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Abstract: Fuel cladding tubes are devices used in reactors to encapsulate fuel clots and transmit
heat to coolants. However, zirconium alloy materials which are widely used in the fuel cladding
pipe of pressurized water reactors have noticeable safety risks in resisting design basis accidents.
Therefore, it is very important to improve the corrosion resistance of fuel envelope tubes to high-
temperature water vapor oxidation. High-entropy alloys are considered to be a potential protective
coating material for cladding tubes. In this study, AlCrNbSiTi high-entropy alloy (HEA) coatings
were prepared by magnetron sputtering at different bias voltages. The effect of bias on coating
morphologies, structure, mechanical properties, and resistance to high-temperature water vapor
corrosion were studied. Experimental results showed that the bias significantly affects the coating
surface roughness. In terms of mechanical properties, the sample at 50 V bias exhibited maximum
hardness and elastic modulus of 18.2 GPa and 232.4 GPa, respectively. The highest adhesive force of
the coating to the substrate of 36 N was obtained at 100 V bias. The optimum water vapor corrosion
resistance of the AlCrNbSiTi HEA coating was achieved at 50 V bias, in which sample-point corrosion
was the main corrosion failure mechanism.

Keywords: fuel cladding tube; AlCrNbSiTi high-entropy alloy coating; bias voltages; water vapor
corrosion; magnetron sputtering

1. Introduction

In underwater loss accidents (LOCA), the cladding material is prone to be oxidized
rapidly, which will cause severe crack failure [1]. After the Fukushima nuclear accident,
scientists have extensively studied accident fault-tolerant fuel (ATF) for use in pressurized
water reactors [2]. The ATF coating can delay the time of fuel rod expansion and explosion,
reduce the heating rate of the envelope, and subsequently delay the progress of serious acci-
dents [3]. For ATF coating, the most critical requirement is to reduce the high-temperature
water vapor oxidation rate during the accident time [4]. Research of ATF cladding materials
is focused on two categories, the first of which is to develop new antioxidant cladding
materials such as iron-based alloys, SiC ceramics, and tristructural isotropic (TRISO) fuel
particles. However, the cladding materials studied have obvious disadvantages, such as
the poor high temperature mechanical properties of iron-based alloys, the high thermal
neutron capture section coefficient of FeCrAl alloys, and the high production cost of SiC
ceramic tubes. The second approach is to prepare various special protective coatings on the
surface of the material to improve its high-temperature water vapor oxidation performance.
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Since the protective coatings have no negative effects on the comprehensive performance
of the substrate, the composition of the coating materials plated on the surfaces is easy to
design, which can maximize its resistance to water vapor oxidation and greatly improve
the service performance of the reactor components.

At present, the research on surface protective coatings of cladding materials mainly
focuses on metal and ceramic coatings. Cr coating is the most commercial application
of zirconium alloy surface accident-resistant coating [5–7]. Cr-coated zirconium alloy has
excellent corrosion resistance under normal service conditions, but the thermal neutron
capture cross-section coefficient of the pure Cr layer is relatively high, which affects the
economic benefit of nuclear fuel. Metal coatings such as FeCrAl are not susceptible to massive
oxidation or corrosion at high temperature because of the formation of protective alumina
oxide layers [8]. However, the thickness of the FeCrAl coating must be tens of microns to
effectively enhance the antioxidant capability of the zirconium alloy cladding. Moreover, Zr
alloy and FeCrAl tend to interdiffuse at high temperature, which will reduce the mechanical
properties of the shell. Therefore, although metal coatings have excellent toughness and
adhesion with metal substrate, as well as desirable resistance to water vapor oxidation, a
certain thickness is usually necessitated, while a high thickness is always accompanied by
high neutron absorption rate and interdiffusion between coatings and substrates.

