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Abstract: This work attempts to model the powder-pack boronizing kinetics of 4Cr5MoSiV1 steel
in the interval of 1133 and 1253 K in order to predict the layers’ thicknesses. The first approach is
referred to as the bilayer model and relies on the conservation principle of mass balance equations
at the two phase fronts accounting for the linearity of boron distribution across each boride phase.
The second approach deals with the application of dimensional analysis to simulate the boronizing
kinetics of 4Cr5MoSiV1 steel. Using the bilayer model and the classical parabolic law, the boron
activation energies in FeB and Fe2B were evaluated and discussed in light of the literature data. The
estimated boron activation energies from the bilayer model were respectively equal to 164.92 and
153.39 kJ mol−1. These values were very comparable to those calculated from the classical parabolic
law. Finally, it was proven that the dimensional analysis was able to simulate the layers’ thicknesses
for the selected processing parameters.
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1. Introduction

The surface hardening of steels by boronizing is of primary significance to obtain
outstanding surface properties. The boronizing treatment is a process in which the release
of active boron from any boron source (such as boron carbide, borax, amorphous boron, or
boron trichloride) permits its diffusion into the steel’s substrate to form a boride layer over
its surface via thermal energy [1,2].

The boronizing treatment results in the improvement of the following properties: a
high surface hardness of about 1800–2000 HV, resistance to wear [3], and the capability
of resistance in acidic and alkaline environments [4,5], as well as in the aggressive liquid
solder alloy [6]. The boron element, despite its small size, has a manifest potential to
improve the surface hardness of ferrous and non-ferrous alloys (i.e., titanium alloys and
cobalt alloys, as an example) [2]. In fact, its chemical combination with the host metal
results in the formation of hard boron compounds that increase the property of the surface
hardness. In the case of treated steels, the high surface hardness is ascribed to the formation
of compact boronized layers (FeB + Fe2B) over their surfaces. The tailored surface features
for boronized steels should meet the industrial requirements. Practically, the boronizing
treatment is achieved in the range of 800–1050 ◦C for 0.5–10 h using different sources of
boron and methods: solid (paste and powder pack) [7,8], liquid [9], gas [10], plasma [11],
and plasma paste [12]. Boriding in the powder medium has the main advantages of the
simplicity of the process, low investment for the equipment, and cost-effectiveness [13].
During the powder-pack boriding, the samples were embedded in the powder mixture and
the overall mixture was placed in the sealed hermetical recipient to prevent oxidation from
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the air atmosphere. By selecting adequate process parameters, the boriding treatment was
carried out in the furnace [2].

