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Abstract: In this work, 3D nickel-manganese (NiMn) bimetallic coatings have been studied as
electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in
alkaline (1.0 M KOH) media and the HER in acidic (0.5 M H2SO4) media. The catalysts have been
deposited on a titanium substrate (1 × 1 cm2) using low-cost and facile electrochemical deposition
method through a dynamic hydrogen bubble template technique. The electrocatalytic performance of
these fabricated catalysts was investigated by using Linear Sweep Voltammetry (LSV) for HER and
OER at different temperatures ranging from 25 up to 75 ◦C and also was characterized by scanning
electron microscopy (SEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES).
It was found that fabricated NiMn/Ti-5 electrocatalyst with Ni2+/Mn2+ molar ratio of 1:5 exhibits
excellent HER activity in alkaline media with overpotential of 127.1 mV to reach current density
of 10 mA cm−2. On the contrary, NiMn/Ti-1 electrocatalyst that fabricated with Ni2+/Mn2+ molar
proportion of 1:1 and lowest Mn-loading of 13.43 µgcm−2 demonstrates exceptional OER activity
with minimum overpotential of 356.3 mV to reach current density of 10 mA cm−2. The current
densities increase ca. 1.8–2.2 times with an increase in temperature from 25 ◦C to 75 ◦C for both HER
and OER investigation. Both catalysts also have exhibited excellent long-term stability for 10 h at
constant potentials as well as constant current density of 10 mA cm−2 that assure their robustness
and higher durability regarding alkaline water splitting.

Keywords: nickel; manganese; bifunctional electrocatalyst; electrodeposition; hydrogen evolution
reaction; oxygen evolution reaction

1. Introduction

Over the last decade, a substantial research focusing on uninterrupted supply of re-
newable and clean energy has become a key issue due to alarming environmental threat
and rapid depletion of fossil fuels [1–4]. In order to find potential substitutes, hydro-
gen is considered the most promising alternative to fossil fuels because of its advantages
of zero carbon emissions, high gravimetric energy density (140 MJ·Kg−1), and high effi-
ciency [5–10]. Comparing with major methods for industrial hydrogen production e.g., coal
gasification and steam methane reforming, the electrocatalytic water splitting in large-scale
can also be considered as the most prospecting method [11]. This is not only due to the low
conversion efficiency of methane and coal steam into H2 and CO2, and their consequences
of carbon-emissions and global climate warming but also the advantageous feature of high
purity industrial-level H2 production from abundant natural resource with free-carbon
emission and sustainability. This promising method of green H2 production can also be the
most convenient way to store the intermittent renewable energy like solar and wind energy
by converting the electricity into H2 fuels [12].

Coatings 2023, 13, 1102. https://doi.org/10.3390/coatings13061102 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13061102
https://doi.org/10.3390/coatings13061102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0002-6869-6169
https://orcid.org/0000-0001-7555-4399
https://orcid.org/0000-0003-4713-5650
https://doi.org/10.3390/coatings13061102
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13061102?type=check_update&version=1


Coatings 2023, 13, 1102 2 of 19

Electrocatalytic water splitting is regarded as a propitious approach for hydrogen
production that consists of two half reactions: the anodic oxygen evolution reaction (OER)
and the cathodic hydrogen evolution reaction (HER). The overall electrocatalytic water
splitting under standard condition is a thermodynamically unfavorable uphill reaction
that requires a thermodynamic Gibbs free energy of 237.2 kJ mol−1, corresponding to the
theoretical limit of 1.23 V. However, to drive the reaction at a practical rate, total energy of
285.8 kJ mol−1 is required that when converted to potential becomes 1.48 V, which is called
the overpotential. Thus, practical real-world water spitting processes are limited by the
high overpotential and can only be occurred by exceeding this barrier [13]. Nevertheless,
two half-cell reactions of water splitting, i.e., HER and OER require large amount of
energy to initiate and high individual overpotential to overcome sluggish multi-electron
transfer kinetics, which leads to energy waste [14,15]. To overcome lethargic kinetics and
for reducing high overpotential values of complex electron transfer pathways, currently,
Pt-group and Pt-based materials (e.g., Pt/C) are considered as benchmark catalysts for HER
and Ir/Ru-based (IrO2/RuO2) materials are considered the highly efficient commercially
available catalysts for OER [16–19]. However, their low natural reserves and high cost
restrict the large-scale industrial application of these catalysts and hinder the production
and commercialization of hydrogen by electrocatalytic water spitting. Therefore, the
designing and development of a cost-efficient, stable and highly efficient bifunctional
electrocatalyst is the key factor to breaking the technical bottleneck of renewable green
hydrogen production from overall water splitting [20,21].

In electrocatalytic water splitting, the mechanism of cathodic HER involves three main
steps, i.e., Volmer, Heyrovsky and Tafel reactions, as shown below, in alkaline media, where
the asterisk (*) represents the active sites on the surface of the electrocatalyst [22]:

Volmer reaction: H2O + e− + *↔ H* + OH− (b ~ 120 mV dec-1) (1)

Heyrovsky reaction: H* + H2O + e− ↔ H2 + OH− + * (b ~ 40 mV dec-1) (2)

Tafel reaction: H* + H*↔ H2 + 2* (b ~ 30 mV dec-1) (3)

where b is the Tafel slope obtained from the HER polarization curves.
On the other hand, in alkaline electrolytes, the anodic OER mechanism involves the

breaking of the O—H bond and the formation of the O—O bond and progresses through
four electron transfer steps. The mechanism of OER has been shown in Equations (4)–(8)
for alkaline medium [23].