Ceramic coatings have excellent oxidation resistance in water vapor because of their
good thermal stability and chemical stability. Currently research is mainly focused on MAX
phase coatings, such as nitride coatings and carbide coatings. As compared with other
ceramic materials, MAX phase coatings have relatively better toughness and larger ductility
in low-speed creep. However, the interdiffusion with Zr substrate is more significant at
high temperatures, and the ceramic layer and the interdiffusion area are both fairly brittle,
which will result in cracks after heat treatments. The rate of oxidation of TiAlN coatings
was reduced by more than one order of magnitude as compared with uncoated pure Zr
alloys [9]. CrN-based nitride coatings are also reported as alternative materials for accident-
resistant coatings on zirconium alloy surfaces [10]. Results showed that the CrN coatings
did not show any traces of cracking and shedding even at 1160 ◦C. The comparative study
of CrN, TiAlN, and AlCrN showed that the CrN coating sample had the best corrosion
resistance in a pressurized Canadian heavy-water uranium reactor (CANDU) at, 300 ◦C,
pH = 10.5, 30 d, and overheated water vapor (1100 ◦C, atmospheric pressure) environments.
Oxidation tests showed that the weight gain of SiC-coated samples was about one-fifth less
than zirconium alloy samples. However, because of the noticeable difference between the
thermal expansion coefficient of SiC and zirconium alloy substrate, as well as the relatively
poor binding strength between SiC coating and zirconium alloy substrate, the SiC coating is
susceptible to fall off at high temperatures [11]. From the perspective of high-temperature
water vapor oxidation resistance, ceramic coatings have excellent thermal stability and
chemical stability, which are beneficial to stabilize the coatings in high-temperature water
vapor and avoid the dissolution or rapid oxidation of the coatings. However, coating
cracking is a typical drawback when the coatings were subjected to instant impact or
complex stresses such as stretching and creep.

At present, there are some defects in the protective coating technology of cladding
material, which limits its large-scale use. In order to meet the requirements of accident-
resistant cladding materials, a high-entropy alloy coating is a feasible choice. High-entropy
alloys have four major effects different from traditional alloys, namely, high-entropy effect
in thermodynamics, lattice distortion effect in crystallography, hysteresis diffusion effect in
dynamics, and cocktail effect in performance, which makes them have good mechanical
properties and corrosion resistance [12,13], as well as great application potential in cladding
tube protection [14]. In this research, the AlCrNbSiTi alloy system is used as the research
object for the application of fuel cladding tube coating materials. The presence of Al and
Si is conducive to improving the corrosion resistance of the coating. AlCrNbSiTi high-
entropy alloy coatings were prepared by magnetron sputtering under different levels of
bias. The effects of bias on the morphology, structure, and properties of the coatings were
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systematically studied, in order to provide reference for the application of high-entropy
alloy coatings in water vapor corrosion protection.

2. Experiments Details
2.1. Coating Preparation

The instrument used in the preparation of the sample coating is the Nano-100 PVD
deposition system. The coatings were deposited on single crystal Si (100) wafers, WC-6%Co
cemented carbide substrates, and 304 stainless steel plates. The surface of the substrates was
polished by a manufacturer and was not additionally mechanically treated. The coatings
deposited on Si substrates were used to study the surface and cross section morphology
of the coatings. Samples on 304 stainless steel substrates were used for XRD, mechanical
properties, residual stress, and water vapor corrosion testing. The coatings deposited on
cemented carbide substrates were used for the scratch test. Prior to coating deposition, the
substrates were ultrasonically cleaned in acetone for 15 min. The cleaned samples were
dried and placed on the sample holder in the vacuum chamber. When the vacuum chamber
pressure reached 4 × 10−3 Pa and the heating temperature was 200 ◦C, ion etching was
applied with a target current set to 100 A at 0.5 Pa. The etching time was 30 min and
the bias was 150 V with a 50% duty ratio. After etching, the coating was deposited. The
Al34Cr22Nb11Si11Ti22 target (Sibote, 99.95% purity) was used for magnetron sputtering at
the RF power of 700 W. The Ar pressure was fixed at 0.5 Pa and the sample negative bias
voltage was set to 0 V, 50 V, 100 V, 150 V, and 200 V with a duty cycle of 50%. The deposition
time was 1 h.