For steel, two kinds of iron borides (FeB and Fe2B) can be formed over the surface in
most cases. The Fe2B layer is better adapted than the dual-phase borides (FeB + Fe2B) for
resisting mechanical fatigue [14]. The 4Cr5MoSiV1 steel has the same chemical composition
as the versatile American AISI H13 steel. It is extensively used in hot work-tool applications.
It has the capacity to withstand thermal-fatigue cracking. This steel grade also provides
a high dimensional stability with excellent toughness. For example, it is employed in
hot forging and extrusion dies. However, in order to prolong its lifetime during extreme
working conditions, the boronizing treatment is highly recommended to improve its anti-
wear property. Within the published research works, several kinetics approaches for Fe2B
layers [7,8,15–21] or dual-phase boride (FeB + Fe2B) layers [22–30] were suggested to
provide a simple tool allowing for the optimization of the layers’ thicknesses to match the
industrial applications. For example, in the case of Armco iron-paste boriding, Campos
et al. [7] formulated the mass balance equation for the growth of an Fe2B layer at the
considered phase interface without the presence of incubation period. In another research
work, Campos et al. [17] used two models (the neural network and the least square) for the
kinetics of Fe2B layers at the surface of AISI 1045 steel with a change in the boron-paste
thickness. The prediction results provided a mean relative error of 5.31% for the first model
and of 3.42% for the second one. Ortiz-Dominguez et al. [22] implemented two kinetics
approaches (i.e., the bilayer model and the integral diffusion model) for simulating the
growth of FeB and Fe2B on AISI M2 steel in the interval of 1123 to 1273 K. Both models
were checked out experimentally for validation by using two other sets of processing
parameters (1243 and 1273 K for 10 h). The predicted layers’ thicknesses were in accordance
with the experimental values. Torres et al. [23] employed dimensional analysis for the
paste boriding kinetics of AISI M2 and AISI 1045 steels by modifying the boron-paste
thickness of 3 to 5 mm. Under these circumstances, three different dimensionless groups
were formed for each boride layer and a power-law fitting of experimental data was used to
predict the thicknesses of the FeB and Fe2B layers. The relative error was about 16% for the
FeB-layer thickness, whereas for the Fe2B layer, the corresponding value was close to 10%
for AISI M2 and AISI 1045 steels. In the present work, the same approach, already used for
the paste boriding treatment by Torres et al. [23], was applied by introducing two distinct
dimensionless groups needed for predicting the layers’ thickness on 4Cr5MoSiV1 steel.
This approach was implemented for the first time in the case of powder-pack boriding, in
which the thickness of each layer depended on the boron concentration, the time duration,
the parabolic growth constant, and the maximum boron penetration within the matrix for a
fixed processing temperature. Keddam and Kulka [28] presented two different approaches
(the average diffusion coefficient model and the Dybkov model) to study the kinetics of
FeB and Fe2B layers on AISI D2 steel in the range of 1223–1273 K. In addition, the two
models’ results were compared to the experimental layers‘ thicknesses obtained at 1243 K
for 2, 4, and 6 h. A good concordance was noticed between the experiments and the
predicted results. In another research paper, Mebarek and Keddam [29] used the two
artificial intelligence techniques (i.e., fuzzy logic and neural network) for the simulation of
layer thickness on Fe-Cr at 15 at.% Cr. The simulation results provided average relative
errors of 3% for FeB and 3.5% for Fe2B.

This work is aimed at modelling the growth kinetics of the two iron boride layers
(FeB and Fe2B) obtained from the powder-pack (solid) boronizing of 4Cr5MoSiV 1 steel.
Two distinct approaches were adapted for this purpose. The model based on the di-
mensional analysis, which was applied for the first time for the powder-pack boriding,
allowed for the prediction of the layers’ thicknesses. The second approach called upon
the bilayer model. This model, in its simple formulation, required the use of two new
dimensionless parameters that determine the parabolic nature of the layers’ growth. It was
employed to estimate the boron activation energies in both iron borides (FeB and Fe2B) for
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the 4Cr5MoSiV1 steel. The obtained values of activation energies were interpreted on the
basis of the literature results.

2. Diffusion Models
2.1. Bilayer Diffusion Model

The bilayer model [22,30] has been proposed for modelling the kinetics of the bilayer
(FeB/Fe2B) over the surface of 4Cr5MoSiV1 steel. This model relies on the solutions of mass
balance equations at the two growing FeB/Fe2B and Fe2B/substrate interfaces. It assumes
the linearity of boron concentration within each boride phase. The effect of incubation
times was overlooked. Figure 1 shows a schematic representation of developing boron
concentration profiles during the generation of iron boride layers. This figure illustrates
the change in the incremental thickness for each layer within a small time step. In fact,
the absorption rate of boron atoms at the surface/steel interface was rapid compared to
the diffusion rate of boron atoms through the steel surface. After a certain period of time,
borides‘ crystals appeared and came into contact to cover the steel surface by giving rise to
the compact boronized layer. However, the boride incubation time was not considered in
the calculations.
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Figure 1. A schematic distribution of boron concentration profiles for the bilayer FeB/Fe2B over the
4Cr5MoSiV1 steel.

