Review
An Overview of Technological Parameter Optimization in the Case of Laser Cladding

Kaiming Wang 1,2,3,4, Wei Liu 1, Yuxiang Hong 2, H. M. Shakhawat Sohan 1, Yonggang Tong 1,*, Yongle Hu 1, Mingjun Zhang 1, Jian Zhang 1, Dingding Xiang 3,4, Hanguang Fu 5 and Jiang Ju 6,*

1 College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China
2 Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
3 State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
4 Key Laboratory of Vibration and Control of Aero-Propulsion Systems, Ministry of Education, Northeastern University, Shenyang 110819, China
5 Key Laboratory of Advanced Functional Materials, Ministry of Education, Department of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
6 Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
* Correspondence: yg_tong@csust.edu.cn (Y.T.); jiang.ju@cityu.edu.hk (J.J.)

Abstract: This review examines the methods used to optimize the process parameters of laser cladding, including traditional optimization algorithms such as single-factor, regression analysis, response surface, and Taguchi, as well as intelligent system optimization algorithms such as neural network models, genetic algorithms, support vector machines, the new non-dominance ranking genetic algorithm II, and particle swarm algorithms. The advantages and disadvantages of various laser cladding process optimization methods are analyzed and summarized. Finally, the development trend of optimization methods in the field of laser cladding is summarized and predicted. It is believed that the result would serve as a foundation for future studies on the preparation of high-quality laser cladding coatings.

Keywords: laser cladding; process parameter; optimization methods; review

1. Introduction

Laser cladding is a technique for the deposition of a protective layer on a substrate [1,2]. It is the process of depositing a material called a “cladding material” onto a substrate with the help of the thermal energy provided by a laser beam [3–5]. The cladding material could be applied to the substrate by wire feeding, powder injection, or a preset powder [6–8]. Among them, the wire feeding system is very suitable for processing with high deposition rates [9]. However, most cladding materials still use powder because the powder-feeding method is more flexible than wire feeding [10–12]. Laser cladding is an advanced material processing technology in many parts of the business world [13–15]—for example, the metallurgical industry, mining machinery industry, marine industry, aerospace industry, automotive industry, and biomedical industry [16–21]. The laser cladding aims to increase the substrate’s hardness, wear resistance, corrosion resistance, and oxidation resistance [22–26]. It offers significant advantages over conventional surface modification techniques, such as smaller heat-affected zones, lower dilution, good metallurgical bonding with the substrate, and a finer grain size [27–31]. However, the process parameters in the cladding process have an important influence on the quality of the laser cladding coating. If the process parameters are not appropriate, the coating will have defects such as holes and cracks. Therefore, the process parameters must be effectively controlled to obtain the desired performance [32–34].
The laser cladding process is affected by many factors [35–37]. Among them, the process parameter is one of the critical factors affecting the formation and quality of the cladding layer [38–40]. The cladding process is complex and non-linear due to laser cladding involving more than 19 process parameters [41,42]. Laser power, scanning speed, and powder feeding rate have the most significant influence on the quality of the cladding layer [43]. These three parameters offer the broadest potential window in terms of changing and improving the quality of the cladding layer [44]. Experimental and theoretical studies have shown that the proper selection of input process parameters can significantly improve the properties of the cladding layer [45–47]. To obtain high-quality coatings, many scholars have studied and improved the optimization methods of laser cladding process parameters [48,49]. One approach is to investigate the effect of process parameters on the properties of the cladding layer using empirical–statistical and analytical models, such as the response surface method, linear regression method, and Taguchi method [50], to find the optimal process parameters. Another method is to use intelligent algorithms such as machine learning and metaheuristics to establish a predictive model of the mapping relationship between process parameters and the cladding layer, to achieve the optimization of the process parameters [51,52].

This paper reviews the current research status on the optimization of process parameters in laser cladding. It summarizes the optimization methods of various process parameters from traditional and intelligence optimization methods. Then, the advantages and disadvantages of various optimization methods are contrasted. Finally, we provide an outlook on the development trend of optimization methods for the laser cladding process. We hope to provide a reference for future research on the manufacturing of high-quality laser cladding coatings.

2. Traditional Optimization Methods

2.1. Single-Factor Experiment

The traditional single-factor experiment is the most common way to characterize the influence of each parameter on the coating properties [53]. Controlling a single parameter to obtain the desired property is more accessible than controlling multiple parameters [54].

In the study of laser cladding process parameters, many scholars have adopted single-factor experiments to study the process parameters in which they are interested. Among them, the more studied parameters are the laser power, powder feeding rate, and scanning speed [55–58]. Pornsak et al. [59] observed the cladding process in real time by using an infrared camera with image analysis software. The results showed that the laser spot, melt pool area, cladding height, and width all increased with increasing laser power. Zhan et al. [60] found that as the laser power increased, the clad height, width, and grain size also increased. Li [61] and Jiao et al. [62] found that the microhardness of the coating increased as the scanning speed increased. However, the wear properties of the coating will deteriorate sharply when the scanning speed is too large. Bartkowski et al. [63] prepared Stellite-6/WC metal-based composite coatings using different laser powers and powder feeding rates. Studies have found that an increase in laser power and powder feeding rate increases the coating thickness. The effects of the laser power, powder feeding rate, and scanning speed on cladding results are shown in Figure 1.
Figure 1. The influence of different laser power, scanning speed, and powder feeding rate on cladding results. (a) Effect of different laser powers on the melt pool. Reprinted from [59]. (b) Fracture toughness and fracture energy of coatings at different laser powers. Reprinted with permission from Ref. [60]. 2022, Elsevier. (c) Wear height losses of substrate and clad layers with different scanning speeds. Reprinted with permission from Ref. [61]. 2013, Taylor and Francis. (d) Effect of different powder feeding rates on the wear resistance of coatings. Reprinted with permission from Ref. [63]. 2016, Elsevier.

