methodologies of image feature extraction, the features of the
images before and after rust removal are extracted, and the changes of various features
with the corrosion depth are appropriately examined.

4.1. Image Features before Rust Removal
4.1.1. Sub-Image Energy Value

The sub-images obtained after the wavelet transform contain scale and direction
information. The features calculated from sub-images of different scales constitute a feature
set that reflects the scale of corrosion morphology. Generally, the energy feature is exploited
for this purpose. Therefore, the energy values of the sub-images after the wavelet transform
are extracted, and the calculation equations are provided by [34]:

H(i) =
n(i)

P
(1)

Eenergy =
255

∑
i=0

H(i)2 (2)

where H(i) represents the ratio of points with pixel value i to the total number of pixels in
the image, n(i) denotes the number of points with pixel value i in the image, and P stands
for the total number of pixels in the image.

The energy values of sub-images in various directions and at different decomposition
levels have been presented in Table 1. The factor tw denotes the corrosion depth and EH1,
EV1, and ED1 represent the sub-image energy values in the horizontal, vertical, and diagonal
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directions after application of the one-level wavelet transform, respectively. EH2, EV2, and
ED2 are the sub-image energy values after applying the two-level wavelet transform in the
above-mentioned directions, while EH3, EV3, and ED3 denote the sub-image energy values
after application of the three-level wavelet transform in the directions explained above.

Table 1. Corresponding energy value of sub-images and information entropy for various corrosion
depths.

tw (mm) Eentropy
Energy Value/(×10−2)

EH1 EV1 ED1 EH2 EV2 ED2 EH3 EV3 ED3

0 4.930 7.328 7.364 7.288 7.293 7.311 6.790 7.484 7.506 7.348
0.096 5.195 7.368 7.379 7.319 7.390 7.408 6.989 7.517 7.529 7.363
0.250 5.271 7.367 7.380 7.139 7.395 7.401 6.981 7.536 7.554 7.429
0.423 5.507 7.447 7.443 7.058 7.462 7.459 7.157 7.569 7.572 7.496
0.647 5.591 7.459 7.452 7.029 7.447 7.450 7.142 7.588 7.582 7.531
0.805 5.631 7.473 7.473 7.208 7.450 7.446 7.116 7.593 7.583 7.531

According to Table 1, it can be seen that the energy value of each sub-image before rust
removal changes in a different pattern with the growth of corrosion depth. In general, there
is a strong relationship between the energy value of each sub-image and the corrosion depth
after applying the three-level wavelet transform in all considered directions. Therefore, the
energy values (plus error bars) in each direction after application of the three-level wavelet
transform are plotted, as illustrated in Figure 3. The relationship between the energy value
and corrosion depth can be suitably fitted. The fitting equation and the significance test
results have been provided in Table 2.
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Table 2. Fitting equation and significance test of the relationship between image features before rust
removal and corrosion depth.

Feature Value Fitting Equation Coefficients |R|
Value Correlation

Sub-image
energy
value

Horizontal

y = Ae(−
x
t ) + y0

A = −0.122, t = 0.348,
y0 = 7.605 0.992

Very
significantVertical A = −0.082, t = 0.219,

y0 = 7.586 0.997

Diagonal A = −0.234, t = 0.362,
y0 = 7.563 0.979

Information entropy
value

A = −0.836, t = 0.438,
y0 = 5.780 0.984

According to Figure 3 and Table 2, after application of the three-level wavelet trans-
form, the energy values in the horizontal, vertical, and diagonal directions all rise with
the growth of the corrosion depth, and commonly there exists an exponential relationship
between them. The corresponding fitting equation reveals good applicability and effective-
ness in the significance test, and thus it can be employed for the calculation of the corrosion
depth and corrosion level in engineering practice.

4.1.2. Information Entropy Value

Information entropy represents a measure of the amount of information contained
in an image, and it has a negative correlation with the image distribution probability. It
implies that the smaller the image probability, the larger the information entropy value. By
this view, the information entropy values of the images are appropriately extracted after
preprocessing, and the corresponding calculation equations are [35]:

I(i) = log
(

1
pi

)
= − log(pi) (3)

Eentropy = −
255

∑
i=0

pi · log(pi) (4)

where pi denotes the probability distribution of the i-th gray level in the image.
The calculated information entropy value has been presented in Table 1 and Figure 4.