The boron concentrations with low and upper limits were the following: CFeB
up

(=16.40 wt.% B), CFeB
low (=16.23 wt.% B) for the FeB phase, and CFe2B

up (=9 wt.% B) and CFe2B
low

(=8.83 wt.% B) for the Fe2B phase [22,23]. The variable u(t) is the position of the first interface,
and v(t) refers to that of the second interface. Cads is the required boron content being adsorbed
at the onset of a process [25]. C0 represents the solubility limit of boron in the matrix, which
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is equal to 35 × 10−4 wt.% B [31]. The change in time of the FeB layer’s thickness follows
Equation (1).

u(t) = k′
√

t = 2ξ
√

DFeBt (1)

where k′ is the kinetic constant of the first interface with a dimensionless parameter of value
ξ. DFeB stands for the value of the boron diffusion coefficient in FeB for a given processing
temperature. The thickness of the entire boronized layer (FeB + Fe2B) represented by the
distance v(t) is expressed by Equation (2).

v(t) = k
√

t = 2η
√

DFe2Bt (2)

where k designates the kinetic constant of the second interface with a dimensionless param-
eter of value η. The parameter DFe2B represents the value of the boron diffusion coefficient
in Fe2B for the given boronizing temperature. The bilayer model [22,30] is governed by the
set of ordinary differential equations of the first order provided by Equations (3) and (4):

w1
du(t)

dt
= DFeB(

CFeB
up − CFeB

low
u(t)

)− DFe2B(
CFe2B

up − CFe2B
low

(v(t)− u(t))
) (3)

w2
dv(t)

dt
+ w12

du(t)
dt

= DFe2B(
CFe2B

up − CFe2B
low

(v(t)− u(t))
) (4)

where

w1 = [
(CFeB

up + CFeB
low )

2
− CFe2B

up ] w2 = [
(CFe2B

up + CFe2B
low )

2
− C0]

and

w12 =
(CFe2B

up − CFe2B
low )

2
During the mathematical formulation of the bilayer model, certain assumptions were

considered as follows: (a) The diffusion phenomenon occurs in the domain of one dimen-
sion, (b) the boron concentrations remain constant and are independent of time at the phase
fronts, (c) the boron diffusivity in each phase byes the Arrhenius equation, and (d) the layer
thickness is smaller than the diffusion depth. The mass flux of boron atoms through the
steel matrix is negligible due to the small solubility of boron in the iron phase. By derivation
of Equations (1) and (2) with respect to the time duration and after substituting them into
the two ordinary differential equations (i.e., Equations (3) and (4)), the expressions of the
two dimensionless parameters ξ and η could easily be derived as follows:

ξ =

√
k′(CFeB

up −CFeB
low )

2[(w1+w12)k′+w2k] (5)

η = k
√

w12

(w2k + w12k′)(k− k′)
(6)

This makes possible to deduce the expressions of the boron diffusion coefficients in
FeB and Fe2B as follows:

DFeB = (
k′

2ξ
)

2

(7)

and

DFe2B = (
k

2η
)

2
(8)

Equations (7) and (8) were deduced from Equations (1) and (2), respectively.
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2.2. The Approach Based on the Dimensional Analysis