2.2. Coating Characterization
2.2.1. Morphology and Structure

The samples surface and cross section were studied by Scanning Electron Microscope
(SEM) MIRA 3 and Atomic Force Microscope (AFM) Shimadzu SPM-9500 J3. The thickness
and roughness of the coating was measured at three–four points and the average values
were taken. The composition of the coatings was analyzed using an Energy Dispersive
Spectrometer (EDS) Aztec Energy X-Max 20. The phase composition of the coatings was
characterized by X-ray diffractometer (XRD) Tongda TDM-10.

2.2.2. Residual Stress Test

The residual stress is tested by the curvature method, using the stress tester Supu
FST2000 to obtain the curvature change of the specimen before and after the coating
deposition. Each sample was measured 3 times and the average value was taken. The
residual stress of the coating is calculated according to the Stoney equation:

σfilm =
Es · hs

2

6(1 − νs) · h f
· ( 1

R f
− 1

Rs
) (1)

where, ES, hS, and VS are the elastic modulus, thickness, and Poisson ratio of the substrate,
respectively, h f is the thickness of the coating, R f and RS are the curvature of the coating
and substrate, respectively.

2.2.3. Mechanical Properties

Hardness and elastic modulus were measured using a nanoindentation instrument
NANO G200. The test uses the continuous stiffness method, and the penetration depth
does not exceed 10% of the coating thickness, in order to reduce the influence of substrate
effects. Each sample was measured at 6 points and averaged. The multifunctional material
surface performance test instrument Huahui MFT-4000 was used for scratch testing to
study adhesion force of the coating. During the scratch test, the indenter scratches the
coating at a constant speed, and the load increases uniformly from 0 N to the 150 N. The
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loading speed is 100 N/min, and the scratch distance is 5 mm. Each sample was tested
three times and averaged.

2.2.4. Water Vapor Corrosion Test

The water vapor corrosion experiment can simulate the accident fault tolerance test of
the coating in high-temperature water vapor environments. The experiment was conducted
on a custom-built laboratory platform, shown in Figure 1. In Figure 1, the right-side device
is the water vapor generator. The left device is a high-temperature tube furnace with a set
temperature of 700 ◦C. After the temperature reached the set temperature, the water vapor
generator was applied with an outlet pressure of 0.3 MPa. The samples were placed into it
for 10, 50, 140, 200 h. Deionized water was added into the tank every 10 h to maintain the
outlet pressure of the steam generator.
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Figure 1. The schematic diagram of high-temperature water vapor corrosion device.

3. Results and Discussion
3.1. Coating Morphology

Cross-section morphology and surface roughness of the samples deposited under
different bias voltage are shown in Figure 2. Surfaces of the samples prepared at different
bias are smooth, and the number of surface particles decreases with increasing bias, while
granular defects on the surface which are caused by contaminants in the substrate, the
vacuum chamber, and the target are unavoidable defects in PVD coatings. In terms of
defects from the substrate, particle defects may be also introduced during the residual
polishing, cleaning, and drying prior to deposition, as well as residual dust, debris, and
other impurities [15]. Granular defects produced in the vacuum chamber mainly come
from the process of vacuum, heating, bombardment, or deposition, from the dust particles
on the internal components of the vacuum system [16]. Granular defects caused by the
target material are mainly due to the particle eruption introduced during the magnetron
sputtering process [11]. The particles are incorporated into the coating, and the structure
around the particle defects are loosened due to the masking effect and the low thermal
mobility of the atoms, which will result in low ion collision energy. Under the action of
external force, the particles are prone to fall off and thus form holes. As shown in Figure 2,
the pits on the surface of the coating are caused by the loss of large particles under the
bombardment by high-energy ions of the biased sample.
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It can be seen from the cross-sectional images of the coatings that all coatings are
smooth and dense, without obvious hole defects. The coating thickness is gradually
reduced from 2.5 ± 0.2 µm to 1.2 ± 0.2 µm with the increasing bias from 50 V to 200 V.
As the bias increases, the coating thickness decreases for two main reasons. First, the
bombardment energy is enhanced due to high bias, and the intervoid of the coating grains
is filled during deposition, which promotes the densification of the coating surface, reduces
the deposition rate, and decreases the coating thickness [17]. On the other hand, under the
condition of high bias, the resputtering effect is enhanced, which also leads to the decrease
in deposition rate and the decrease in coating thickness.

