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Abstract: Bamboo shoot is renewable biomass rich in carbon and nitrogen. To take advantage of
its sources of carbon and nitrogen, hierarchical porous nitrogen-doped carbon materials derived
from bamboo shoot were acquired via a one-step method in this study. The obtained carbons were
characterized by using XRD, Raman, N2 sorption, SEM, TEM, XPS, etc. The carbon calcinated at
700 ◦C with KHCO3 treatment (BSC) displays a large surface area (1475.5 m2 g−1) and typically
porous structure from micro- to macropores, a self-nitrogen content, and many defects, which could
offer transport channels and active sites for lithium ions while used as carbon anode. Based on
the above features and the synergistic effects among them, BSC exhibits the typical electrochemical
performance of a carbon-based anode material, with a specific capacity as high as 611.3 mA h g−1

(a Coulombic efficiency of 98.7%) after 100 cycles at a current density of 0.1 A g−1. Meanwhile, it
also has a good rate performance and excellent cycling properties (436.1 mA h g−1 after 300 cycles
at 0.1 A g−1) compared with NBSC (carbon directly carbonized at 700 ◦C). Thus, it is promising
for further improvements made to porous carbon derived from biomass and used as anode in the
application of energy storage, and could be a guideline for the preparation of high-value-added
carbon materials derived from biomass.

Keywords: porous carbon; biomass; lithium-ion battery; anode; electrochemical properties

1. Introduction

Lithium-ion batteries (LIBs), which have the advantages of high energy density, long
cycle life, and flexibility in design, are regarded as some of the most promising devices
in energy storage. LIBs have a wide application in portable electronic devices, such as
computers, mobile phones, and electric vehicles [1–4]. However, the limited energy density
of LIBs makes them difficult to apply to some high-demand pieces of equipment. As a
component of LIBs, anode materials, especially those composed of carbonaceous materials,
have been studied by scholars for a long time. Graphite, as it is well known, is the most
commonly used anode material. However, its low theoretical capacity of 372 mA h g−1

cannot meet the demands of markets [5]. In recent years, porous carbon materials doped
with nitrogen (N) atoms have shown superior electrochemical performance because N
atoms can supply enough Li-ion storage sites and enhance reactivity [6–10]. The radius of
a N atom is closer to that of a C atom, which means it is much more easily inserted into
the lattice of carbon than of other atoms. Additionally, doping with N atoms could change
the atom connection and tunnel structure to enhance hydrophilicity, resulting in increasing
the electronic transmission rate and the active sites on the surface of the carbon materials.
Selvamani et al. [11] illustrated nitrogen-doped fish scale hierarchical carbon as an anode
material, which had a steady reversible capacity of 483 mA h g−1 at 75 mA g−1 in organic
electrolytes. They also found that N atoms, especially pyrrolic N present in graphene,
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can offer enough active sites for Li-ion storage. Hou et al. [12] prepared nitrogen-doped
carbon nanosheets derived from silk and applied them as anodes in LIBs, and the results
showed a reversible lithium storage capacity of 1865 mA h g−1. Several approaches could
be used to prepare nitrogen-doped carbon materials, such as hydrothermal carbonization,
pyrolysis, and joint hydrothermal carbonization and pyrolysis. In this process, nitrogen-
rich precursors are beneficial for the preparation of nitrogen-doped carbons, such as the
commonly used NH3, urea, melamine, and some other small-molecule substances [13–15].
However, these methods also present some shortcomings, such as high cost, multiple steps,
and low nitrogen doping content, which limit their special applications. Thus, porous
nitrogen-doped carbon materials with a large specific surface area could be prepared by
using renewable raw materials from biomass as nitrogen and carbon precursors to achieve
excellent electrochemical performance.