The kinetic approach based on the dimensional analysis can be applied to analyze the
time dependencies of the thicknesses of FeB and Fe2B layers on this type of steel. After
the Pi–Buckingham theorem [32], any physical problem depending on N variables with
p fundamental units can be described by forming (N − p) dimensionless groups ΠN−p, so
each dimensional group can be written as a function of others. For instance, the i-th dimen-
sional group Πi can be written as follows: Πi = Πi(Π1,Π2,, . . . , Πi−1,Πi+1, . . . .ΠN−p), for
i = 1, N − p, and the same applies to other dimensional groups. For the sake of simplicity,
the given dimensionless group Πi can be expressed as a function of other dimensionless
groups by using the products of power laws. These relationships, based on the power laws
and including all the involved dimensionless groups, have already been used to describe
the kinetics of boronizing process [19,23]. In addition, the fitting of experimental data ac-
cording to the power law is a general trend for approaching the observed classical parabolic
law with an exponent being close to 0.5. Such behavior in terms of kinetics is experienced
in many studies regarding the boriding of steels [7–30]. Each boride layer thickness u or l,
where l = (v − u), depends on the following variables: the parabolic growth constant
of FeB, where k1 = k′, or that of Fe2B, for which k2 = (k − k′); the maximum depth of
boron penetration λmax; the boron concentration in the FeB or Fe2B layer; CFeB or CFe2B;
and the time duration t for the given process temperature u = u(k1, t, CFeB, λmax) and
l = l(k2, t, CFe2B, λmax). For indication, the diffusion distance λmax stands for the maximum
depth of boron atom diffusion across the material surface in the absence of an iron boride
layer. It can be determined by using the following relation: λmax =

√
D(Tmax)tmax, where

D(Tmax) is the value of the boron diffusion coefficient in the iron phase [26] at T = Tmax for
a maximum time duration of the boriding process. It is noted that the maximum processing
temperature within the selected range occurs in the austenite phase. The boron diffusion
coefficient in the γ-Fe phase [26] is given by Equation (9) and is valid for T � 1184.6 K:

D = 4.4× 10−8 exp(−81.5kJ
RT

) (9)

where T is the temperature expressed in Kelvin, and R = 8.314 J mol−1K−1 represents the
ideal gas constant. In the dimensional analysis, the studied system involved five variables
with three fundamental units, which provide two dimensionless groups for each layer
thickness u or l. Applying the principle of dimensional analysis for FeB layer thickness,

the two dimensionless groups Π11 = u
λmax

and Π12 = t( k′
λmax

)
2

are obtained. In the same

way, the two dimensionless groups Π21 = l
λmax

and Π22 = t( k−k′
λmax

)
2

can also be deduced
from the measurement of Fe2B layer thickness. For predicting the thickness of each layer, a
fitting of experimental data according to the power law [19,23] can be used as follows:

Π11 = α1Πβ1
12 (10)

Π21 = α2Πβ2
22 (11)

where the coefficients α1, α2, β1, and β2 are determined from the fitting of the experimental
results using Relations (10) and (11). These coefficients do not change significantly with the
process temperature. Therefore, their mean arithmetic values can be taken for the simulation
of boronizing kinetics on the basis of dimensional analysis. In addition, the experimental
parabolic growth constants k′ and k can be fitted by employing the two Arrhenius relationships
as follows: k′ = exp( a1

T + b1) and k = exp( a2
T + b2), where the constants a1, a2, b1, and b2 are

the fitting parameters. Finally, the expressions of the predicted layers’ thicknesses u and v for
FeB and FeB + Fe2B are given by Equations (12) and (13), respectively:

u =
α1tβ1

λ
(2β1−1)
max

(exp(
a1

T
+ b1))

2β1
(12)
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v =
α2tβ2

λ
(2β2−1)
max

(exp(
a2

T
+ b2)− exp(

a1

T
+ b1))

2β2
+ u (13)

In addition, the respective values of boron activation energies Q1 and Q2 in FeB and Fe2B
can be deduced experimentally from the squared values of k′ and k with Q1 = −2a1R and
Q2 = −2a2R, respectively, where R denotes the ideal gas constant with R = 8.314 J mol−1K−1.