The relationship between the information entropy and corrosion depth is fitted. The fitting
equation and the significance test results are given in Table 2.
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According to Figure 4 and Table 2, the presented results reveal that the information
entropy value of the image before rust removal increases with the growth of the corrosion
depth, and there exists an exponential relationship between these two factors. The fitting
equation suggested for the relationship between the information entropy value and the
corrosion depth shows good applicability and effectiveness in the significance test. As a
result, the proposed equation can be employed for the evaluation of corrosion depth and
corrosion level in engineering practice.

4.2. Image Features after Rust Removal
4.2.1. Sub-Image Energy Value

Similar to Section 4.1.1, the energy values of sub-images in various directions and at
different decomposition levels are obtained, as demonstrated in Table 3. It can be seen that
the energy value of each sub-image after rust removal changes to varying degrees with
the growth of the corrosion depth. Commonly, there is a strong relationship between the
energy values after one-level wavelet transform and corrosion depth in all three directions.
Figure 5 illustrates the energy values (plus error bars) in each direction after employing
the one-level wavelet transform, and the fitting equation and significance test results have
been presented in Table 4.

Table 3. Energy value and information entropy of sub-images corresponding to different corrosion
depths.

tw/mm Eentropy
Energy Value/(×10−2)

EH1 EV1 ED1 EH2 EV2 ED2 EH3 EV3 ED3

0.096 5.344 7.272 7.272 6.536 7.464 7.462 7.199 7.571 7.570 7.491
0.250 5.404 7.296 7.281 6.530 7.474 7.467 7.198 7.572 7.569 7.494
0.387 5.701 7.452 7.465 7.112 7.453 7.456 7.116 7.579 7.582 7.497
0.467 5.846 7.467 7.464 7.015 7.466 7.471 7.134 7.577 7.582 7.502
0.609 5.307 7.256 7.220 6.510 7.457 7.437 7.112 7.573 7.563 7.479
0.647 5.175 7.206 7.184 6.572 7.434 7.419 7.043 7.568 7.558 7.463

Based on Figure 5 and Table 4, it can be seen that the energy values in the horizontal,
vertical, and diagonal directions after one-level wavelet transform first grows and then
decreases with the growth of the corrosion depth, and the relationship corresponds to the
Gaussian distribution. The fitting equation for the relationship between the energy value
and the corrosion depth reveals good applicability and effectiveness in the significance test.
It implies that the proposed formula can be exploited for calculating the corrosion depth
and corrosion level in engineering practice.

Table 4. Fitting equation and significance test of the relationship between image features after rust
removal (sub-image energy value, information entropy value) and corrosion depth.

Feature Value Fitting Equation Coefficients |R|
Value Correlation

Sub-image
energy value

Horizontal

y = y0 +
A

W×
√

π
2

e−2( x−x0
W )

2

A = 0.047, W = 0.158
y0 = 7.254, x0 = 0.428 0.983

Very significant
Vertical A = 0.057, W = 0.168

y0 = 7.230, x0 = 0.414 0.966

Diagonal A = 0.097, W = 0.061
y0 = 6.526, x0 = 0.425 0.997

Information entropy value A = 0.082, W = 0.112
y0 = 5.327, x0 = 0.439 0.921
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Figure 5. Relationship between energy values of the sub-images obtained after one-level wavelet
transform and the corrosion depths: (a) EH1-tw, (b) EV1-tw, (c) ED1-tw.

4.2.2. Information Entropy Value

Similar to Section 4.1.2, the information entropy values are calculated, as presented
in Table 3. The information entropy values (plus error bars) have been plotted in Figure 6,
and the fitting equation for the relationship between the information entropy value and
corrosion depth can be obtained. The fitting equation and significance test results have
been provided in Table 4.
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According to Figure 6 and Table 4, the results show that the information entropy
values after rust removal first rise and then lessen with the increase of the corrosion depth,
and their relationship is chiefly governed by a Gaussian distribution. The fitting equation
associated with the relationship between the information entropy value and the corrosion
depth reveals good applicability and effectiveness in the significance test. This means
that the fitting equation can be rationally utilized for evaluating the corrosion depth and
corrosion level in engineering practice.