Biomass is an environmentally friendly and natural resource which has attracted much
attention as a precursor to prepare porous carbon materials [12,16,17]. The diversity of
the components and their low cost, abundant resources, rapid regeneration, and environ-
mental friendliness provide advantages in fabricating heteroatom-doped carbon materials.
Recently, types of nitrogen-rich biomass, such as honey [18], cow horns [19], fish scales [11],
garlic peel [20], prawn shells [21], and butterfly wings [22], were used as precursors to
fabricate nitrogen-doped carbons and have attracted much attention as anode materials for
LIBs. Currently, there are two main routes for preparing porous nitrogen-doped carbon
materials: one is the post-processing of porous carbons by adding additional nitrogen
sources; the other is in situ doping carbon of nitrogen-rich precursors. Both routes require
many steps [23,24] or require the help of soft or hard templates [18,25] or the post-activation
process (e.g., activation by H2O, CO2, KOH, NaOH, etc.) [26–28]. To some extent, these pro-
cesses are costly and complicated. Also, carbon materials derived from biomass show low
Li-storage behavior at relatively high current densities. Thus, it is necessary to find a route
to prepare nitrogen-doped carbon materials with a large specific surface area and different
pore sizes through fewer steps for superior electrochemical LIBs made from biomass.

Bamboo shoot is the bud of bamboo; it is famous for its taste and nutrition, is rich in
proteins, carbohydrates, and minerals, and has a low fat content [29,30]. Most applications
of bamboo shoot focus on its use as a vegetable. However, there is a lack of studies on
its use as an active electrode material for LIBs based on its high N content, 4.27% [31],
which might be a potential precursor for the preparation of nitrogen-doped porous carbon
materials without adding an extra nitrogen source.

In this work, bamboo shoots, which could offer a source of carbon and nitrogen, were
used as a precursor to prepare hierarchical porous nitrogen-doped carbon materials. A high
specific surface area and porous structure were obtained by adding potassium bicarbonate
(KHCO3) through a one-pot synthesis route, which does not require multiple steps and the
assistance of a template, or through adding extra N sources. The obtained carbon materials
derived from bamboo shoot exhibited excellent energy storage performance when used as
the anode material for LIBs.

2. Materials and Methods
2.1. Materials

Bamboo shoots were used as a carbon and nitrogen precursor; they were obtained from
Lishui, Zhejiang Province, China. The collected bamboo shoots were ground into powder
after cleaning, cutting, drying, and sieving into 250~425 µm particles. KHCO3 was used as
an activator; it was purchased from Sinopharm Chemicals Co., Ltd. (Shanghai, China). The
reagents and chemicals in the work were used as received without further purification.

2.2. Preparation of the Bamboo Shoot Derived Carbon (BSC)

The preparation process of porous nitrogen-doped carbon was similar to our previous
research [31]. Briefly, 2 g bamboo shoot powder was impregnated in KHCO3 solution (the
weight ratio of KHCO3 to bamboo shoot was 4) for 0.5 h under ultrasonic treatment. The
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mixture was soaked for 12 h, then freeze-dried until no further change in mass. It was then
calcined in a tubular furnace and held at 700 ◦C for 1 h under an inert gas (N2) atmosphere
(heating rate: 10 ◦C min−1). The obtained carbon material was washed with deionized
water to neutralize and dried at 75 ◦C. The obtained carbon derived from the bamboo
shoot is named BSC. For comparison, the sample without adding KHCO3 was directly
carbonized at 700 ◦C for 1 h under the same gas atmosphere, and named NBSC.

2.3. Material Characterization

Different techniques were used to characterize the as-prepared carbon materials. A
field emission scanning electron microscope (SEM, Hitachi S-4800, Tokyo, Japan) and
transmission electron microscopy (TEM, FEI Tecnai G2 20, Stanford, CA, USA) were used
to observe the morphologies of the carbon materials. An X-ray photoelectron spectrum
(XPS, Thermo Scientific Escalab 250Xi, Waltham, MA, USA) was used to carry out the
Vacuum Generators XPS system, operated using Al (Kα) radiation. In order to obtain
the degree of crystallinity and graphitization of the carbons, powder X-ray diffraction
patterns (XRD, Bruker D8 Advance, Mannheim, Germany) were recorded using Cu Kα

(λ = 0.15496 nm) radiation in the 2θ range from 10◦ to 60◦. Raman spectra were acquired
on a Raman Microscope (Thermo Scientific, Waltham, MA, USA). N2 sorption isotherm
measurement was performed on the ASAP 2020 analyzer (Micromeritics, Norcross, GA,
USA) at 77 K.