3. Calculation Results and Discussions

The experimental results obtained by Delai et al. [27] were exploited to analyze ki-
netically the powder-pack boronizing process of 4Cr5MoSiV1 steel, whose chemical com-
position was not provided in their paper. The steel-grade steel, which is a Chinese brand
of American AISI H13 steel, has the nominal chemical composition of 0.32–0.45 wt.% C,
4.75–5.50 wt.% Cr, 1.10–1.75 wt.% Mo, 0.8–1.20 wt.% Si, 0.80–1.20 wt.% V, 0.20–0.50 wt.% Mn,
0.30 wt.% Ni, 0.25 wt.% Cu, 0.30 wt.% P, and 0.30 wt.% S and Fe balance. For useful experi-
mental details, the powder-pack boronizing treatment was carried out in the interval of 1133 to
1253 K for variable time durations (1, 2, 4, 6, and 8 h). The reactive medium was in the solid
state and composed of 5 wt.% B4C, 4 wt.% KBF4, 5 wt.% C, and 88 wt.% SiC. The specimens to
be treated were put into a hermetical recipient made of stainless steel and embedded in the
powder mixture. The processing temperatures were set as 1133, 1173, 1213, and 1253 K for
1–8 h. When the process was finished, the recipient was taken out of the muffle furnace and air
cooled. The analysis of kinetic data [27] overlooked the occurrence of boride incubation times.
These experimental data [27] allowed us to generate plots relating the layers’ thicknesses as
a function of the square root of the time. Table 1 shows the deduced values of the kinetics
constants relative to the two growth fronts in the temperature range of 1133–1253 K. The exper-
imentally deduced values of k′ and k from the kinetics curves changed with the processing
temperature, indicating the acceleration of the diffusion rates of boron atoms at elevated
temperatures because the phenomenon of boron diffusion is a thermally activated process.

Table 1. Derivation of parabolic growth constants from the experimental results [27] in the range of
1133 to 1253 K.

T (K) k’
(µm s−0.5)

k
(µm s−0.5)

1133 0.0905 0.2377
1173 0.1318 0.3180
1213 0.1680 0.4237
1253 0.2169 0.5247

3.1. Evaluation of Diffusion Coefficients of Boron in FeB and Fe2B Using the Bilayer Model

The player model involving two unitless parameters ξ and η can be exploited to
determine the boron diffusion coefficient in each phase. First, the numerical values of these
two dimensionless parameters were calculated from Equations (5) and (6), respectively.
Afterward, the calculated boron diffusion coefficients in FeB and Fe2B displayed in Table 2
were obtained from Equations (7) and (8), respectively using experimental data [27] in
terms of kinetics constants at the growing interfaces.

Table 2. Calculated boron diffusion in FeB and Fe2B together with unitless parameters with the
bilayer model.

T (K) DFeB × 10−12

(m2s−1)
DFe2B × 10−12

(m2s−1)
ξ Parameter η Parameter

1133 0.74 0.92 0.0525 0.1238
1173 1.48 1.56 0.0542 0.1273
1213 2.48 2.85 0.0533 0.1254
1253 4.00 4.25 0.0541 0.1272
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To obtain the value of boron activation energy in each boride phase, the calculated
boron diffusion coefficients in iron borides from Table 2 were fitted with Arrhenius relations.
The two unitless parameters were nearly constant (ξ ≈ 0.053 and η ≈ 0.1259) for the
considered boriding temperatures. This result confirmed the parabolic trend during the
growth of two layers, FeB and Fe2B. Such a behavior corroborated the parabolic nature of
the layers’ growth. The temperature dependencies of diffusion coefficients of boron in FeB
and Fe2B shown in Figure 2 are given by Equations (14) and (15), respectively:

DFeB = 3.09× 10−5 exp(
−164.92kJmol−1

RT
) (14)

DFe2B = 1.08× 10−5 exp(
−153.39kJmol−1

RT
) (15)

with R = 8.314 J mol−1K−1 and T is the process temperature in Kelvin. For applying the
based dimensional analysis model, the time dependencies of parabolic growth constants
were therefore necessary for the calculation. The corresponding expressions of k′ and k are
provided by Equations (16) and (17), respectively, after the experimental values of Table 1
were fitted with Arrhenius relations:

k′ = exp(−10190.16
T

+ 6.6184) (16)

k = exp(
−9461.11

T
+ 6.9201) (17)

The temperature-dependent parameters k′ and k are expressed in µm s−0.5 and T rep-
resents the boriding temperature in Kelvin. The Q1 and Q2 parameters are the boron acti-
vation energies in FeB and Fe2B to be deduced from the squares of Equations (16) and (17),
respectively, based on the experimental results [27]. The calculated values of activation
energies in FeB and Fe2B were equal to 169.44 and 157.32 kJ mol−1, respectively.