Some scholars have studied parameters such as the gas supply speed, laser beam diameter, and pre-placed powder layer thickness. Qi et al. [64] found that the clad width, depth, and height decreased with the increase in the laser beam diameter. Chryssolouris et al. [65] found that the clad depth decreased when increasing the gas supply. Qu et al. [66] analyzed the effects of different pre-coating thicknesses on the cladding layer’s microstructure evolution and mechanical properties. They found that the dilution rate of the coating decreased with the increase in the pre-placed powder layer thickness, and the average values of microhardness and fracture toughness increased with the thickness of the pre-coating. The influence of the gas supply speed, laser beam diameter, and pre-coating thickness on the cladding layer is shown in Figure 2.

Above all, a single-factor experiment is a trial-and-error approach. This method often requires extensive experimentation, which is costly and time-consuming. Moreover, since this method studies the effects of only one factor at a time, interactions between input parameters may be overlooked, so the results may not be optimal.
Figure 2. Influence of different laser beam diameters, gas supply speeds, and pre-coating thicknesses on cladding results. (a) Effect of different laser beam diameters on cladding results. Reprinted with permission from Ref. [64]. 2017, Elsevier. (b) The influence of different gas supply speeds on cladding results. Reprinted with permission from Ref. [65]. 2002, Elsevier. (c) Microhardness distribution along the depth direction of the coating under different pre-placed powder layer thicknesses. Reprinted with permission from Ref. [66]. 2015, Elsevier. (d) Variation in coating friction coefficient with sliding time for different pre-placed powder layer thicknesses. Reprinted with permission from Ref. [66]. 2015, Elsevier.

2.2. Regression Analysis

Regression analysis is mainly used to reveal the causal relationship between variables [67] and has been widely used in various types of statistical analysis [68]. It is primarily used as an analysis method in laser cladding to determine the relationship between the process parameters and coating properties. It is widely used in the empirical–statistical model [69,70]. Ansari [71], Shayanfar [72], Erfanmanesh [73], and Nabhani et al. [74] used regression analysis to correlate the main processing parameters (laser power (P), scanning rate (V), powder feeding rate (F)) with the coating’s geometrical characteristics (clad height, clad width, penetration depth, wetting angle, and dilution). Afterwards, the relationship between them was investigated using a combined parameter ($P^{\alpha}V^{\beta}F^{\gamma}$). Through this method, they obtained a laser cladding process drawing, from which the best process parameters could be obtained. Through experimental analysis, they discovered that the laser power influences the clad height and the clad width by the combined parameters of the laser power and scanning speed, and the clad depth through the combined parameters of the laser power, scanning speed, and powder feeding rate. However, they have different views on the dilution ratio. Since the laser power factor is present in the numerator and denominator of the dilution rate equation, Ansari [71] and Nabhani et al. [74] argue that its effect can be eliminated by simplifying the fraction, while Shayanfar [72] and Erfanmanesh et al. [73] do not adopt this approach. Ansari [71] and Nabhani et al. [74] believe that the
dilution ratio is related to the scanning speed and powder feeding rate. Shayanfar [72] and Erfanmanesh et al. [73] believe that the dilution ratio is related to the combination of the scanning speed, powder feeding rate, and laser power. The combination of process parameters that affect the cladding result is shown in Table 1. The processing diagram of laser cladding is demonstrated in Figure 3.

Table 1. A combination of process parameters that have an impact on cladding results.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Substrate</th>
<th>Cladding Material</th>
<th>Clad Height</th>
<th>Clad Width</th>
<th>Clad Depth</th>
<th>Dilution Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansari 2016</td>
<td>Inconel 738</td>
<td>NiCrAlY powder</td>
<td>(p^2V^{-3/2}F)</td>
<td>(p^3/2V^{-1/3})</td>
<td>(pV^{2/3}F^{-2/3})</td>
<td>(VF^{-1})</td>
</tr>
<tr>
<td>Shayanfar 2020</td>
<td>ASTM A592 steel</td>
<td>625 powder</td>
<td>(p^{1/2}V^{-2}F^2)</td>
<td>(p^{3/2}V^{-1/5})</td>
<td>(p^3V^{-1/2}F^3/4)</td>
<td>(p^{1/2}V^2F^{-3/4})</td>
</tr>
<tr>
<td>Erfanmanesh 2017</td>
<td>AISI 321 steel</td>
<td>WC-12Co powder</td>
<td>(p^2V^{-2}F^{1/4})</td>
<td>(pV^{-1/3})</td>
<td>(p^2V^{1/4}F^{-1/4})</td>
<td>(p^{1/2}V^2F^{-1})</td>
</tr>
<tr>
<td>Nabhani 2017</td>
<td>Ti-6Al-4V</td>
<td>Ti-6Al-4V powder</td>
<td>(PV^{-1}F^{1/4})</td>
<td>(PV^{-1/3})</td>
<td>(PV^F^{-1/8})</td>
<td>(VF^{-1/2})</td>
</tr>
</tbody>
</table>

P is laser power, V is scanning speed, and F is powder feeding rate.

Regression analysis can accurately measure the degree of correlation between each factor and the degree of the regression fit to improve the effectiveness of the prediction equation. However, the calculation is more complex. Moreover, for non-linear data or data with complex polynomials, there are difficulties in modeling using the regression analysis method.

2.3. Response Surface Methodology

The response surface methodology is a statistical method that integrates experimental design and mathematical modeling to solve multivariate problems [75,76]. It can be used to improve the secondary effects and interaction effects in different variables [77]. It is an essential branch of experimental design methods that can be used to develop, improve, and optimize processes [78].