OH− + *→ OH* + e− (4)

OH* + OH− → O* + H2O + e− (5)

2O*→ 2* + O2(g) (6)

O* + OH− → OOH* + e− (7)

OOH* + OH− → * + O2(g) + H2O(l) + e− (8)

In a quest to get over these energy consuming slothful multi-electron transfer kinetics
and to promote potential substitutes of high-cost, noble metal-based electrocatalysts, an
intense research interest has been paid on various transition metals based materials for
exploring high-active electrocatalysts substantiating their cost, stability, efficiency and earth-
abundance. In recent years, many non-noble transition metal-based compounds (especially
3d-block transition metals such as Ni, Co, Fe, Mo, Mn etc.) and their alloys [24–28], ox-
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ides [29–32], hydroxides/layered double hydroxide (LDH) [33–36], oxyhydroxides [37–39],
phosphides [40–44], sulfides [45–48] etc. have been explored and demonstrated excellent
individual HER or OER performance as well as unique superior bifunctional electrocat-
alytic activity.

Among these electrocatalysts, nickel-based materials especially nickel-based bi- or,
trimetallic and multicomponent alloy electrocatalysts can be considered as potential substi-
tutes for noble metal catalysts due to their abundant reserves, low cost, unique electronic
interaction, diversity of modification by optimizing the electronic structure, high electrical
conductivity, excellent corrosion resistance, optimal stability, and excellent performance for
the production of hydrogen in alkaline media [49–53]. In addition, nickel doping or alloy-
ing with other non-precious metals improve the electronic structure of the electrodes and
proven as one of the most promising strategies for enhancement of electrocatalytic activity.
For example, the addition of iron to the Ni–Mo electrodeposition bath leads to a synergistic
effect on the deposition of molybdenum and the amount of molybdenum on the electrode
surface increased from 9.3 to 37.4 atomic percent. The as-fabricated (Ni52.3Mo37.4Fe10.2) elec-
trocatalyst with optimal composition exhibits a small overpotential of 65 mV and 344 mV
for delivering current density of 10 mA cm−2 on HER and OER, respectively in alkaline
media [54]. An enhanced HER and OER activity have been demonstrated by Cu-doped
Ni bifunctional electrocatalysts as require minimum overpotential of 76 mV and 290 mV,
respectively to the current density of 10 mA cm−2 [55]. Gao et al. reported a ternary
Ni-Fe-Mo alloy nanowire electrocatalyst (Ni0.8Fe0.15Mo0.05) which exhibits prominently
improved OER catalytic performance achieving an optimal overpotential of 300 mV at
50 mA cm−2 with corresponding Tafel slope value of 42.4 mV dec−1 [56]. All of these
studies have shown that metal alloying prompts to improve electrocatalytic activity. In
addition, Mn as one of the first-row transition metal element has received tremendous
attention as dopant to decorate high-performance alloy electrocatalysts for overall water
splitting [57]. Luo et al. synthesized Mn–Fe bimetallic oxide heterostructures on nickel
foam by adjusting the molar ratio of Fe:Mn [58]. The MnFeO-NF-0.4 electrocatalyst with
Fe:Mn ratio of 0.4:1 exhibited outstanding performance with ultralow overpotential of
157 mV for the OER while the MnFeO-NF-0.8 (Fe:Mn ratio of 0.8:1) demonstrated su-
perior HER performance with only 64 mV overpotential to achieve a current density of
10 mA cm−2. Xu et al. designed Mn-doped Ni2P microflowers with optimal Mn/Ni ratio of
0.053 which outperforms many commercially used electrocatalysts exhibiting low overpoten-
tials of 205 mV for HER and 330 mV for OER to achieve a current density of 100 mA cm−2 [59].

Moreover, another favorable approach to improve the electrocatalytic performance of
catalysts is to increase the active surface area by creating a three-dimensional structure. Elec-
trocatalyst in the form of three-dimensional coating is more suitable for practical application
in comparison with powder as polymer binders are used to adhere powder electrocatalysts
to the conducting surface, whereas, the catalyst on self-supporting electrodes are easy to
operate and remain in direct contact with electrolytes, which can increase the conductivity
and accelerate electron transfer. Additionally, the 3D interconnected network structure of
the self-supporting electrode substrate is more favorable for the release of hydrogen and
oxygen [60–62]. Answering above phenomena, the electrochemical deposition method is
the facile, cost-effective, binder-free, template-free, versatile method to fabricate highly
active electrocatalysts with desired composition and morphology.

To our knowledge, a number of NiMn LDH-based catalysts [34,63–69], their phos-
phides [70], phosphates [71], selenides [72] and composites [73] have been reviewed and
investigated with different composition, morphology and fabrication conditions but only
few works carried out on nickel-manganese bi- or, trimetallic alloy catalysts for electrocat-
alytic water splitting.