4.2.3. Image Fractal Dimension

The fractal theory is essentially based on fractal geometry and is employed to examine
complex natural morphology such as surface roughness and irregularity. It has been
broadly applied in image processing, material structure, and quality control. The fractal
dimension, as the core of the fractal theory, is a measure of the fractal characteristics.
In the present study, the box-counting method, which is the most common and easy to
implement, is utilized to evaluate the fractal dimension, D, of the image after rust removal.
The calculation equation is expressed by [36]:

D = lim
ε→0

ln N(ε)

ln(1/ε)
(5)

N(ε) = ∑M
i=1 ∑N

j=1

Vi,j

ε3 = ∑M
i=1 ∑N

j=1

zmaxi,j − zmini,j

ε
(6)

where ε represents the size of the box, N(ε) denotes the number of boxes for the morphology
after rust removal, which can be calculated according to Equation (6). Vi,j is the volume
of the cuboid, and zmaxi,j and zmini,j are the maximum and minimum elevations after rust
removal, respectively. If lnN(ε) increases linearly with ln(1/ε), this indicates that the image
features after rust removal have fractal characteristics, and the slope of the lnN(ε)~ln(1/ε)
curve is the fractal dimension, D, of the image features after rust removal.

The calculated fractal dimensions of the images have been provided in Figures 7 and 8.
The relationship between the fractal dimension and the corrosion depth is appropriately
fitted. The fitting equation and significance test results are presented in Table 5.

Table 5. Fitting equation and significance test of the relationship between image features after rust
removal (fractal dimension) and corrosion depth.

Stage Fitting Equation Coefficients |R|
Value Correlation

Earlier stage
y = Ae(−

x
t ) + y0

A = 0.005, t = −0.199, y0 = 2.269 0.994 Very
significantLater stage A = 0.827, t =0.261, y0 = 2.179 0.999

The presented results in Figure 8 and Table 5 display that the fractal dimensions after
rust removal first magnify and then drop with the growth of the corrosion depth, which is
similar to the image feature laws of sub-image energy value and information entropy value.
The fitting equation for the relationship between the fractal dimension and the corrosion
depth exhibits good applicability and effectiveness in the significance test. As a result, such
a relation can be utilized for expressing the corrosion depth in terms of the corrosion level
in engineering practice.
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5. Comprehensive Safety Evaluation Method and Verification

According to the specifications in Unified Standard for Reliability Design of Engi-
neering Structures (GB 50153-2008) [32] and Standards for Appraisal of Reliability of Civil
Buildings (GB 50292-2015) [33], Table 6 should be employed when steel members are evalu-
ated according to the load-carrying capacity. The grade of each item should be distinctly
computed, and then the lowest grade is taken as the safety grade according to the principle
of worst action. The standards for each safety grade have been given in Table 7.

Table 6. Evaluation of load-carrying capacity grades of steel structural members.

Types
R/(γ0S)

Grade au Grade bu Grade cu Grade du

Main components, nodes, and connection
domains ≥1.0 ≥0.95 ≥0.90 <0.90

General components ≥1.0 ≥0.90 ≥0.85 <0.85

Table 7. Safety grading standards.

Objects Grade Grading Standards Actions to Take

Individual
steel

member

au

The safety meets the requirements for grade
au, and the member has sufficient

load-carrying capacity
No action needed

bu

The safety is slightly lower than the
requirements for grade au, and the member

load-carrying capacity is not greatly affected.
No action necessary

cu

The safety does not meet the requirements for
grade au, and the member load-carrying

capacity is affected.
Action needed

du

The safety does not meet the requirements for
grade au, and the member load-carrying

capacity is severely affected.

Immediate action
needed

For cold-formed thin-walled steel structures, light-weight steel structures, steel piles,
and steel structures located in industrial areas with corrosive media or high-humidity and
coastal areas, the rusting condition should be employed as an inspection item to determine
the grade, as demonstrated in Table 8.