According to the AFM results, as shown in Figure 2, root-mean-square roughness
Rq gradually decreases from 31 ± 5 nm to 6 ± 1 nm while the bias increases from 50 V
to 100 V. The reason why the surface roughness of the coating is greatly affected is that
in the initial stage of coating deposition, the coating will reproduce the uneven surface
morphology of the substrate after ion etching. At low bias, it is more difficult to obtain
atomic supplement in the depressed area than in the prominent area due to the geometric
shielding effect, so the difference between the two parts gradually increases with the
deposition process. The surface roughness of the coating is greater. Correspondingly, under
high bias, the bombardment of high-energy particles will erode the protruding parts of the
coating surface and weaken the geometric shielding effect. In addition, the increase in bias
also leads to the enhancement of the resputtering effect, and the atomic supplement rate of
the depressed part and the protruding part becomes close, so the coating shows a lower
surface roughness. When the bias is higher than 150 V, the bias exhibits slight influence on
the surface roughness. As shown in the surface SEM images of the coatings, fewer holes
and particles can be observed at higher bias.
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EDS mapping of the coating surfaces and cross sections are shown in Figures 3 and 4,
respectively. The coating was deposited at bias voltage of 100 V. The five elements of the
coatings are evenly distributed without obvious segregation. In the EDS images of the cross
section, Si is both the substrate and coating element.

Coatings 2023, 13, x FOR PEER REVIEW 6 of 14 
 

 

EDS mapping of the coating surfaces and cross sections are shown in Figure 3 and 
Figure 4, respectively. The coating was deposited at bias voltage of 100 V. The five ele-
ments of the coatings are evenly distributed without obvious segregation. In the EDS im-
ages of the cross section, Si is both the substrate and coating element. 

The element content change of the coating measured using EDS is shown in Figure 
5. With a bias of 50 V, the Al content is the highest of about 26 at.%. The amount of Al 
decreases significantly as the bias increases. Due to its light mass, the Al is susceptible to 
a back-sputtering phenomenon, resulting in less Al ions reaching the substrate or Al ions 
being bombarded out from the deposited coatings [18]. When the bias increases from 50 
V to 100 V, the content of Al decreases from about 26 at.% to about 14 at.%. Samples with 
a bias of 100 V, 150 V, and 200 V have the highest content of Cr of about 28 at.%, 30 at.%, 
and 31 at.%, respectively. 

 
Figure 3. EDS mapping of different elements on the surface of the AlCrNbSiTi HEA coating depos-
ited at the bias of 100 V. 

 
Figure 4. EDS mapping of different elements at the cross-section of the AlCrNbSiTi HEA coating 
deposited at the bias of 100 V. 

Figure 3. EDS mapping of different elements on the surface of the AlCrNbSiTi HEA coating deposited
at the bias of 100 V.

Coatings 2023, 13, x FOR PEER REVIEW 6 of 14 
 

 

EDS mapping of the coating surfaces and cross sections are shown in Figure 3 and 
Figure 4, respectively. The coating was deposited at bias voltage of 100 V. The five ele-
ments of the coatings are evenly distributed without obvious segregation. In the EDS im-
ages of the cross section, Si is both the substrate and coating element. 

The element content change of the coating measured using EDS is shown in Figure 
5. With a bias of 50 V, the Al content is the highest of about 26 at.%. The amount of Al 
decreases significantly as the bias increases. Due to its light mass, the Al is susceptible to 
a back-sputtering phenomenon, resulting in less Al ions reaching the substrate or Al ions 
being bombarded out from the deposited coatings [18]. When the bias increases from 50 
V to 100 V, the content of Al decreases from about 26 at.% to about 14 at.%. Samples with 
a bias of 100 V, 150 V, and 200 V have the highest content of Cr of about 28 at.%, 30 at.%, 
and 31 at.%, respectively. 