In this study, we report an affordable and facile fabrication of bimetallic NiMn alloy
electrocatalysts demonstrating their superior bifunctional electrocatalytic performance for
hydrogen evolution reaction in both alkaline and acidic media (1 M KOH and 0.5 M H2SO4)
and the oxygen evolution reaction in alkaline media with excellent long-term stability.
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2. Materials and Methods
2.1. Chemicals

Titanium foil (99.7% purity) and stainless steel foil (0.2 mm, Type 304) were purchased
from Sigma-Aldrich (Saint Louis, MO, USA) Supply and Alfa Aesar (Karlsruhe, Germany)
GmbH & Co., respectively. H2SO4 (96%), HCl (35–38%), nickel sulfate hexahydrate
(NiSO4·6H2O, >98%), manganese chloride tetrahydrate (MnCl2·4H2O, >99%), ammonium
sulfate ((NH4)2SO4, >99%), boric acid (H3BO3, >99.5%) and KOH (98.8%) were purchased
from Chempur Company (Karlsruhe, Germany). Ultrapure water with a resistivity of
18.2 MΩ cm−1 was used for preparing the solutions. All chemicals were of analytical grade
and used directly without further purification.

2.2. Fabrication of Catalysts

In this study, titanium sheets were used as substrates to fabricate the bimetallic nickel-
manganese alloy electrocatalysts with different compositions. The catalysts were prepared
by a facile, low-cost electrochemical deposition method on Ti surface (1 × 1 cm2) through a
dynamic hydrogen bubble template technique. Initially, the titanium sheets were pretreated
in diluted H2SO4 (1:1 vol.) at 70 ◦C for 3 s, then rinsed with distilled water and finally
immersed into the electrochemical deposition bath. The composition of the coating bath
for NiMn/Ti electrocatalysts included NiSO4 · 6H2O (52.57 g·L−1), MnCl2 · 4H2O (39.60 to
197.92 g·L−1), (NH4)2SO4 (66.07 g·L−1) and H3BO3 (18.55 g·L−1) dissolved in distilled water
at acidic condition (1.5 M H2SO4 and 1 M HCl). Also, 52.57 · g·L−1 of NiSO4 6H2O and
197.92 g·L−1 of MnCl2 · 4H2O were used separately with aforementioned other reagents
to prepare Ni/Ti and Mn/Ti catalyst samples, respectively, for comparing performances
with fabricated catalysts. The composition of the electrochemical bath and electroplating
conditions used for coating treatment are presented in Table 1. Electrochemical deposition
was implemented in a two-electrode cell in which a stainless steel sheet (40 × 25 × 0.2 mm)
was used as the anode. The fabrication procedure was carried out under the applied
current density and duration time conditions of 50 mA cm−2 for 3 min and 500 mA cm−2

for another 3 min. After coating, the samples were taken out, thoroughly rinsed with
deionized water, air-dried at room temperature and preserved for further investigations.

Table 1. The composition of the electrochemical bath with plating condition parameters.

Catalysts
Concentration (M) Plating Conditions

NiSO4 6H2O MnCl2 4H2O (NH4)2SO4 H3BO3 Parameters Values

Ni/Ti 0.2 - 0.5 0.3 Current densities 50 mA cm−2

Mn/Ti - 1.0 0.5 0.3 500 mA cm−2

NiMn/Ti-1 0.2 0.2 0.5 0.3 Time 3 min
NiMn/Ti-2 0.2 0.4 0.5 0.3
NiMn/Ti-3 0.2 0.6 0.5 0.3 Temperature 25 ◦C
NiMn/Ti-4 0.2 0.8 0.5 0.3
NiMn/Ti-5 0.2 1.0 0.5 0.3 pH ~1

2.3. Characterization of Catalysts

The morphology and composition of the prepared Ni/Ti sample and NiMn/Ti cata-
lysts were investigated by scanning electron microscopy (SEM) using a SEM workstation
SEM TM 4000 Plus (HITACHI) with an energy dispersive X-ray (EDX) spectrometer.

The metal loadings were determined by inductively coupled plasma optical emission
spectroscopy (ICP–OES) analysis. The ICP–OES spectra were recorded using an Optima
7000DV spectrometer (Perkin Elmer, Waltham, MA, USA) at wavelengths of λNi 231.604 nm
and λMn 257.610 nm.
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2.4. Electrochemical Measurements

The electrocatalytic activity of bimetallic nickel-manganese electrocatalysts towards
HER and OER was evaluated by linear sweep voltammetry (LSV) using a potentiostat
PGSTAT302 (Metrohm Autolab B.V., Utrecht, The Netherlands) through Electrochemical
Software (Nova 2.1.4). A standard three-electrode electrochemical cell was used during the
investigation and the fabricated NiMn/Ti catalysts with a geometric area of 2 cm2 were
employed as working electrodes, a Pt sheet was used as a counter electrode and a saturated
calomel electrode (SCE) was used as a reference. All potentials in this work were converted
to the reversible hydrogen electrode (RHE) scale using the following equation:

ERHE = ESCE + 0.242 V + 0.059 V × pHsolution (9)

LSVs were recorded in an Ar-saturated 1 M KOH solution at the temperature range
from 25 ◦C to 75 ◦C, setting the temperature with a water jacket connected to a LAUDA
Alpha RA 8 thermostat. HER and OER polarization curves were recorded from the open
circuit potential (OCP) to −0.432 V (vs. RHE) and OCP to 2.068 V (vs. RHE), respectively,
at a potential scan rate of 10 mV s−1. The HER polarization curves in acidic media (0.5 M
H2SO4) were recorded from the OCP to −0.958 V (vs. RHE) at a potential scan rate of
10 mV s−1. Also, in order to evaluate the long-term stability of the fabricated catalysts, the
chronopotentiometric curves were recorded at a constant current density of 10 mA cm−2 in
1.0 M KOH solution for 10 h. Moreover, the chronoamperometry (CA) curves were also
studied after 10 h continuous electrolysis in alkaline environment at a potential of −0.232 V
(vs. RHE) for HER and at a potential of 1.818 V (vs. RHE) for OER.