In laser cladding, the response surface methodology is a powerful tool in analyzing the relationship between process parameters and cladding results, especially when the response target is affected by multiple process parameters [79,80]. Among them, the three process parameters of laser power, scanning speed, and powder feeding rate are more studied [81]. Cui et al. [82] used the response surface methodology to optimize a cobalt-based alloy coating’s process parameters. Their work laid the foundation for the setup of the laser cladding processing parameters for multi-track coatings made from cobalt. The response surface methodology was used by Li et al. [83] to produce a Ni60PTA coating with good properties. The coating did not have any cracks, dents, or holes. Wu et al. [84] studied the relationship between pore formation and multiple process parameters in Ni60A alloy coatings. They found that the powder feeding rate is the main factor affecting the porosity of the coating. The results showed the good surface forming quality of the specimens processed with the optimized process parameters.

Some researchers used the response surface methodology to optimize the laser frequency, pulse width, gas flow, overlap rate, and spot diameter. Khorram et al. [85] found that the laser frequency and pulse width positively affect the clad width, angle, and dilution ratio but negatively affect the clad height and hardness. Lian et al. [86] found that the clad width was inversely proportional to the overlap rate; the dilution ratio was inversely proportional to the gas flow. Within a specific range, the flatness ratio decreases with the increase in gas flow and overlap rate and then increases. Wu et al. [87] prepared a Ni60A-25% laser cladding layer with high microhardness on 42CrMo alloy structural steel. The experimental results show that the effect of the spot diameter on the dilution ratio and effective unit area is minimal. The optimization variables and response indexes used in the response surface methodology are shown in Table 2.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Substrate</th>
<th>Cladding Material</th>
<th>Response Indexes</th>
<th>Optimization Variables</th>
<th>Optimal Process Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lujun Cui</td>
<td>ZG310-570 (ZG45)</td>
<td>Co-Cr-W alloy power</td>
<td>Aspect ratio, dilution rate, clad width, clad height, clad depth</td>
<td>Laser power</td>
<td>1400 W~1700 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Powder feeding rate</td>
<td>15 g/min~20 g/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scanning speed</td>
<td>5 mm/s~6 mm/s</td>
</tr>
<tr>
<td>Tiankai Li</td>
<td>45 steel</td>
<td>Ni60PTA alloy powder</td>
<td>Dilution rate, ratio of layer width to height, contact angle</td>
<td>Laser power</td>
<td>1477 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Powder feeding rate</td>
<td>17.5 mg/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scanning speed</td>
<td>5 mm/s</td>
</tr>
</tbody>
</table>

Table 2. Optimization variables and response indexes used in the response surface methodology.
Table 2. Cont.

<table>
<thead>
<tr>
<th>Authors [Year/Reference]</th>
<th>Substrate</th>
<th>Cladding Material</th>
<th>Response Indexes</th>
<th>Optimization Variables</th>
<th>Optimal Process Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zupeng Wu 2019 [84]</td>
<td>45 steel</td>
<td>Ni60A alloy power</td>
<td>Porosity area</td>
<td>Laser power</td>
<td>1524.8 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Powder feeding rate</td>
<td>5.20 g/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scanning speed</td>
<td>6.72 mm/s</td>
</tr>
<tr>
<td>Ali Khorram 2019 [85]</td>
<td>Inconel 718 superalloy</td>
<td>75Cr3C2 + 25(80Ni20Cr) powder</td>
<td>Clad width, clad height, clad angle</td>
<td>Laser frequency</td>
<td>20 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pulse width</td>
<td>12.9 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scanning speed</td>
<td>5.43 mm/s</td>
</tr>
<tr>
<td>Guofu Lian 2018 [86]</td>
<td>AISI/SAE 1045 steel</td>
<td>W6Mo5Cr4V2 powder</td>
<td>Multi-track clad width, flatness ratio, dilution rate</td>
<td>Laser power</td>
<td>1.5 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scanning speed</td>
<td>6 mm/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gas flow</td>
<td>1018.81 L/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overlap rate</td>
<td>23.47%</td>
</tr>
<tr>
<td>Sha Wu 2021 [87]</td>
<td>42CrMo alloy</td>
<td>Ni60A-25% WC powder</td>
<td>Dilution rate, unit effective area</td>
<td>Laser power</td>
<td>2799.93 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scanning speed</td>
<td>236.84 mm/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Powder feeding rate</td>
<td>5 g/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spot diameter</td>
<td>3 mm</td>
</tr>
</tbody>
</table>

As a traditional optimization method, the response surface methodology has been successfully applied to various system optimization problems, especially to multivariate response problems. However, the premise of an experimental design using this method is that the designed experimental sites should contain optimal conditions. Otherwise, the optimization results will be biased. Therefore, reasonable experimental factors and levels must be determined when optimizing the response surface methodology.

2.4. Taguchi Method

The Taguchi method is a low-cost, high-efficiency experimental design method used in many engineering problems [88]. In the Taguchi method, orthogonal arrays can effectively determine the influence of variables and levels to achieve robust designs, which can significantly reduce the experimental time and cost [89].

Due to the simplicity and clarity of the experimental design method of the Taguchi method, in recent years, the Taguchi method has become a powerful tool to improve productivity in the R&D stage [90]. Xu et al. [91] investigated the effect of the process parameters on bond shear strength and microhardness using the Taguchi method. They found that the powder type had the most significant effect on the bond strength. Quazi et al. [92] improved the tribomechanical properties of a Ni-WC composite coating on the surface of AA5083 aluminum alloy by using the Taguchi method to optimize the laser cladding process parameters. The results show that the laser power, defocus amount, and scanning speed significantly affect the surface hardness and wear resistance.

Some scholars have improved the Taguchi method and proposed the mixed Taguchi method. Chen [93] and Shi et al. [94] combined the Taguchi method with the empirical statistical model and TOPSIS methods. The results show that both methods can significantly improve the microhardness of coatings. Zhang [95], Paul [96], Deng [97], and Yu et al. [98] combined grey correlation analysis and the Taguchi method to optimize the process parameters. This method can simplify complex multi-parameter optimization to a single-objective optimization problem, which significantly reduces the difficulty of optimization. The optimized cladding layer obtained by this method is significantly better than other cladding layers in terms of morphology and microstructure, which also verifies the feasibility of Taguchi’s grey correlation method. A grey relational graph of the process parameters; the influence of the process parameters on the cladding’s height, width, and
dilution SNR; and the cross-sectional metallographic structure comparison of the specimen before and after optimization are shown in Figure 4.