 
Figure 3. EDS mapping of different elements on the surface of the AlCrNbSiTi HEA coating depos-
ited at the bias of 100 V. 

 
Figure 4. EDS mapping of different elements at the cross-section of the AlCrNbSiTi HEA coating 
deposited at the bias of 100 V. 
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deposited at the bias of 100 V.

The element content change of the coating measured using EDS is shown in Figure 5.
With a bias of 50 V, the Al content is the highest of about 26 at.%. The amount of Al
decreases significantly as the bias increases. Due to its light mass, the Al is susceptible to a
back-sputtering phenomenon, resulting in less Al ions reaching the substrate or Al ions
being bombarded out from the deposited coatings [18]. When the bias increases from 50 V
to 100 V, the content of Al decreases from about 26 at.% to about 14 at.%. Samples with a
bias of 100 V, 150 V, and 200 V have the highest content of Cr of about 28 at.%, 30 at.%, and
31 at.%, respectively.
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3.2. Crystal Structure of the Coating

XRD patterns of the coatings deposited at different levels of bias are shown in Figure 6.
The three peaks annotated in the figure are the diffraction peaks of the 304 stainless steel
substrate. The diffraction peak of the coating is a single broadened diffraction peak, which
indicates that the coatings are amorphous or composed of small nano crystallites. The
observed broad XRD peak probably belongs to FCC crystal lattice (200) reflection. The high
mixing entropy, atomic size mismatch of high-entropy alloy elements, and the fast cooling
rate of coatings during the deposition process benefit the development of amorphous
samples [19]. Similar results of amorphous states are observed in the AlCrMoSiTi alloy [20].
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3.3. Mechanical Properties of the Coating

The hardness and elastic modulus of the coatings are shown in Figure 7a. The hardness
and elastic modulus have the same change trend that they gradually decrease as the bias
increases. At 50 V, highest hardness and elastic modulus are achieved at 18 ± 3 GPa and
240 ± 15 GPa, respectively. In Figure 7b, H/E and H3/E2 are shown, which are generally
used to evaluate the fracture toughness of hard coatings, especially in ceramic materials [21].
H/E and H3/E2 of the coatings have similar variation trends with hardness and elastic
modulus. When the bias is 50 V, the coating has the highest H/E and H3/E2, which are
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0.08 and 0.11 GPa, respectively. When the bias is 200 V, H/E and H3/E2 drop to 0.075 and
0.085 GPa, respectively.
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The residual stress of the coatings is shown in Figure 8. All the coatings showed
residual compressive stress. At 150 V, the highest residual compressive stress is 3.5 GPa,
while the lowest residual stress is 1.4 GPa at 200 V. The residual stress of the coatings results
from the bombardment effect of high-energy ions. Under negative bias, the ions sputtered
by the target material and the working gas ions close to the target material have an energy
between 10 eV and 100 eV when moving to the substrate. The high-energy ions produce
an ion peening effect on the substrate, producing defects and also causing the increase in
residual pressure stress. However, at the same time, the mobility of the surface-adsorbed
atoms rises due to the collision of high-energy ions to the surface of the substrate, which
also promotes the fusion of defects and reduces the residual stress [22]. The final residual
stress is determined by the competition of these two above factors.

Coatings 2023, 13, x FOR PEER REVIEW 8 of 14 
 

 

[21]. H/E and H3/E2 of the coatings have similar variation trends with hardness and elastic 
modulus. When the bias is 50 V, the coating has the highest H/E and H3/E2, which are 0.08 
and 0.11 GPa, respectively. When the bias is 200 V, H/E and H3/E2 drop to 0.075 and 0.085 
GPa, respectively. 

The residual stress of the coatings is shown in Figure 8. All the coatings showed re-
sidual compressive stress. At 150 V, the highest residual compressive stress is 3.5 GPa, 
while the lowest residual stress is 1.4 GPa at 200 V. The residual stress of the coatings 
results from the bombardment effect of high-energy ions. Under negative bias, the ions 
sputtered by the target material and the working gas ions close to the target material have 
an energy between 10 eV and 100 eV when moving to the substrate. The high-energy ions 
produce an ion peening effect on the substrate, producing defects and also causing the 
increase in residual pressure stress. However, at the same time, the mobility of the surface-
adsorbed atoms rises due to the collision of high-energy ions to the surface of the sub-
strate, which also promotes the fusion of defects and reduces the residual stress [22]. The 
final residual stress is determined by the competition of these two above factors. 