3. Results and Discussions
3.1. Microstructure and Morphology Studies

In this study, the electrocatalytic performance of 3D bimetallic nickel-manganese
alloy electrocatalysts were evaluated for HER and OER in the alkaline (1.0 M KOH)
medium as well as the HER activity in acidic (0.5 M H2SO4) medium. The coatings’ sur-
face morphology was studied by scanning electron microscopy (SEM). Figure 1 depicted
the SEM images of the prepared Ni/Ti (a) sample and NiMn/Ti-1 (b), NiMn/Ti-2 (c),
NiMn/Ti-3 (d), NiMn/Ti-4 (e) NiMn/Ti-5 (f) catalysts. The surface morphology of Ni/Ti
sample is observed to be compact, smooth and crack-free where the Ni particles are
seem to be uniformly distributed. The top side views of NiMn/Ti catalysts demonstrate
a typical globular morphology consisting of smaller nodules in Figure 1b. The size of
nodules enlarged with increase of Mn-content on the catalyst and started to cover the
surface of substrate (Figure 1c,d). With higher Mn-content, the catalysts turned into a
unique porous architecture with abundant pores of different sizes, which can provide
more channels for electrolyte diffusion, accelerate the efficiency of electron transport
and increase numerous active sites (Figure 1e,f).

Mass of the elements (metal loadings) deposited onto the Ti substrate surface was
determined by ICP–OES analysis (Table 2). It can be seen that the fabricated bimetallic
NiMn/Ti electrocatalysts possessed ca. 44–86.6 wt% of Ni and ca. 13.4–56 wt.% of Mn. The
total metal loadings (µgmetalcm−2) in the prepared catalysts were gradually uplifted with
increase of Mn-concentration and vary from ca. 100 up to 1223.5 µgmetalcm−2.
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Figure 1. SEM views of Ni/Ti sample (a) and bimetallic NiMn/Ti catalysts (b–f).

Table 2. The metal loading in the catalysts as determined by ICP-OES analysis.

Catalyst
Ni Loading
(µgNicm−2)

Mn Loading
(µgMncm−2)

Total Metal Loading
(µgmetalcm−2)

Wt.%

Ni Mn

Mn/Ti - 21.5 21.5 - 100
Ni/Ti 300.25 - 300.25 100 -

NiMn/Ti-1 86.55 13.43 99.98 86.56 13.44
NiMn/Ti-2 126.4 40.55 166.95 75.71 24.29
NiMn/Ti-3 269.7 105.25 374.95 71.93 28.07
NiMn/Ti-4 448.45 374.4 822.85 54.49 45.51
NiMn/Ti-5 538 685.5 1223.5 43.97 56.03
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3.2. Electrocatalytic Activity towards HER

The electrocatalytic performance of the prepared catalysts for HER was investigated
by recording LSVs in 1.0 M KOH solution at a potential scan rate of 10 mV·s–1 from OCP up
to −0.432 V (vs. RHE), at temperature from 25 up to 75 ◦C. The current density increases ca.
1.85–2.25 times with an increase in temperature from 25 up to 75 ◦C using the fabricated
3D NiMn/Ti catalysts for HER. The LSV curves are shown in Figure 2 at the range of
investigated temperatures and the polarization curves of fabricated catalysts at only 25 ◦C
are discretely demonstrated in Figure 3a with prepared bare Ni/Ti and Mn/Ti catalysts
from Ni and Mn-solution.
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potential scan rate and a temperature range from 25 up to 75 ◦C.

As shown in Figure 3a, all fabricated NiMn/Ti catalysts exhibit remarkable HER
catalytic activities surpassing those of Ni/Ti and Mn/Ti samples. It is worth mentioning
that via alloying Ni to Mn with different molar ratio enhanced the electrocatalytic activity
and the overpotential values at 10 mA cm−2 (η10) were considerably reduced from 424.2 mV
for Mn/Ti sample to 220.3 mV for NiMn/Ti-1 catalyst. The bimetallic NiMn/Ti-5 delivers
superior catalytic activity with a low overpotential of 127.1 mV to achieve 10 mA cm−2

relative to the NiMn/Ti-4 (144.8 mV) and NiMn/Ti-3 (149.8 mV) catalysts (Table 3). The
obtained results show that the overpotential for HER in alkaline media is shifted to a more
positive potential region with the increase of Mn in the coatings.
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temperature (a) with corresponding extracted Tafel plots (b) and required overpotentials to reaching
the current densities of 10, 20 and 50 mA cm−2 (c).

Table 3. Electrochemical parameters of the investigated catalysts toward HER in alkaline media.