Table 8. Evaluation of corrosion of steel structural members unsuitable for carrying loads.

Grade Evaluation Standards

cu
In the main loading part of the structure, the average corrosion depth of the

member section 0.1 t < ∆t < 0.15 t

du
In the main loading part of the structure, the average corrosion depth of the

member section ∆t > 0.15 t

In the current specifications, the criteria for the grading of the load-carrying capacity
of the members and the corrosion of the members affecting the load-carrying capacity are
given. However, in the evaluation of corroded steel members, it is necessary to assess the
degree of degradation of the load-carrying capacity and the average corrosion depth of
the members. These parameters are often difficult to obtain in practice, which hinders the
evaluation of corroded steel members. Hence, it is imperative to establish a simple, fast,
and accurate method for evaluating the safety level of corroded members.

5.1. Establishment of the Comprehensive Evaluation Method

Based on the relationship equations between the image features and the corrosion
depth before and after rust removal, as well as the equation for the load-carrying capacity
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of corroded circular steel compression members explained by Wei [5], the classification
grades are refined. Subsequently, a comprehensive evaluation approach accounting for the
load-carrying capacity degradation, corrosion depth, and morphological features before
and after rust removal is proposed. The proposed methodology evaluates the corroded steel
compression members from various aspects, and the principle of worst action is utilized to
classify the corrosion degree of the members. The specific grades are presented in Table 9,
and the criteria for each grade are also given in Table 10.

Table 9. Comprehensive safety evaluation of CCSTs under compression.

Item
Grades

Grade a Grade b Grade c Grade d Failure

Load carrying capacity
degradation/(%) 0 (0,5] (5,10] (10,15] >15

Corrosion depth/mm 0 (0,0.181] (0.181,0.347] (0.347,0.498] >0.498

Morphological
features before
rust removal

EH3/(×10−2) ≤210 ho (7.483,7.533] (7.533,7.560] (7.560,7.576] >7.576
EV3/(×10−2) ≤2106] (7.504,7.550] (7.550,7.569] (7.569,7.578] >7.578
ED3/(×10−2) ≤2108] (7.329,7.421] (7.421,7.473] (7.473,7.504] >7.504

Eentropy ≤4.944 (4.944,5.227] (5.227,5.401] (5.401,5.512] >5.512

Morphological
features after
rust removal

EH1/(×10−2) ≤7.254 (7.254,7.256] (7.256,7.394] (7.394,7.414] <7.414
EV1/(×10−2) ≤21,230 (7.230,7.236] (7.236,7.427] (7.427,7.393] <7.393
ED1/(×10−2) ≤21,093 (6.526,6.526] (6.526,6.573] (6.573,6.596] <6.596

Eentropy ≤ntrop (5.327,5.327] (5.327,5.478] (5.478,5.660] <5.660
D ≤2.274 (2.274,2.281] (2.281,2.298] (2.298,2.302] <2.302

Table 10. Grading criteria for CCSTs under compression.

Objects Grades Grading Criteria Actions to Take

Individual steel
member

a Impact of corrosion on the load-carrying capacity
can be neglected, and the member is basically intact.

Rust removal and reinforcement
measures not needed

b Impact of corrosion on the load-carrying capacity is
not significant, and the member is slightly corroded.

Rust removal and reinforcement
measures not necessary

c Impact of corrosion on the load-carrying capacity is
significant, and the member is moderately corroded.

Rust removal and reinforcement
measures needed

d Impact of corrosion on the load-carrying capacity is
significant, and the member is severely corroded.

Immediate rust removal, reinforcement,
or replacement measures needed

Failure Impact of corrosion on the load-carrying capacity is
extremely significant, and the member fails. Replacement needed

To sum up, the application steps of the comprehensive evaluation method for CCSTs
can be summarized as follows:

(1) The images of CCSTs are acquired according to the requirements of Section 2;
(2) The images of CCSTs are preprocessed according to the methods in Section 3;
(3) The corresponding image features of the preprocessed corrosion images are ex-

tracted according to the methods in Section 4;
(4) The corrosion grades of CCSTs are classified according to Table 9, and the corre-

sponding treatment schemes for CCSTs are given according to Table 10.