 
Figure 7. (a) Hardness and elastic modulus of the coatings; (b) variation of H/E and H3/E2 with bias. 

 
Figure 8. Residual stresses in AlCrNbSiTi HEA coatings. 

3.4. Coating Scratch Toughness 
Scratch toughness results of the coatings are shown in Figure 9. In the scratch exper-

iment, scratches are generally divided into three stages. The first stage is the initial crack-
ing stage, the second stage is the initial peeling stage, and the third stage is the complete 
peeling stage. These three phases correspond to the three critical loads, Lc1, Lc2, and Lc3. 
However, if the coating binding force to the substrate is strong, the third stage may not 

Figure 8. Residual stresses in AlCrNbSiTi HEA coatings.

3.4. Coating Scratch Toughness

Scratch toughness results of the coatings are shown in Figure 9. In the scratch experi-
ment, scratches are generally divided into three stages. The first stage is the initial cracking
stage, the second stage is the initial peeling stage, and the third stage is the complete peeling
stage. These three phases correspond to the three critical loads, Lc1, Lc2, and Lc3. However,
if the coating binding force to the substrate is strong, the third stage may not occur. The
scratch toughness of the coating is generally characterized by the crack extension resistance
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value (CPRs), which reflects the binding force between the coating and the substrate, as
well as the toughness of the coating [23].

CPRs = Lc1 · (Lc2 − Lc1) (2)

Coatings 2023, 13, x FOR PEER REVIEW 9 of 14 
 

 

occur. The scratch toughness of the coating is generally characterized by the crack exten-
sion resistance value (CPRs), which reflects the binding force between the coating and the 
substrate, as well as the toughness of the coating [23]. 

1 2 1s ( )c c cCPR L L L= ⋅ −  (2)

The values of Lc1, Lc2, and CPRS show the same variation trend. The 200 V bias coating 
has the strongest resistance to cracking, with an Lc1 value of 9 N. The samples coated with 
a bias of 100 V and 200 V were strongly bonded with Lc2 values of 36 N and 31 N, respec-
tively. The 50 V bias coating has an Lc2 value of only 8 N. The scratch morphology of the 
AlCrNbSiTi high-entropy alloy coatings at different bias is shown in Figure 10. According 
to the CPRS value of the coatings with different levels of bias and the scratch images, 
scratch cracking occurred earlier for the sample with a bias of 50 V, and the coating peeled 
off at the beginning stage with CPRS of 10 ± 4 N2. At 100 V, the CPRS rises sharply to 190 ± 
20 N2, and no third stage occurs. At 150 V, the coating cracks and flakes at the beginning 
of the experiment, indicating fairly poor binding force. The coating with 200 V bias has 
desirable scratch toughness and ability to resist cracking with outstanding binding force 
in all four samples, which can be attributed to the compaction of the coating at high bias. 
Some coating grinding chips are distributed at the peeling area of the scratch coatings 
with a bias voltage of 100 V and 200 V. Table 1 shows the composition of three different 
areas after the coating scratch test. The grinding chips element of the coating of 100 V bias 
has only 0.64 at.% W, while the other elements are all elemental components of the coat-
ing. Therefore, the grinding chips are formed by the breaking and peeling of the coating 
during the scratch experiment. Region B contains the W element of about 24 at.% and the 
Co element of 11 at.%, indicating that the coating here has been peeled off and exposed to 
the substrate. EDS results of region C show presence of Ti of 1.6 at.% and Cr of 1.5 at.%, 
showing that the coating has been completely peeled off. 

 
Figure 9. Adhesion force results of AlCrNbSiTi HEA coatings. Figure 9. Adhesion force results of AlCrNbSiTi HEA coatings.