Catalysts
j (mA cm−2) in Different Temperatures (◦C) at

−0.432 V(vs. RHE) j (mA µg−1)
at 25 ◦C

η10 (mV)
at 25 ◦C

Tafel Slope
(mV dec−1)

25 35 45 55 65 75

Mn/Ti 11.53 - - - - - 0.54 424.2 134

Ni/Ti 33.95 - - - - - 0.11 270.7 192

NiMn/Ti-1 50.58 74.57 84.92 95.81 105.39 113.28 0.51 220.3 177

NiMn/Ti-2 59.85 69.79 78.84 88.75 99.49 114.56 0.36 195.1 194

NiMn/Ti-3 60.65 75.68 86.56 97.46 108.15 117.03 0.16 149.8 199

NiMn/Ti-4 67.25 81.47 94.82 107.25 116.65 124.41 0.08 144.8 192

NiMn/Ti-5 69.12 82.75 88.56 101.6 114.59 134.67 0.06 127.1 184

To reveal the HER kinetics behavior, the NiMn/Ti electrocatalysts were investigated
using Tafel plots. The Tafel equation (Equation (10)) was used for the determination of the
kinetic parameters for the HER:

η = a + blogj (10)

where, η (V), a (V), b (V dec−1) and j (A cm−2) represent the applied overpotential, the
curve intercept, the Tafel slope and the resulting current density, respectively. Tafel slope
values were found to be 177, 194, 199, 192, and 184 mV dec–1 (Figure 3b and Table 3) for the
prepared 3D bimetallic NiMn/Ti-1, NiMn/Ti-2, NiMn/Ti-3, NiMn/Ti-4, and NiMn/Ti-5
catalysts, respectively, implying that HER might occur through the Volmer–Heyrovsky
mechanism. To evaluate the electrocatalytic activity of catalysts, it is important to compare
the required overpotential to reach a current density of 10 mA cm−2 (η10) that considered a
benchmark in many studies. The magnitude of overpotentials required to reach current
densities of 10, 20 and 50 mA cm−2 were shown in Figure 3c. It has been seen that
alloying Ni to Mn with higher concentrations prompt to enhance the electrocatalytic activity
and lowering overpotentials for HER, thus, the η10, η20 and η50 values have followed a
sequential downward order from NiMn/Ti-1 to NiMn/Ti-5.

Subsequently, the electrocatalytic activities of the prepared 3D NiMn/Ti catalysts
for HER were also investigated in acidic media (0.5 M H2SO4) at a potential scan rate of
10 mV s–1 from OCP up to −0.958 V (vs. RHE). As evident from LSVs shown in Figure 4a,
all studied catalysts exhibited excellent HER performance at 25 ◦C in comparison with
prepared samples, while an optimal HER catalytic activity was observed on NiMn/Ti-5
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with minimum overpotential of 102.1 mV to reach current density of 10 mA cm−2, followed
by NiMn/Ti-4 (160.1 mV) and NiMn/Ti-3 (177.7 mV).
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Figure 4. HER polarization curves of 3D NiMn/Ti catalysts in 0.5 M H2SO4 solution at a potential
scan rate of 10 mV s−1 and 25 ◦C temperature (a). with corresponding extracted Tafel plots (b) and
required overpotentials to reaching the current densities of 10, 20 and 50 mA cm−2 (c).

The polarization curves were then used for constructing the Tafel plots and calculating
the Tafel slopes. The lowest Tafel slope value of 102 mV dec–1 was found for NiMn/Ti-5
electrocatalyst. Higher values of 114, 110, 141, and 139 mV dec–1 were determined at
NiMn/Ti-4, NiMn/Ti-3, NiMn/Ti-2 and NiMn/Ti-1, respectively (Figure 4b and Table 4).
The overpotentials required to reach current density of 10 mA cm−2 for all catalysts were
shown in Figure 4c and Table 4 and all values followed the similar lowering order likewise
as alkaline media from NiMn/Ti-1 to NiMn/Ti-5 catalysts.

Table 4. Electrochemical parameters of the investigated catalysts toward HER in acidic media.

Catalysts j (mA cm−2)
at 25 ◦C

j (mA µg−1)
at 25 ◦C

η10 (mV)
at 25 ◦C

Tafel Slope
(mV dec−1)

Mn/Ti 108.67 5.05 517.6 168

Ni/Ti 201.13 0.67 268.3 156

NiMn/Ti-1 253.59 2.54 243.1 139

NiMn/Ti-2 293.17 1.76 220.5 141

NiMn/Ti-3 286.79 0.77 177.7 110

NiMn/Ti-4 303.79 0.37 160.1 114

NiMn/Ti-5 344.59 0.28 102.1 102

3.3. Electrocatalytic Activity towards OER

The electrocatalytic OER performance of fabricated 3D bimetallic NiMn/Ti catalysts
was also thoroughly investigated in the alkaline (1.0 M KOH) electrolyte. The polarization
curves were recorded in 1.0 M KOH solution at a potential scan rate of 10 mV·s–1 from
OCP up to 2.068 V (vs. RHE) in the temperature range of 25–75 ◦C (Figure 5). The current
densities increased ca. 1.77–2.21 times within this investigated range of temperature
and it was observed that NiMn/Ti-1 exhibits much higher OER activity, needing a low
overpotential of 356.3 mV at 10 mA cm−2 as compared to the NiMn/Ti-2 (361.4 mV) and
NiMn/Ti-3 (371.4 mV) catalysts.
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Figure 5. OER polarization curves of 3D NiMn/Ti catalysts in 1 M KOH solution at 10 mV s−1 poten-
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from Ni/Ti (449.5 mV) and Mn/Ti (671.1 mV) samples. 