5.2. Calculation Example

Taking the three members, i.e., C0–30, C35–90, and C15–180, as introduced by Wu et al. [1]
as examples, the overall morphology of these members before and after rust removal has
been presented in Figure 9. According to the method mentioned above, the feature values
of the images of each member before and after rust removal are extracted, and the safety of
the steel compression members is evaluated based on Table 9. The achieved results have
been provided in Table 11.
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Table 11. Comprehensive safety evaluation results of calculation examples.

Item
Grades C0–30 C35–90 C15–180

Result Grade Result Grade Result Grade

Load carrying capacity
degradation/(%) 5.04 Grade c 5.83 Grade c 13.93 Grade d

Corrosion depth/mm 0.205 Grade c 0.243 Grade c 0.556 Failure

Morphological
features before
rust removal

EH3/(×10−2) 7.532 Grade b 7.539 Grade c 7.608 Failure
EV3/(×10−2) 7.530 Grade b 7.525 Grade b 7.579 Failure
ED3/(×10−2) 7.411 Grade b 7.425 Grade c 7.567 Failure

Eentropy 5.030 Grade b 5.274 Grade c 5.434 Grade d

Morphological
features after
rust removal

EH1/(×10−2) 7.266 Grade c 7.286 Grade c 7.211 Failure
EV1/(×10−2) 7.286 Grade c 7.280 Grade c 7.247 Failure
ED1/(×10−2) 6.543 Grade c 6.525 Grade a 6.463 Failure

Eentropy 5.422 Grade c 5.397 Grade c 5.368 Failure
D 2.277 Grade b 2.284 Grade c 2.263 Failure

Final grade Grade c Grade c Failure

According to Table 11, it can be seen that by taking the load-carrying capacity degra-
dation and corrosion depth as the evaluation criteria, only the corrosion of C0–30, C35–90,
and C15–180 are classified as Grade c, Grade c, and failure, respectively. By taking the
features before and after rust removal as the evaluation criteria, then C0–30, C35–90, and
C15–180 are categorized as Grade c, Grade c, and failure, respectively. By implementing
the comprehensive evaluation method proposed in this study, C0–30 is Grade c, C35–90
is Grade c, and C15–180 is failure. The obtained results demonstrate that the evaluation
results of all these methods are consistent with the results of the standard approach. This
implies that the comprehensive evaluation method has good applicability and effectiveness.
Compared with the standard evaluation method, the proposed approach is essentially
based on the morphological features of the steel members. Therefore, the parameters can
be easily obtained, and the evaluation process is simpler than the standard evaluation
approach. As a result, the proposed method can be exploited in the practical corrosion
evaluation of steel members.

It is necessary to state that in this paper the study mainly focuses on the compre-
hensive safety evaluation method established for the image features of CCSTs in offshore
atmospheric environments. When the component type is square steel tube or angle iron,
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and the corrosion environment is industrial atmosphere or rural atmosphere, the laws
of image features may be different from the results of this paper due to different light,
shooting angle, corrosion products, etc. Therefore, the applicability of the study results of
this paper to different component types, such as square steel tube and angle iron, and to
different atmospheric corrosion environments, such as industrial atmosphere and rural
atmosphere, needs further research and discussion.

6. Conclusions

(1) It is feasible and applicable to employ a digital camera and image processing tech-
nology for image acquisition and morphological feature extraction of the steel compression
members before and after rust removal. Thereafter, simplified calculation equations for
the relationships between the feature values and the corrosion depth before and after rust
removal were established.

(2) Both the energy value and information entropy value of the sub-images of the
members before rust removal increased with the increase of the corrosion depth. After rust
removal, the energy value, information entropy, and fractal dimension increased first and
then decreased with the increase of the corrosion depth.

(3) A comprehensive evaluation method for CCSTs under compression was established,
considering four indicators, namely, the load-carrying capacity degradation, the corrosion
depth, and the morphological features before and after rust removal. An example was used
to verify the applicability and effectiveness of the proposed method. Compared with the
standard evaluation method, the proposed method is simpler, more accurate, and more
suitable for practical engineering applications.
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