The values of Lc1, Lc2, and CPRS show the same variation trend. The 200 V bias
coating has the strongest resistance to cracking, with an Lc1 value of 9 N. The samples
coated with a bias of 100 V and 200 V were strongly bonded with Lc2 values of 36 N
and 31 N, respectively. The 50 V bias coating has an Lc2 value of only 8 N. The scratch
morphology of the AlCrNbSiTi high-entropy alloy coatings at different bias is shown in
Figure 10. According to the CPRS value of the coatings with different levels of bias and the
scratch images, scratch cracking occurred earlier for the sample with a bias of 50 V, and the
coating peeled off at the beginning stage with CPRS of 10 ± 4 N2. At 100 V, the CPRS rises
sharply to 190 ± 20 N2, and no third stage occurs. At 150 V, the coating cracks and flakes
at the beginning of the experiment, indicating fairly poor binding force. The coating with
200 V bias has desirable scratch toughness and ability to resist cracking with outstanding
binding force in all four samples, which can be attributed to the compaction of the coating
at high bias. Some coating grinding chips are distributed at the peeling area of the scratch
coatings with a bias voltage of 100 V and 200 V. Table 1 shows the composition of three
different areas after the coating scratch test. The grinding chips element of the coating of
100 V bias has only 0.64 at.% W, while the other elements are all elemental components of
the coating. Therefore, the grinding chips are formed by the breaking and peeling of the
coating during the scratch experiment. Region B contains the W element of about 24 at.%
and the Co element of 11 at.%, indicating that the coating here has been peeled off and
exposed to the substrate. EDS results of region C show presence of Ti of 1.6 at.% and Cr of
1.5 at.%, showing that the coating has been completely peeled off.

Table 1. Element composition in different regions in the scratch area of AlCrNbSiTi coatings.

Elements Zone A (at.%) Zone B (at.%) Zone C (at.%)

Al 9.7 7.3 0
Si 14.5 6.4 0
Ti 21.0 14.5 1.6
Cr 41.3 27.1 1.5
Nb 12.9 10.4 0
O 0 0 8.4
W 0.6 23.7 54.9
Co 0 10.5 33.5
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Figure 10. Scratch morphology of AlCrNbSiTi coatings, A abrasive debris, B abrasive area, C peeling area.

3.5. Corrosion Resistance against Water Vapor

In the water vapor corrosion test, the temperature was set to 700 ◦C. Changes in the
samples were monitored at different time periods of 10, 50, 100, 140, and 200 h. The surface
morphology images of the corroded coatings are shown in Figure 11. The sample with
a bias voltage of 50 V has corrosion pits after 140 h and 200 h, while samples of other
bias voltages have corrosion pits after 50 h and 140 h. Two types of corrosion pits can
be observed in the morphology images, as shown in Figure 12. One is the regular round
corrosion pit, which mainly develops from the particle defects in the process of coating
preparation. The other is the shallow corrosion pit with irregular depth, mainly because of
the uneven corrosion in the corrosion process. Elemental analysis is performed for different
corrosion regions as well as areas without defects, as shown in Table 2. The content of
O in the defect-free area (Zone 1) and the irregular shallow pit area (Zone 3) is basically
consistent. An Fe element of 65.0 at.% and Mn element of 11.0 at.% can be detected in the
regular circular pit area (Zone 2). In addition, traces of elements of the substrate have been
found in this region, indicating corrosion to the substrate.
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Figure 12. Corrosion crater morphology of AlCrNbSiTi coating after 200 h of water vapor corrosion,
(a) 50 V bias, (b) 100 V bias, (c) 150 V bias, (d) 200 V bias, (e,f) two types of corrosion crater
morphology.

Table 2. EDS results of different areas of AlCrNbSiTi coating after 200 h of water vapor corrosion.