Figure 5. OER polarization curves of 3D NiMn/Ti catalysts in 1 M KOH solution at 10 mV s−1

potential scan rate and a temperature range from 25 up to 75 ◦C.

Figure 6a demonstrates the OER activity of all fabricated catalysts at 25 ◦C and it was
observed that the catalysts prepared via alloying Ni to Mn with different proportion ratios
notably prompt to enhance their electrocatalytic activity. The achieved overpotentials value
at 10 mA cm−2 (η10) of the prepared NiMn/Ti catalysts were remarkably reduced from
Ni/Ti (449.5 mV) and Mn/Ti (671.1 mV) samples.
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Figure 6. OER polarization curves at 25 °C temperature (a) with corresponding extracted Tafel plots 

(b) and required overpotentials to reaching the current densities of 10, 20 and 50 mA cm−2 (c). 
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The OER LSVs at 25 ◦C were then further used for constructing the Tafel plots and
calculating the Tafel slopes. The Tafel slope for NiMn/Ti-1 was 93 mV dec–1, which is lower
than NiMn/Ti-2 (173 mV dec–1), NiMn/Ti-3 (136 mV dec–1) and NiMn/Ti-5 (119 mV dec–1)
(Figure 6b and Table 5).

Table 5. Electrochemical parameters of the investigated catalysts toward OER in alkaline media.

Catalysts
j (mA cm−2) in Different Temperatures (◦C) at 2.068 V j (mA µg−1)

at 25 ◦C
η10 (mV)
at 25 ◦C

Tafel Slope
(mV·dec−1)25 35 45 55 65 75

Mn/Ti 21.64 - - - - - 1.0 671.1 123

Ni/Ti 80.89 - - - - - 0.27 449.5 111

NiMn/Ti-1 143.54 177.03 188.96 216.81 253.04 316.7 1.44 356.3 93

NiMn/Ti-2 138.28 170.03 195.53 232.16 262.74 289.38 0.83 361.4 173

NiMn/Ti-3 133.94 148.77 172.7 198.04 223.88 249.68 0.36 371.4 136

NiMn/Ti-4 126.97 140.93 160.16 181.08 202.56 224.84 0.15 386.6 93

NiMn/Ti-5 121.35 134.16 153.26 172.24 194.09 219.53 0.1 404.2 119

Moreover, the overpotentials to reach current densities of 10, 20 and 50 mA cm−2

at 25 ◦C were also shown in Figure 6c and Table 5 and the η10, η20 and η50 values have
found to follow a sequential upward order from NiMn/Ti-1 to NiMn/Ti-5 catalysts. For
instance, the η10, η20 and η50 values were 356.3 mV, 401.7 mV and 514.9 mV for NiMn/Ti-
1 as compared to 404.2 mV, 452 mV and 572.9 mV for NiMn/Ti-5, respectively, which
certainly indicate the superior catalytic activity and favorable OER kinetics of NiMn/Ti-1
over the NiMn/Ti-5 electrocatalyst. A recent study also revealed that the OER performance
of Nix|Mn1-xO/CNTs electrocatalysts is significantly dependent on the content ratios of Ni
and Mn. When the content of Mn element was more than 17%, the overpotential of catalyst
increases, i.e., lowering Mn content notably improved the OER activity [74].

Furthermore, in order to compare the electrocatalytic activity of the prepared 3D
bimetallic NiMn/Ti catalysts, the current density values were normalized in reference to
the metals loadings for each catalyst to represent the mass activity of catalysts towards the
HER and OER at 25 ◦C temperature (Tables 3–5). The highest mass electrocatalytic activity
has been exhibited by NiMn/Ti-1 catalyst for HER in both acidic (2.54 mA µg−1) and
alkaline (0.51 mA µg−1) media as well as for OER in alkaline (1.44 mA µg−1) media with
minimum metal loading of 99.98 µg cm−2. It is worth mentioning that the mass activity of
catalysts for both HER and OER has gradually declined with increase of Mn-loadings on
prepared catalysts as higher Mn-concentration in coating bath favors the alloying of metals
(Ni and Mn) via electrodeposition process and enriched the total metal loadings.

3.4. Electrocatalytic Stability Studies for HER and OER

To investigate the practical application and efficiency of any fabricated electrocatalysts,
the desired electrocatalytic performance is not sufficient enough, and in addition, the
electrocatalytic activity must be sustainable as long-term stability directly determines
whether the materials can be developed for practical applications. Electrocatalytic stability
is also directly related to the lifetime of the electrodes that regulates the production cost
of hydrogen.