Although the Taguchi method is a cost-effective experimental design, it must indicate the test. The best combination can only be a combination of a specific test level. The optimal solution can only be within the range of the chosen level. When an interaction between controllable factors is apparent, it can lead to inaccurate results from ANOVA.

2.5. Other Traditional Optimization Methods

In addition to optimization methods such as the response surface methodology, regression analysis, single-factor experiments, and Taguchi method, traditional optimization methods such as orthogonal experiments, principal component analysis, TOPSIS, grey
Coatings 2023, 13, 496

relational analysis, the improved analytic hierarchy process approach, theoretical–empirical models, the desirability function approach, and Design Expert statistical software are also used to optimize the laser cladding process parameters.

Peng et al. [99] used the coating’s average hardness value and dilution ratio as evaluation indexes and obtained the optimal process parameters through orthogonal experiments. Marzban [100] and Wang et al. [101] combined principal component analysis (PCA) with the TOPSIS method and grey correlation relationship analysis, respectively. They achieved the multi-response optimization of the laser cladding process. Liang et al. [102] proposed a laser cladding coating quality evaluation method based on fuzzy comprehensive evaluation (PCE) and an improved analytic hierarchy process (IAHP) approach. The results show that the method can help to optimize the process parameters. Reddy et al. [103] studied the influence of the process parameters on the powder deposition efficiency, dilution, and porosity by establishing a theoretical–empirical model. The experimental results show that the laser power and powder feeding rate greatly influence the deposition efficiency and dilution, and the porosity is mainly related to the raw material. Meng [104], Menghani [105], Mohammed [106], and Liu et al. [107] used the desirability function approach to identify the optimum magnitude of the process parameters in the laser cladding process to obtain better cladding quality and geometry. Rasheedat [108] and Moradi et al. [109] designed a complete factorial experiment, ran many experiments with different process parameters, and obtained the best process parameters through the Design Expert statistical software. Table 3 lists the optimization methods and evaluation indexes. The microstructure at the optimum process parameters and a comparison with the substrate microstructure are shown in Figure 5. It can be seen from the figure that the coating and substrate bond well at the optimum process parameters. In addition, many equiaxed dendrites were formed at the top of the coating, the cladding layer was uniform and compact, the overall quality was good, and the wear resistance was improved. Compared to the substrate, the wear mechanism of the coated specimen changed to abrasive wear.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pengfei Fan 2020 [99]</td>
<td>Orthogonal experiments</td>
<td>15 MnNi4Mo steel</td>
<td>Co50 powder and WC powder</td>
<td>Clad depth, clad width, clad height, dilution rate, hardness</td>
<td>Laser power 2.4 kW</td>
<td>Powder feeding rate 0.5 g/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scanning speed 7 mm/s</td>
<td></td>
</tr>
<tr>
<td>Javad Marzban 2015 [100]</td>
<td>PCA with TOPSIS</td>
<td>AISI 1040</td>
<td>Ni-Cr-Mo powders</td>
<td>Clad height, clad width, clad depth</td>
<td>Laser power 1 k</td>
<td>Powder feeding rate 8 mg/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scanning speed 0.5 m/min</td>
<td></td>
</tr>
<tr>
<td>Qianting Wang 2020 [101]</td>
<td>PCA with GRA</td>
<td>AISI 1045</td>
<td>Fe50 powder and TiC powder</td>
<td>Clad width, flatness, non-fusion area</td>
<td>Laser power 1.77 KW</td>
<td>Power ratio 35.28%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overlapping ratio 24.06%</td>
<td>Defocus amount -0.44 mm</td>
</tr>
<tr>
<td>Wanxu Liang 2021 [102]</td>
<td>FCE with IAHP</td>
<td>45 steel</td>
<td>316 L stainless steel powder</td>
<td>Coating profile, microstructure, mechanical properties</td>
<td>Laser power ≤1200 W</td>
<td>Scanning speed 5~7 mm/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overlap rate 30~40%</td>
<td></td>
</tr>
<tr>
<td>L. Reddy 2018 [103]</td>
<td>Theoretical–empirical model</td>
<td>15Mo3</td>
<td>SHS 7170 powder</td>
<td>Powder deposition efficiency, dilution, porosity</td>
<td>Laser power 1000 W</td>
<td>Powder feeding rate 4 g/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scanning speed 300 mm/min</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Cont.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jyoti Menghani 2021 [105]</td>
<td>Desirability function approach</td>
<td>AISI 316</td>
<td>AlFeCuCrCoNi high-entropy powder</td>
<td>Clad height, clad depth, clad width, percentage dilution</td>
<td>Laser power 1.1 kW</td>
<td>Powder feeding rate 4 g/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scanning speed 500 mm/min</td>
<td>Powder feeding rate 28.52 g/min</td>
</tr>
<tr>
<td>Mahmoud Moradi 2021 [109]</td>
<td>Design Expert statistical software</td>
<td>4130 alloy steel</td>
<td>Inconel 718 powder</td>
<td>Clad height, clad width, standard deviation of microhardness, the stability of additively manufactured walls</td>
<td>Scanning speed 2.5 mm/s</td>
<td>Powder feeding rate 28.52 g/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scanning strategies (unidirectional, bidirectional)</td>
<td>Unidirectional</td>
</tr>
</tbody>
</table>

Figure 5. The microstructure at optimum process parameters and a comparison with the substrate microstructure. (a) Microstructure of the lower part of the cladding layer. Reprinted with permission from Ref. [99]. 2020, Elsevier. (b) Microstructure of the top of the cladding layer. Reprinted with permission from Ref. [99]. 2020, Elsevier. (c) 3D worn morphologies of substrate. Reprinted from [101]. (d) 3D worn morphologies of optimized clad layer [101]. (e) SEM morphologies of worn surfaces for HEA cladded SS-316 at optimum process parameters. Reprinted from [105]. (f) SEM morphologies of worn surfaces for untreated SS-316 [105].
Traditional optimization methods are often specific to a given process, without considering physical changes such as thermal strain and the cooling rate during optimization. Optimization methods still need to be redesigned when new materials or processes are used, and extensive experiments are performed to optimize the process parameters. In addition, the use of traditional optimization methods often requires a specific mathematical foundation, and some mathematical operations are necessary for the optimization process and the mathematical analysis of the experimental results.