Elements Zone 1 (at.%) Zone 2 (at.%) Zone 3 (at.%)

Al 20.1 2.6 5.7
Si 11.5 2.3 11.4
Ti 18.2 2.2 22.3
Cr 18.5 16.0 25.6
Nb 9.8 0.9 13.4
O 21.9 0 21.6

Mn 0 11.0 0
Fe 0 65.0 0

The cross sections of the coatings corroded for 200 h were studied, there were no pene-
trating holes in the cross sections, and the coating was combined well with the substrate.
The EDS results of the sample with a bias of 200 V are shown in Figure 13. All elements
except Al are still evenly distributed in the coating. The distribution of Al element in the
cross-section shows that the content of Al element near the surface of the coating is high,
which is caused by the gradual diffusion of Al element to the surface during the experiment.
This phenomenon can be observed in the coating at various levels of bias.

In discussed above, the influence of bias on water vapor corrosion resistance of the
coatings is mainly based on three mechanisms. First, different levels of bias have substantial
effects on the coating thickness, while a larger thickness can compensate for the particle
defects on the surface and improve the corrosion resistance. For example, the thickness
difference between 50 V and 200 V coating samples reaches 1.3 µm. Then, the element
composition of the coatings differs noticeably under different levels of bias, in which Al,
Cr, and Nb have great influences on the corrosion resistance of the coating. For example,
the Al content difference between coating deposited at 50 V and 200 V bias reaches about
17 at.%, while 6.8 at.% of Cr and 5.8 at.% of Nb elements. Finally, bias affects the surface
roughness of the coatings, when the particle defects on the coating surface are prone to
point corrosion. Because of the large pores at the defect, the transmission channel of the
corrosion medium is provided, leading to the aggravation of the corrosion phenomenon.
With the increase in bias, the coating surface is more compact, alleviating the corrosion
speed. Therefore, the synergistic action of many factors affects the water vapor corrosion
resistance of the coating.
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4. Conclusions

The AlCrNbSiTi high-entropy alloy coating was prepared by magnetron sputtering
technique. Effects of bias voltage on coating morphology, mechanical, and corrosion
properties were studied. With the increase in bias voltage, the resputtering effect during
deposition and the increase in the density of the coating results in the decrease in the coating
thickness from 2.5 ± 0.2 µm to 1.2 ± 0.2 µm. At the same time, the resputtering effect
results in a decrease in the surface roughness of the coating from 31 ± 5 nm to 6 ± 1 nm.
The increase in bias voltage changes the composition of the coating. Due to the light weight
of Al atoms, the resputtering effect is strong during deposition; therefore, with the increase
in bias voltage, the content of Al gradually decreases. The content of Ti is little affected by
the bias and does not change significantly with the bias, while the content of Cr, Nb, and Si
increases gradually with the increase in bias. The water vapor corrosion resistance of the
coating changes significantly with the bias voltage. The sample with a bias voltage of 50 V
has a corrosion pit between 140 h and 200 h of corrosion. The surface of other coatings has
a corrosion pit between 50 h and 140 h of corrosion, and the phenomenon of Al element
diffusion and enrichment to the surface has been observed in all the coatings.

In addition, the bias voltage also has obvious influence on the mechanical properties
of the coating. With the increase in bias voltage, the hardness, elastic modulus, H/E, and
H3/E2 of the coating decreased gradually. The bias increased from 50 V to 200 V, and de-
creased from 18.2 GPa, 232.4 GPa, 0.08 GPa, and 0.11 GPa to 14.5 GPa, 189.4 GPa, 0.075 GPa,
and 0.085 GPa, respectively. The deposited coatings all show residual compressive stress,
and the minimum residual compressive stress is 1.4 GPa in samples deposited at a bias of
200 V. The binding strength of the coating does not change significantly with the increase
in bias voltage, and the binding strength of the coating and the substrate is the best when
the bias voltage is 100 V with LC2 value of 36 N.

In summary, application of bias voltage can control water vapor corrosion resistance
and other properties of AlCrNbSiTi HEA coatings. By selecting an appropriate bias, an
AlCrNbSiTi high-entropy alloy coating with excellent water vapor corrosion resistance
and mechanical properties can be obtained. It is of reference value for the application of
AlCrNbSiTi high-entropy alloy coatings in the protection of fuel cladding tubes.
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