As the above mentioned investigations in alkaline and acidic media revealed that
prepared bimetallic NiMn/Ti-5 electrocatalyst has excellent HER catalytic activity in both
electrolytes and fabricated NiMn/Ti-1 electrocatalyst exhibits superior OER performance in
alkaline media, thus in this section, the electrocatalytic stability of these two electrodes was
investigated using different electrochemical methods. At first, the electrocatalytic durability
was studied by Chronopotentiometry (CP) for 10 h. CP investigations were performed in
1.0 M KOH at a current density of 10 mA cm−2 at 25 ◦C (Figure 7).
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Figure 7. CP curves in 1.0 M KOH solution at a constant current density of 10 mA cm−2 at 25 °C of 

the investigated NiMn/Ti-5 for HER (a) and NiMn/Ti-1 for OER (b) electrocatalysts. 
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Figure 7. CP curves in 1.0 M KOH solution at a constant current density of 10 mA cm−2 at 25 ◦C of
the investigated NiMn/Ti-5 for HER (a) and NiMn/Ti-1 for OER (b) electrocatalysts.

It was observed that the potential of ca. 115 mV of NiMn/Ti-5 as HER electrocatalyst
(Figure 7a) and of ca. 335 mV of NiMn/Ti-1 as OER electrocatalyst (Figure 7b) was achieved
at current density of 10 mA cm−2. The CP curves did not deteriorate significantly after 10 h
continuous HER and OER electrolysis at a static current density of 10 mA cm−2, proving
their good electrocatalytic stability for HER and OER in an alkaline environment.

Additionally, the electrocatalytic stability of these two catalysts has been examined by
CA as well. CA investigations were carried out in 1.0 M KOH at −0.232 V (vs. RHE) and
1.818 V (vs. RHE) at 25 ◦C for the NiMn/Ti-5 and NiMn/Ti-1 electrocatalysts, respectively
(Figure 8).
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solution at 25 ◦C at the potential values of −0.232V (vs. RHE) and 1.818 V (vs. RHE), respectively.

In this test, the electrocatalytic durability of both catalysts was studied by constant
applied potential to the electrode and then the current density was monitored over time.
After 10 h of investigation, approx. 6% degradation of current density was observed for
NiMn/Ti-5 catalyst and the NiMn/Ti-1 catalyst has found to retain more than 92% of
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its current, indicating their quite reasonable electrocatalytic stability in alkaline media as
cathodic and anodic materials, respectively.

A comparison of HER and OER performance using herein-tested NiMn/Ti catalysts
with some of the transition metal-based electrodes reported in the literature (Tables 6 and 7)
demonstrates that these bimetallic catalysts exhibit comparable overpotentials and Tafel
slopes for HER and OER.

Table 6. Electrochemical performance of herein tested catalysts towards HER in alkaline and acidic
media with comparison of transition metal-based electrodes reported in the literatures.

Catalysts Overpotential@Current
Density (mV@mA cm−2) Tafel Slope (mV dec−1) Temperature

(◦C) Electrolyte Ref.

Ni-Mn/Cu 101@10 118 - 1 M KOH [28]Ni-Fe-Mn/Cu 64@10 68

Ni-Fe/NF 142@10 133.3 - 1 M KOH [52]

Ni1Mn1P 160@10 109
- 1 M KOH [70]Ni2Mn1P 120@10 82

Ni3Mn1P 140@10 93

Mn-doped Ni2P 160@10 124.27
- 1 M KOH [75]Mn-doped Fe2P 136@10 142.34

Mn-doped Ni2P/Fe2P 90@10 115.41

Mn-Ni(OH)2 197@10 134.5
- 1 M KOH [76]NiSx 172@10 111.9

Mn-NiSx 94.2@10 71.5

Ni-Fe/Cu 124@10 114 - 1 M KOH [77]

(Co,Fe)PO4 122@10 71 - 1 M KOH [78]

NiFe10Se10@NF 154@10 129.3 - 1 M KOH [79]

FeSe2-MoSe2(1-1)/rGO 178@10 80 1 M KOH [80]

Ni–Mo/WC 3 134@10 163 25 1 M KOH [81]

Ni-Co-Se@NiCo-LDH/NF 189@10 124.09 - 1 M KOH [82]Ni-Co-Fe-Se@NiCo-LDH/NF 113@10 44.87

NC-1@CoO/NF 241@10 155

- 1 M KOH [83]
NC-2@CoO/NF 139@10 96
NC-3@CoO/NF 192@10 189
NC-4@CoO/NF 196@10 141

NiMo/FTO 154@10 152 25 1 M KOH [84]

W2C@CNT 125@10 104 - 1 M KOH [85]Mo2C@CNT 118@10 92

Ni-GF/VC 128@10 80 - 1 M KOH [86]Ni-GF/Fe3C 93@10 63

NiMn/Ti-1 220.3@10 177

25 1 M KOH This
work

NiMn/Ti-2 195.1@10 194
NiMn/Ti-3 149.8@10 199
NiMn/Ti-4 144.8@10 192
NiMn/Ti-5 127.1@10 184

NiMn/Ti-1 243.1@10 139

25
0.5 M

H2SO4

This
Work

NiMn/Ti-2 220.5@10 141
NiMn/Ti-3 177.7@10 110
NiMn/Ti-4 160.1@10 114
NiMn/Ti-5 102.1@10 102
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Table 6. Cont.

Catalysts Overpotential@Current
Density (mV@mA cm−2) Tafel Slope (mV dec−1) Temperature

(◦C) Electrolyte Ref.