3. Intelligent Optimization Methods

3.1. Artificial Neural Network Model

The artificial neural network is a robust empirical modeling tool with significant advantages, such as high accuracy, low costs, and short times, and it is one of the most applicable models in non-linear analysis [110]. It has a high degree of non-linear fitting capability, which is impossible with traditional methods [111]. Among them, the BP neural network is well suited for physical applications, and it is currently one of the most widely used artificial neural networks [112,113].

In recent years, the artificial neural network has made remarkable achievements in materials science. It has begun to be applied to laser cladding to predict the cladding layer morphology and optimize the process parameters [114–116]. Song et al. [117] found, through an experimental comparison, that the artificial neural network model is more suitable for describing the non-linear relationship between process parameters and cladding geometry than the response surface model. Li et al. [118] used the BP neural network to establish a laser cladding AlCoCrFeNi coating dilution rate prediction model; they found that under the optimum process parameters, the coating microstructure was composed of a simple BCC solid solution phase, the grains were equiaxed, and no serious segregation of internal elements occurred. Thus, the coating crack could be effectively controlled. Caiazzo et al. [119] used an artificial neural network to study the relationship between the laser cladding process parameters and cladding layer size. The results show that this method can obtain the required process parameters for specific cladding layer sizes. Guo et al. [120] used the BP neural network model to study the influence of the process parameters on the coating quality of a high-power semiconductor laser cladding cobalt-based alloy. The results showed that the width, height, and depth of the cladding layer were related to the laser scanning speed, and the hardness of the cladding layer was related to the powder feeding rate. The neural network prediction errors are shown in Table 4. The BP neural network training process, a comparison between the BP neural network model and the RSM model prediction results, and the microstructure of AlCoCrFeNi HEA coatings under the optimal process parameters are shown in Figure 6.

Table 4. Neural network prediction objects and errors.

<table>
<thead>
<tr>
<th>Authors [Year/Reference]</th>
<th>Substrate</th>
<th>Cladding Material</th>
<th>Optimization Method</th>
<th>Clad weight</th>
<th>Clad height</th>
<th>Dilution rate</th>
<th>Laser power</th>
<th>Scanning speed</th>
<th>Powder feeding rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changhui Song 2020 [117]</td>
<td>316 L stainless steel</td>
<td>316 L stainless steel powder</td>
<td>BPNN</td>
<td>2.79%</td>
<td>3.09%</td>
<td>5.89%</td>
<td>2.0%</td>
<td>5.8%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Yutao Li 2021 [118]</td>
<td>40CrNiMo alloy steel</td>
<td>AlCoCrFeNi high-entropy alloy powder</td>
<td>BPNN</td>
<td>5.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabrizia Caiazzo 2018 [119]</td>
<td>2024 aluminum alloy</td>
<td>2024 aluminum alloy powder</td>
<td>ANN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 6. The BP neural network training process, the comparison between the BP neural network model and the RSM model prediction results, and the microstructure of AlCoCrFeNi HEA coatings under optimal process parameters. (a) The BP neural network training process. Reprinted from [118]. (b) Comparison of the prediction results of neural networks and RSM for clad height. Reprinted with permission from Ref. [117]. 2020, Elsevier. (c) Back-scattered SEM images of the AlCoCrFeNi coating microstructure under low magnification [118]. (d) Back-scattered SEM images of the AlCoCrFeNi coating microstructure under high magnification. At the region marked B in (d), the Fe element content was the highest, which was 30.40 at.%; and the Al element content was the lowest, which was 14.98 at.%.
microstructure under low magnification [118]. (d) Back-scattered SEM images of the AlCoCrFeNi coating microstructure under high magnification. At the region marked B in (d), the Fe element content was the highest, which was 30.40 at.%; and the Al element content was the lowest, which was 14.98 at.%. The black granular microstructure (marked A) had the highest content of Al and N elements, which were 38.41 at.% and 25.23 at.%, which indicates that the particles were the AlN phase. [118]. (e) EDS maps of AlCoCrFeNi coating [118].

A neural network is suitable for handling large data samples, and when the number of samples is too small, the results may need to be more accurate. In addition, neural network models tend to fall into local minima and take longer to learn and train. Therefore, there is a need to apply more optimization algorithms to the neural network.

3.2. Genetic Algorithm Optimizes BP Neural Network (GABP)

The genetic algorithm is a non-traditional optimization tool based on random search techniques [121]. The genetic algorithm has a good global optimization ability, which is suitable for dealing with multi-objective problems [122,123]. The artificial neural network has a long learning time and slow convergence speed, and quickly falls into local minima [124]. Its combination with genetic algorithms can effectively optimize the threshold value of the neural network and achieve a fast global optimization search [125].

Liu et al. [126] found that GABP neural networks have higher prediction accuracy than BP neural networks. At the same time, the combination of a double hidden layer and single-output neural network led to higher prediction accuracy. Pang et al. [127] found that the GABP neural network had better optimization ability than the response surface method. The process parameters obtained using the GABP neural network could improve the deposition rate for laser cladding. Huang [128] and Yang et al. [129] combined genetic algorithms with a neural network model to study the relationship between the laser cladding process parameters and cladding layer quality. The results show that the optimization method can be applied to the crack control of laser cladding molding and can provide some references for the optimization of the laser cladding process parameters. The GABP predictions and their comparison with the BPNN predictions are shown in Figure 7.