Table 3 groups the different values of boron activation energies obtained on some
alloyed borided steels [22,27,33–42] and compares them to the present results from the
bilayer model. It is seen from Table 3 that the values of the activation energies were affected
by several factors. These factors may include the following: the boriding method employed,
the chemical composition of steels, the temperature range utilized, the heating source, the
composition of the reacting medium and its physical state, the method of calculation, and
even the presence of grooves with different shapes on the treated steels. As an illustrative
example, Rafidah et al. [43] machined different geometrical shapes of grooves on the cubic
samples of treated mild steel. These samples were pack boronized at 1123, 1173, and 1223 K
for 2, 4, and 6 h. In case of powder-pack boronized high-alloy steels [22,38,39,41], the
obtained activation energies were high compared to the plasma-paste boriding [33,34]. For
the powder-pack boriding, a plausible explanation could be the change in the values of the
boron activity in the contact area between the powder mixture and the steel surface during
the process, which could have drastically lowered the diffusion rate of boron atoms inside
the substrate. As a consequence, the values of the energetic barriers (in terms of activation
energies) of the system would have increased.

In fact, the presence of alloying elements with high contents had a great impact on the
growth rate of boron atoms in the solid boronizing process [22,38,39,41,42], which reduced
the layer’s thicknesses with the presence of metal borides. On the other hand, the use of the
plasma-paste process allows for a reduction in activation energies because of the activation
of the generated plasma [33,34] even in the case of AISI 304 and AISI 440C steels.
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Even though the plasma-paste boriding enabled adequate thicknesses of the boronized
layers at low temperature (i.e., 700 ◦C) to be obtained in the laboratories as a result of
overactivation of the plasma, its application in the industry has not been implemented till
now. In fact, plasma-paste boriding is not currently employed at an industrial scale due the
high cost of investment and cannot be applied for treating large workpieces. Therefore, the
use of this boriding technique is exclusively limited to the laboratory scale.

They reported that the groove shape had a manifest influence on the values of boron
activation energies ranging from 76.51 and 244.36 kJ mol−1. They explained the obtained
results were due to the difference in the growth rate of boron atoms during the contact with
the groove surface. Campos-Silva et al. [37] designed a new process called pulsed direct
current powder-pack boriding, in which the diffusion phenomenon of boron atoms was
enhanced under the effect of an electrical field and resulted in the reduction of activation
energies in FeB and Fe2B for the AISI 316 L steel compared to conventional powder-pack
boriding [22,38,39,41]. Delai et al. [27] used different powder mixtures comparatively to
other compositions of powders [22,38,39,41] to treat the 4Cr5MoSiV1 steel and obtained
the following activation energies: 205.25 and 170.915 kJ mol−1 in FeB and Fe2B, respec-
tively. When scrutinizing their computation results from the employed model, an incon-
sistency was noticed. In fact, the boron activation energies in FeB and Fe2B reported by
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Delai et al. [27] were at all not correct. A careful verification of their calculations led to
different values, which were, respectively, 149.55 and 148.84 kJ mol−1 after taking the value
of 27.26 wt. % as an upper limit of boron in FeB. Such a value of concentration is even
inconsistent with the experimental binary-phase diagram Fe-B regarding the composition
range of the FeB phase, which is very narrow and located between 16.23 and 16.40 wt.%.
It is worth mentioning that the value of 27.26 wt.% B in FeB had a direct effect on the
calculation results of the activation energies. Despite this fact, the revised values of the
boron activation energies in both phases from our calculations are in accordance with
the present results, with a comparable magnitude order. Unexpectedly, Delai et al. [27]
compared the experimental thicknesses with the predicted values by using their model.
They showed a good agreement with the experiments in spite of the incorrectness of the
calculated values of the activation energies. In fact, they performed a simple adjustment
of the two dimensionless parameters (ξ and η) of their model, which were also incorrect,
to claim the validity of their approach. Based on our model and the classical parabolic
growth law, the assessed boron activation energies in both phases listed in Table 3 are very
comparable. The calculation was completed with values of the dimensionless parameters
(ξ and η) that were completely different from those of Ref. [27], which were incorrect
(see Table 2), with an upper boron concentration in FeB of 16.40 wt.%. Consequently, our
obtained results in terms of activation energies are now compatible with each other.