2.4. Electrochemical Measurements

The electrochemical performances of the bamboo-shoot-derived carbon anode material
for LIBs were shown using 2025-type coin cells at room temperature. The working electrode
consisted of active materials, carbon black (as the conductivity agent) and polyvinylidene
fluoride (PVDF, as the binder) in a weight ratio of 80:10:10, and the solvent was N-methyl-2-
pyrrolidinone (NMP). The mixture was spread on Ni mesh (diameter 10 mm), followed by
drying in a vacuum oven at a temperature of 80 ◦C for 4 h. The counter electrode was pure
lithium foil and 1 M LiPF6 in ethylene carbonate (EC)-dimethyl carbonate (DMC) (1:1 by
volume) as the electrolyte when lithium-ion batteries were fabricated. The lithium-ion cells
were assembled in the argon-filled glovebox (with H2O < 1 ppm and O2 < 1 ppm). The
galvanostatic discharge–charge tests were carried out on a Land CT2001A system (Wuhan,
China) in the voltage range of 0.01~3.0 V. Cycle voltammetry (CV) measurements were
conducted on a Zennium electrochemical workstation (Zahner, Kronach, Germany) in the
voltage range of 0.01 to 3.0 V, and the scanning rate was 0.1 mV s−1.

3. Results and Discussion

X-ray diffraction (XRD) spectra of BSC and NBSC are exhibited in Figure 1a. As shown
in the picture, there are two typical peaks of the two materials located at 2θ = ~24◦ and
~43◦, which are named as (002) and (100) of the pseudo-graphitic domains, respectively [32].
It can be seen that BSC has two board diffraction peaks, indicating that it is a typical carbon
with a low graphitization degree [19]. This also demonstrates that BSC has a graphitic
structure [16]. The structures of the two carbon materials were further investigated via
Raman spectroscopy. As displayed in Figure 1b, the two samples show two peaks at around
1340 cm−1 and 1580 cm−1, corresponding to the disorder-induced D-bands and in-plane
vibration G-bands, respectively. As we all know, the value of ID/IG means the degree of
graphitic ordering, including defects, edges, disorder, and carbon grain size [17,33]. The
values of ID/IG were 1.12 for NBSC and 1.25 for BSC, respectively. The results reveal
that BSC has a higher degree of disorder, more defects, and more edges than NBSC after
activation, which coincides with the above analysis of XRD. This also suggests that while
BSC acted as a battery anode, not only could it improve the ion-storage ability, it could also
increase the reversible capacity.
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Figure 1. (a) XRD patterns and (b) Raman spectra of NBSC and BSC.