The programming implementation of genetic algorithms is complex. The search speed of the algorithm could be faster and requires a long training time. There are better solutions than a single genetic algorithm for large-scale computational problems, and they can easily fall into premature convergence.

3.3. Support Vector Machines (SVM)

Support vector machines (SVM) are a statistical learning method based on structural risk minimization. Support vector regression (SVR) is a vital application branch of support vector machines (SVM). Compared with artificial neural networks, SVM still has a strong generalization ability and global optimization ability when the training data are insufficient. In recent years, it has become a hotspot in various research and industrial process applications and has been successfully applied to modeling and regression analysis problems [130–133].

Chen et al. [134] used the support vector machine (SVM) model to study the influence of the process parameters on the coating quality characteristics. The results show that the preset powder thickness, laser spot diameter, and power are the most critical process parameters. Chen et al. [135] established a multi-output support vector regression (M-SVR) model. Through experiments, they found that its accuracy was higher than that of the single-output support vector regression (S-SVR) model and the BP neural network model. Yao et al. [136] established a support vector regression (SVR) model based on the Gaussian radial (RBF) kernel function. This model is more accurate than the BP neural network model and can help to select the process parameters. Zhang et al. [137] optimized the process parameters by combining the multi-objective slime mold algorithm (MOSMA) and support vector regression (SVR). The results show that compared with other methods, such as the response surface methodology, the best process parameters obtained by this
method can lead to coatings with better performance. A comparison of the prediction results of support vector regression and the BP neural network is shown in Table 5. The prediction model framework for support vector machines, a comparison of the predicted and experimental values for SVR, and a comparison of the predicted values for SVR and BPNN are shown in Figure 8.

Figure 7. The GABP predictions and their comparison with the BPNN predictions. (a) Comparison of the prediction error of the triple-output-layer GABPNN with the single-output-layer GABPNN and BPNN for the clad width. Reprinted with permission from Ref. [126]. 2018, Springer Nature. (b) Comparison of the prediction error of the triple-output-layer GABPNN with the single-output-layer GABPNN and BPNN for the clad height. Reprinted with permission from Ref. [126]. 2018, Springer Nature. (c) Prediction results of BPNN [128]. (d) Prediction results of GABP [128].

Support vector machines (SVM) can effectively solve regression problems and perform well when dealing with small sample data. However, they are only suitable when processing a small amount of data, and, when there are too many data sets, they require a long time to solve the problem and show poor results.
Table 5. Comparison of support vector regression and BP neural network prediction results.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Substrate</th>
<th>Cladding Material</th>
<th>Optimization Method</th>
<th>Prediction Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiyi Chen 2021 [135]</td>
<td>316 L stainless</td>
<td>316 L stainless steel</td>
<td>BPNN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>steel powder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M-SVR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clad width</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clad height</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Yao Wang 2020 [136]</td>
<td>316 L stainless</td>
<td>Fe powder</td>
<td>BPNN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>steel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RBF-SVR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clad width</td>
<td>6.72%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clad height</td>
<td>7.96%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.58%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.33%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8. A prediction model framework for support vector machine, comparison of predicted and experimental values of SVR, and comparison of the predicted values of SVR and BPNN. (a) The prediction model framework of the support vector machine. Reprinted with permission from Ref. [134]. 2019, Elsevier. (b) Predicted results for microhardness and experimental values. Reprinted with permission from Ref. [134]. 2019, Elsevier. (c) Comparison of the predicted values of the clad width of SVR and BPNN [135]. (d) Comparison of the predicted values of the clad height of SVR and BPNN [135].

3.4. Novel Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

The novel non-dominated sorting genetic algorithm II (NSGA-II) is a well-known metaheuristic that can effectively solve non-linear multi-objective optimization problems [138]. It has the advantages of fast operation and good solution convergence.

Peng et al. [139] used a hybrid TS-GEP algorithm and NSGA-II to optimize the laser cladding process parameters. By using this method, they improved the energy and material utilization rate in the laser cladding process. Jiang [140] and Lin et al. [141] optimized the laser cladding process parameters using the NSGA-II algorithm. The results show that this...
method can effectively reduce the energy loss in the laser cladding process and improve the macro quality and microhardness of the cladding layer. Zhao et al. [142] used the NSGA-II algorithm to optimize the process parameters for coaxial powder-feeding laser cladding. The results showed that the use of the optimized parameters could reduce the depth of the heat-affected zone of the substrate and improve the cladding efficiency. The results of the response values before and after optimization using the NSGA-II algorithm are shown in Table 6.

<table>
<thead>
<tr>
<th>Authors [Year/Reference]</th>
<th>Substrate</th>
<th>Cladding Material</th>
<th>Response Values before and after Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xingyu Jiang 2022 [140]</td>
<td>45 steel plate 304 L powder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before</td>
<td>2,972,340.405</td>
<td>43%</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>1,798,861.43</td>
<td>46%</td>
</tr>
<tr>
<td>Linsen Shu 2022 [141]</td>
<td>TC4 plate TC4 alloy powder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before</td>
<td>74.54</td>
<td>2459.64</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>56.64</td>
<td>1884.79</td>
</tr>
<tr>
<td>Zhao Kai 2020 [142]</td>
<td>20 steel Inconel 625 powder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before</td>
<td>15.24</td>
<td>0.855</td>
</tr>
<tr>
<td></td>
<td>After</td>
<td>16.17</td>
<td>0.736</td>
</tr>
</tbody>
</table>

The NSGA-II algorithm can achieve good results in low-dimensional multi-objective optimization problems. However, for high-dimensional multi-objective optimization problems, when there are too many optimization goals, the selection pressure will be too small, and the computational complexity will increase significantly. Therefore, the algorithm needs to continue to be improved.