Table 3. Comparison of the determined values of boron activation energies on some alloyed borided
steels with the literature data.

Steel Boriding
Process

Temperature
Range (K)

Activation
Energy

(Kj mol−1)

Method of
Calculation Refs.

AISI 304 Plasma 1023–1223 123 Parabolic growth law [33]
AISI 440C Plasma paste 973–1073 134.62 Parabolic growth law [34]

AISI T1 CRTD-Bor 1123–1323 179 Parabolic growth law [35]
AISI D2 Salt bath 1223–1273 170 Parabolic growth law [36]

AISI 316L Pulsed DC 1123–1223 162 (FeB),
171 (FeB) Bilayer model [37]

AISI M2 Paste with different
paste thickness 1193–1273 255.76 (FeB),

201.0 (FeB) Bilayer model [42]

AISI 316L Powder with
microwave heating 1073–1223 244.15 Parabolic growth law [38]

AISI H13 Powder with
two mixtures 1073–1223

227.5 with
nano-boron
284.2 with
Ekabor II

Parabolic growth law [39]

AISI H13 Powder 1123–1223 185.7 Parabolic growth law [40]

AISI H13 Powder 1173–1273 236.43 (FeB)
233.04 (Fe2B)

Mean Diffusion
coefficient method [41]

AISI M2 Powder 1123–1273 220.5 (FeB)
210.90 (Fe2B) Bilayer model [22]

4Cr5MoSiV1 Powder 1133–1253 205.25 (FeB)
170.915 (Fe2B) Bilayer model [27]

4Cr5MoSiV1 Powder 1133–1253 164.92 (FeB)
153.39 (Fe2B) Bilayer model This work

4Cr5MoSiV1 Powder 1133–1253 169.44 (FeB)
157.32 (Fe2B) Parabolic growth law This work

3.2. Prediction of Layers’ Thicknesses with the Base Dimensional Analysis Model

To validate the base dimensional analysis model, the two dimensionless groups at-
tributed to each boride layer needed to be related to each other by using an experimental
fitting of the experimental data with a nonlinear regression described by the power laws
given by Equations (10) and (11). First, the value of maximum boron penetration in the steel
substrate needed to be determined. This corresponds to the maximum diffusion distance
into the steel substrate in the absence of iron boride formation. A simple calculation of
λmax at 1253 K for the prolonged time duration of 8 h yielded a value of 712 µm based on
the diffusivity of boron in the γ-Fe phase given in Ref. [26]. Figure 3 shows the evolution of
the dimensionless group Π11 or Π21 versus Π12 or Π22 for each boride layer. The results
of this nonlinear fitting are summarized in Table 4. The obtained fitting curves plotted in
Figure 3 confirmed the parabolic regime regarding the growth kinetics of FeB and Fe2B
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since the arithmetic mean values of β1 and β2 were, respectively, 0.5259 and 0.5469, which
are typically close to the characteristic value of 0.5 observed in the classical parabolic
growth law. In addition, the arithmetic mean values of α1 and α2 deduced from Table 4
were, respectively, equal to 1.2605 and 1.4368.