NiMo/FTO 140@20 118 25 0.5 M
H2SO4

[84]

W2C@CNT 155@10 85 - 0.5 M
H2SO4

[85]Mo2C@CNT 121@10 77

Ni-GF/VC 111@10 86 - 0.5 M
H2SO4

[86]Ni-GF/Fe3C 112@10 97

Mo2C-RGO (3.0 wt %) 125@10 89 25 0.5 M
H2SO4

[87]

Mo2C P/Mo2C F 118@10 48.6 - 0.5 M
H2SO4

[88]

Ni-Pt nanofilm 90@10 49 25 0.5 M
H2SO4

[89]

MoP 115@10 87
- 0.5 M

H2SO4
[90]FeS-MoP 89@10 70

MnS-MoP 88@10 68

Mo2N-Mo2C/NC 114@10 62 - 0.5 M
H2SO4

[91]

NF—nickel foam, rGO—reduced graphene oxide, WC—tungsten carbide, CNT—carbon nanotube, LDH/NF—
Layered double hydroxide/nickel foam, FTO—F-doped SnO2, Ni-GF—Ni foam coated with graphene, F—
microflower, NC—N-doped carbon framework.

Table 7. Electrochemical performance of herein tested catalysts towards OER in alkaline media with
comparison of transition metal-based electrodes reported in the literatures.

Catalysts
Overpotential@Current

Density (mV@mA
cm−2)

Tafel Slope (mV
dec−1) Electrolyte Ref.

CoNi2S4 (GCN)30/NF 340@30 93.21
1.0 M KOH [48]CoNi2S4 (GCN)50/NF 310@30 49.86

CoNi2S4 (GCN)100/NF 350@30 109.01

NMF-6 (Ni52.3Mo37.4Fe10.2) 344@10 - 1.0 M KOH [54]

Ni1Mn1 LDH 420@10 41
1.0 M KOH [64]Ni3Mn1 LDH 350@10 40

Ni5Mn1 LDH 390@10 40

NiMn LDH/NiCo2O4 310@10 99 1.0 M KOH [67]

Ni-Mn LDH 385@10 80
1.0 M KOH [68]21.1% Co-doped Ni-Mn LDH 310@10 59

Ni1Mn1P 250@20 63
1.0 M KOH [70]Ni2Mn1P 340@20 93

Ni3Mn1P 330@20 89

Ni0.95|Mn0.05O/CNT 293@10 55.6
1.0 M KOH [74]Ni0.83|Mn0.17O/CNT 316@10 63.5

NC-1@CoO/NF 340@10 93

1.0 M KOH [83]
NC-2@CoO/NF 290@10 82
NC-3@CoO/NF 335@10 127
NC-4@CoO/NF 370@10 91
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Table 7. Cont.

Catalysts
Overpotential@Current

Density (mV@mA
cm−2)

Tafel Slope (mV
dec−1) Electrolyte Ref.

Ni1.5Co1.5P/MF 314@10 71
1.0 M KOH [92]Ni2Co1P/MF 342@10 83

Ni1Co2P/MF 387@10 114

Ni3S2/NF 362@10 56.5
1.0 M KOH [93]Cu2S-Ni3S2/NF 329@10 44.11

MCS@a-Ni3S2 333@10 150.1 1.0 M KOH [94]

Ni3S2@3-D GNs 305@10 50 1.0 M KOH [95]

NiMn/Ti-1 356.3@10 93

1.0 M KOH at 25 ◦C This
work

NiMn/Ti-2 361.4@10 173
NiMn/Ti-3 371.4@10 136
NiMn/Ti-4 386.6@10 93
NiMn/Ti-5 404.2@10 119

GCN/NF—graphitic carbon nitride/nickel foam, LDH—layered double hydroxide, MF—microflower, MCS@a-
Ni3S2—Mn-Cd-S@amorphous-Ni3S2, 3-D GNs—3-D graphene nanosheets, CNT—carbon nanotube.

4. Conclusions

In summary, a set of self-supported three-dimensional bimetallic NiMn alloy catalysts
with various Ni:Mn molar ratios have been successfully synthesized through electrochemi-
cal deposition technique and their electrocatalytic activity for HER and OER was studied.
The surface morphology demonstrates a unique 3D porous architecture that could avail nu-
merous active sites and channels for electrolyte/gas diffusion. Electrochemical performance
results manifested that the amalgamation of Mn element with Ni remarkably enhanced the
electrocatalytic activity of the catalysts for HER and OER. The NiMn/Ti-5 electrocatalyst
exhibited excellent HER activity with a low overpotential of 102.1 mV in acidic media
and 127.1 mV in alkaline media to generate current densities of 10 mA cm−2, respectively.
On the contrary, NiMn/Ti-1 electrocatalyst with least Mn-content exhibits superior OER
activity with a small overpotential of 356.3 mV to reach 10 mA cm−2. Furthermore, the
present electrocatalysts also demonstrated outstanding electrocatalytic long-term durability
in an alkaline environment as the recorded potentials did not change significantly after
10 h continuous HER and OER electrolysis at a constant current density of 10 mA cm−2.

This work tends to highlight the fabrication of Mn-containing bimetallic alloy catalysts
as well as prioritize to increase the electrochemical active surface area of catalysts via 3D
structure formation. The intrinsic activity of these 3D alloy catalysts will provide a strong
guide for manufacturing bifunctional electrocatalysts for water splitting application with
excellent comprehensive performance and the synergistic effects between transition elements
may surpass the heteroatom doping strategy for enhancing the electrocatalytic performance.
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