3.5. Particle Swarm Optimization Algorithm (PSO)

Particle swarm optimization (PSO) is a class of metaheuristic search algorithms without derivatives [143]. The mode of operation of particle swarm algorithms is similar to that of genetic algorithms. However, particle swarm algorithms consider individuals in the form of populations, rather than focusing only on a single individual, as genetic algorithms do [144]. They are widely used in multi-objective optimization problems because of their fast convergence, simple operation, and few parameters [145].

Pant et al. [146] developed a prediction model considering the process parameters and powder capture efficiency, clad height, and width using the particle swarm algorithm to optimize the artificial neural network. The results showed that the PSO-ANN model’s prediction results were more accurate than those of the ANN model. Deng et al. [147] developed a BPNN-QPSO neural network prediction model for the laser cladding of Ti (C, N) ceramic coatings and compared the method with the Taguchi method, BPNN, and BPNN-QPSO. The results show that the probability of the BPNN-QPSO model falling into the locally optimal solution is low, and the convergence speed is fast. Ma et al. [148] used a multi-objective quantum particle swarm optimization algorithm to find the minimum dilution rate and residual stress. They found that the defocus amount had the most excellent effect on the dilution rate, and the scanning speed had the most significant impact on the residual stress. Chukwubuikem et al. [149] used particle swarm optimization algorithms to optimize individual objective functions, obtained the optimal process parameters, and developed
a user interface through which the parameters could be optimized directly using particle
swarm optimization, without redesigning the optimization methods. Figure 9 shows a
comparison of the performance of the neural network and the particle swarm optimization
neural network models, and an iterative comparison of the coatings' microhardness fitness
values under different optimization methods.

Figure 9. Performance comparison of a neural network model optimized by the particle swarm
algorithm with a neural network model. (a) Comparison of experimental and ANN and PSO-ANN
models' predicted results for clad height. Reprinted with permission from Ref. [146]. 2020, Elsevier.
(b) Relative error of ANN and PSO-ANN models for clad width. Reprinted with permission from
Ref. [146]. 2020, Elsevier. (c) Performance comparison between the neural network and the PSOANN
model. Reprinted with permission from Ref. [146]. 2020, Elsevier. (d) The iterative comparison of the
coating microhardness fitness values under different optimization methods [147].

The standard PSO algorithm may sometimes fail to converge to the optimal global
solution. The multi-objective QPSO algorithm is superior in terms of convergence speed
and accuracy compared to the standard PSO algorithm. However, the multi-objective
QPSO algorithm that converges too quickly may lead to premature convergence, reducing
the convergence accuracy.

3.6. Other Intelligent Optimization Methods

The most commonly used intelligent optimization algorithms in laser cladding are the
neural network, GABP, support vector machines (SVM), and particle swarm algorithms
(PSO). However, in addition to these algorithms, algorithms such as the adaptive neuro-
fuzzy inference system (ANFIS), random forest (RF), grey wolf optimization (GWO), and
the Bonobo optimization algorithm have also been applied to laser cladding.
Singh et al. [150] used four different methods (sine cosine algorithm, coyote optimization algorithm, Jaya algorithm, and Bonobo optimization algorithm) to optimize the process parameters in order to obtain the minimum dilution. They found that the Bonobo optimization algorithm converged the fastest when searching for the global optimum solution. At the optimum parameters, the microhardness of the clad layer was significantly increased due to the diffusion of WC particles during the cladding process. Zhou et al. [151] determined the optimal process parameters by combining the grey wolf optimization algorithm and the BP neural network. They found that the GWO-BPNN model was more accurate than the predictions of the BPNN model. Under the optimum process parameters, the wear resistance and corrosion resistance of the cladding layer were significantly improved, with wear in the form of adhesion and fatigue wear. Sohrabpoor et al. [152] optimized the process parameters by correlating the ANFIS response model with the Imperialist Competition Algorithm (ICA). The results show that the method effectively improves the powder collection efficiency and obtains the desired clad height and clad width. Liang et al. [153] used a random forest algorithm to construct a regression model of laser cladding process parameters (laser power, scanning speed, powder feeding rate) and a single-pass cladding layer size. The results show that this method can accurately estimate the laser cladding process parameters required to process the cross-sectional geometry of a specific single-pass cladding layer. The prediction results of ANFIS, RF optimization methods, and GWO optimization of BPNN before and after their application are shown in Table 7. The results of the optimized microstructure are shown in Figure 10.

<table>
<thead>
<tr>
<th>Authors [Year/Reference]</th>
<th>Substrate</th>
<th>Cladding Material</th>
<th>Optimization Method</th>
<th>Predicted Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhijie Zhou 2022 [151]</td>
<td>20Cr13 stainless steel</td>
<td>15-5PH powder</td>
<td>BPNN</td>
<td>Clad height MSE 10^{-3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.053</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GWO-BPNN</td>
<td>0.161</td>
</tr>
<tr>
<td>Hamed Sohrabpoor 2016 [152]</td>
<td>A36 mild steel</td>
<td>Fe-based alloy powder</td>
<td>ANFIS</td>
<td>Powder catchment efficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.62%</td>
</tr>
<tr>
<td>Liang Xudong 2020 [153]</td>
<td>Stainless steel</td>
<td>Inconel 625 powder</td>
<td>RF</td>
<td>Laser power Scanning speed Powder feeding rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.17%</td>
</tr>
</tbody>
</table>

At present, intelligent optimization algorithms have begun to be applied to laser cladding, but there are still some limitations. Optimizing the process parameters using intelligent optimization methods often requires extensive experimentation to obtain valid training data, which can also increase the costs. Moreover, a single intelligent algorithm will likely produce local convergence, failing to obtain the optimal process parameters. Therefore, in the future, hybrid intelligence algorithms should be used more often to optimize the process parameters.
Figure 10. Microstructure of the cladding layer under optimal parameters, frictional wear properties, and corrosion resistance. (a) BSD image of the clad cross-section with optimal parameters. Reprinted with permission from Ref. [150]. 2021, Elsevier. (b) Microstructure of the cladding section with optimal parameters. 1 and 2 are showing spots for further EDS analysis. Reprinted with permission from Ref. [150]. 2021, Elsevier. (c) SEM image of the worn surface of a 15-5PH cladding layer under high magnification [151]. (d) SEM image of the worn surface of a 15-5PH cladding layer under low magnification [151]. (e) SEM image of 15-5PH cladding layer after electrochemical corrosion experiments [151]. (f) SEM image of 20Cr13 substrate after electrochemical corrosion experiments [151].