Figure 4 shows the plots of the time dependencies of the layers’ thicknesses by compar-
ing the experimental results with those obtained from the dimensional analysis employing
Equations (12) and (13) as well as the predicted values of the bilayer model. It can be seen
that the predicted values of the layers’ thicknesses by both approaches are concordant
with the experiments. However, the prediction results from the bilayer model were closer
to the experimental data [27] compared to those derived from the dimensional analysis.
In this model, which used dimensional analysis, the reason for some slight observed
discrepancies between the experiments and the calculations concerning the total boride
(FeB + Fe2B)-layer thickness for a treatment duration exceeding 4 h could be ascribed to the
use of mean values of fitting coefficients α1, α2, β1, and β2. Despite this fact, the approach
based on the dimensional analysis is still suitable for modelling the growth kinetics of
boride layers generated at the surfaces of the 4Cr5MoSiV1 steel.

The advantage of using dimensional analysis lies in its simple mathematical formu-
lation. It can be extended to a multiphase system and applied to any thermochemical
process. The bilayer model also shows the possibility of kinetically describing the evolution
of layers’ thicknesses for a given processing temperature. However, it did not account for
the presence of metal borides as precipitates, which could hamper the diffusion of an inter-
stitial element (boron) over greater depth. The mutual chemical interaction (carbon–boron)
was also overlooked because the boron atoms competed with carbon atoms to occupy the
octahedral sites in the lattices of iron borides. As a consequence, the carbon element was
pushed away from the boronized layer and was concentrated in the transition zone, as in
case of the 4Cr5MoSiV1 steel.
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Table 4. Identification of the constants involved in Equations (10) and (11) by using a non-linear
fitting of the experimental data [27].

T (K) α1
for FeB

β1
for FeB

α2
for FeB

β2
for FeB

1173 1.4855 0.5483 1.9113 0.5910
1223 1.6194 0.5649 1.2415 0.5329
1273 0.9540 0.4929 1.7308 0.5903
1323 0.9831 0.4975 0.8637 0.4736

4. Conclusions

In this work, a simulation was carried out on the boronizing kinetics of 4Cr5MoSiV1
steel in the interval of 1133 to 1253 K. Two kinetics approaches were employed to attain
this objective. The concluding points can be drawn as follows from this simulation work:

(1) The bilayer model based on the principle of mass conservation at each phase front
was used to assess the diffusion coefficients of boron in FeB and Fe2B.

(2) The calculation from the bilayer model shows that the values of the two dimension-
less parameters (ξ ≈ 0.053 and η ≈ 0.1259) were nearly constant within the consid-
ered temperature range. This outcome confirms the parabolic character during the
layers’ growth.

(3) The calculation results from the bilayer model were fitted with Arrhenius relations to
derive the values of activation energies in both phases (FeB and Fe2B), which were,
respectively, 164.92 and 153.39 kJ mol−1.
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(4) The obtained activations energies with the bilayer model were very comparable to the
values derived from the classical parabolic growth law, which were 169.44 kJ mol−1

for FeB and 157.32 kJ mol−1 for Fe2B.
(5) The based dimensional analysis model and the bilayer model were capable of pre-

dicting the layers’ thicknesses, whose values were concordant with the experimental
results taken from the literature.

(6) Two dimensionless groups were derived during the establishment of the kinetic model
based on the dimensional analysis. The experimental results were fitted according to
the power laws to express the interdependence of the two dimensionless parameters.

(7) The kinetic approach based on dimensional analysis showed its versatility and capa-
bility of analyzing the boronizing kinetics of 4Cr5MoSiV1 steel.

(8) In future works, both kinetics approaches could be potentially used to model the
diffusion phenomenon of interstitial elements such as boron or nitrogen in a multi-
phase system (ferrous or non-ferrous alloys).
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