4. Summary and Outlook

It can be seen from the above that the optimization of the process parameters of laser cladding is a complex multi-parameter optimization problem. Through the optimization of the laser cladding process, the parameters can effectively improve the quality of the coating. With the deepening of research, many optimization methods have been developed. In the early years, more traditional optimization methods were used. However, with the development of computer technology, intelligent algorithms began to be applied to optimization problems, but these optimization methods still have some defects. The authors
believe that the future development trend of process parameter optimization methods is as follows.

4.1. A Deeper Look at Intelligent Algorithms

Intelligent algorithms have recently been widely used in various optimization fields. However, there are still relatively few applications for evolutionary algorithms in laser cladding, such as simulated annealing algorithms, ant colony algorithms, prohibited search algorithms, and artificial bee colony algorithms. Convolutional neural networks and radial basis neural networks are rarely reported. There are many other areas where improvements to the non-dominated sorting second-generation algorithm have been reported to significantly improve the algorithm’s performance. However, they have yet to be widely used in laser cladding. In addition, since hybrid intelligence algorithms can overcome the shortcomings of single algorithms, more research into hybrid algorithms should follow as well.

4.2. Optimization of Process Parameters under External Auxiliary Conditions

There are many reports that external conditions such as ultrasound and electromagnetic fields can effectively improve the quality of coatings. However, only a few scholars have investigated their effect in optimizing the process parameters. The optimization of the process parameters under external auxiliary conditions can be analyzed to optimize the process parameters more successfully and prepare better coatings with superior properties.

4.3. Optimization Studies Carried out on More Parameters, and More Evaluation Indicators Introduced

There are many process parameters in laser cladding. However, many scholars only optimize and study process parameters such as the laser power, scanning speed, and powder feeding rate. More research needs to be carried out to optimize other process parameters. The laser cladding results are generally evaluated by performance indicators such as the cladding width, height, depth, dilution rate, wear resistance, microhardness, etc. In contrast, the mechanical properties of the coating, such as bending, tensile, fatigue, compression, and shear properties, are rarely studied. It is essential to strengthen the research on the optimization of other process parameters and introduce more evaluation indicators to study the laser cladding process parameters.

4.4. Development of Software That Allows the Optimization of Laser Cladding Process Parameters

Both traditional and intelligent optimization methods require many experiments, which can waste time and increase costs. Developing software that can intelligently select the best process parameters is essential.

Author Contributions: Conceptualization, formal analysis and writing—original draft, K.W., W.L., J.J. and Y.T.; writing—original draft preparation, K.W. and W.L., Methodology, data curation and funding acquisition, K.W., M.Z. and H.F.; Project administration and supervision, K.W. and Y.T.; Date analysis, writing—review and editing, H.M.S.S., Y.H. (Yuxiang Hong), Y.H. (Yongle Hu), J.Z. and D.X. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to acknowledge the financial support for this work from the National Natural Science Foundation of China (52205334), the Natural Science Foundation of Hunan Province (2022JJ40495), the Changsha Key Research and Development Project (kh2201275), the Changsha Municipal Natural Science Foundation (kq2202196), the R&D Program of Beijing Municipal Education Commission (KZ202210005004), the Open Fund of Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province (ZNZZSZ-CJLU2022-02), the Tribology Science Fund of State Key Laboratory of Tribology in Advanced Equipment (SKLTKF21B08), and the Open Fund of Key Laboratory of Vibration and Control of Aeropropulsion System (VCAME202213).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

8. Bhatnagar, S.; Mullick, S.; Gopinath, M. A lumped parametric analytical model for predicting molten pool temperature and clad geometry in pre-placed powder laser cladding. Optik 2021, 247, 168015. [CrossRef]

29. Ferreira, A.; Darabi, R.; Sousa, J.; Cruz, J.; Reis, A.; Vieira, M. Optimization of Direct Laser Deposition of a Martensitic Steel Powder (Metcot 42C) on 4Cr2Mo4 Steel. Metals 2021, 11, 672. [CrossRef]

40. Ebrahiminia, M.; Xie, Y.; Chi, C. Effect of cladding parameters on microstructure and defects in direct laser metal deposition of 2CrNiMo steel. J. Laser Appl. 2021, 33, 012007. [CrossRef]

48. Shamsaei, N.; Yadollahi, A.; Bian, L.; Thompson, S.M. An overview of Direct Laser Deposition for additive manufacturing: Part II: Mechanical behavior, process parameter optimization and control. Addit. Manuf. 2015, 8, 12–35. [CrossRef]

50. Pinkerton, A.J. Advances in the modeling of laser direct metal deposition. J. Laser Appl. 2015, 27, S15001. [CrossRef]

117. Song, C.; Liu, L.; Yang, Y.; Weng, C. Prediction on Geometrical Characteristics of Laser Energy Deposition Based on Regression Equation and Neural Network. IFAC-PapersOnLine **2020**, *33*, 89–96. [CrossRef]

144. Adedeji, P.A.; Akinlabi, S.A.; Madushele, N.; Olatunji, O.O. Hybrid neurofuzzy wind power forecast and wind turbine location for embedded generation. *Int. J. Energy Res.* 2020, 45, 413–428. [CrossRef]

146. Pant, P.; Chatterjee, D. Prediction of clad characteristics using ANN and combined PSO-ANN algorithms in laser metal deposition process. *Surf. Interfaces* 2020, 21, 100699. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.