To further investigate the porous structure of BSC, N2 adsorption–desorption isotherms
were assessed (Figure 2a). As depicted in Figure 2a, BSC displayed a type I adsorption
isotherm, suggesting that it was a typical microporous material. There was a rapid increase
within the relative pressure of 0~0.3, due to the micropores filling. Subsequently, a stable
trend appeared at the relative pressure of 0.3~0.9, indicating there was no or little further
adsorption, and that there might also be narrower mesopores; this result coincided with an
average pore size of 1.97 nm. Additionally, there were tails around a relative pressure of 1.0,
implying the existence of macropores. Thus, the obtained carbon of BSC had hierarchically
porous structures from the micro to macro level. According to the findings of nitrogen ad-
sorption, the carbon of BSC displays a high specific surface area (1475.5 m2 g−1, calculated
by BET method), the total pore volume is found to be 0.73 m3 g−1, the micropore volume
0.63 m3 g−1, and the meso-/macropore volume 0.10 m3 g−1. Compared with the specific
surface area of biomass-based carbon materials, such as ox horn [19], shrimp shells [23], and
wheat straw [34], BSC possessed a larger specific surface area. However, the specific surface
area of NBSC was very little (4.6 m2 g−1) [31], indicating only a few pores in it. In addition,
the percent of the micropores of BSC reached 86.4%. It is well known that micropores
play an important role in rapid electrolyte transfer as battery anodes, offering a favorable
pathway for the penetration and transport of ions [35]. The pore size distribution curves
(PSDs) of BSC were calculated via NLDFT and are shown in Figure 2b. It was evident that
the pore size distribution of BSC is mainly concentrated at around 0.5~2 nm. Some pore
sizes over 2 nm also can be observed. Previous research reported that materials with a high
specific surface area and hierarchical pore structures could show superior electrochemical
performance [10,36]. Thus, the obtained carbon of BSC is expected to have better behavior
while acting as the anode material for Li-ion batteries.
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SEM images of freeze-dried bamboo shoot, the carbon obtained at 700 ◦C (NBSC), and
the carbon derived from KHCO3-treated bamboo shoots (BSC) are depicted in Figure 3.
Figure 3a displays that bamboo shoot is composed of hollow cells with thin walls, the cell
wall is thinner and the cell cavity is independent of adjacent cells. Moreover, abundant
starch grains can be seen in the cell cavity. The results can also be demonstrated by
the larger magnification image of Figure 3b. To some extent, the hollow structure and
substance are helpful in preparing carbon materials with a high specific surface area [37].
Figure 3c,d show the images of the obtained carbon calcinated at 700 ◦C without KHCO3
treatment (NBSC). As can be seen, the cell wall collapsed and thickened, and starch grains
disappeared after carbonization. However, some of the original structure of the cell also
remained. Figure 3e,f are the images of BSC. Numerous pores existed on the surface
of BSC; these pores intersected with each other to form different channels, which could
provide more space for electrolyte diffusion (Figure 3c). From the high magnification of
Figure 3f, it is also shown that there are pores of different sizes on the surface of BSC. Some
of the pores, especially the small ones, collapsed to form large pores, suggesting that the
addition of KHCO3 and pyrolysis at high temperature could increase the specific surface
area and change the pore sizes. These results are also consistent with the aforementioned
N2 adsorption results in this work. NBSC and BSC were further characterized via TEM, as
displayed in Figure 4a,b. As shown in the TEM images, few pores could be seen in NBSC
(Figure 4a), but different size pores and collapsed pore structures could be seen in BSC
(Figure 4b). Compared to granular structures, these different size pores are favorable for
electronic transport. The TEM images further reveal the details of the amorphous structures
of BSC, which is consistent with the results of SEM.

XPS was used to analyze the compositions and the forms of different bonds of the
obtained carbon materials. From Figure 5a, three peaks can be seen situated at 283.8 eV,
398.5 eV, and 531.1 eV, corresponding to the spectra of C1s, N1s, and O1s, respectively. The
atomic percentages of C1s, N1s and O1s are 87.67%, 4.92% and 7.41%, respectively. As
depicted in Figure 5b, the C1s spectrum was divided into three peaks, located at 284.9 eV,
286.4 eV, and 288.9 eV. The peak at 284.9 eV corresponds to sp2 hybridized C-C, the peak at
286.4 eV is due to the C-N group, and the peak at 288.9 eV is attributed to O=C-O bonding.
The results further confirmed the presence of N and O functional groups on the surface
of BSC [23]. It is well known that nitrogen has a smaller atomic diameter than carbon,
which means it has a higher electronegativity and is more favorable for Li-ion storage.
Besides, due to the presence of nitrogen, more defects were generated and more active sites
were offered for ion storage [38]. The N1s spectrum of BSC in Figure 5c can be divided
into four peaks, consisting of N-oxide (N-X at 404.8 eV), quaternary N (N-Q at 401.3 eV),
pyrrolic N (N-5 at 400.3 eV) and pyridinic N (N-6 at 398.5 eV), respectively. Pyridinic
N is more beneficial than pyrrolic N for Li-ion storage and reversible capacity [19,39,40].
The content of pyridinic N (14.1%) is a little lower than that of pyrrolic N (37.6%), which
would have an influence on the mutual conversion between electrical energy and chemical
energy. After the treatment with KHCO3 at a temperature of 700 ◦C, the nitrogen content
decreased from 4.40% to 2.79%, suggesting that the nitrogen-containing gases or organic
molecules probably formed via the degradation of the nitrogen-containing groups [31],
and this coincides with previous reports [41,42]. The nitrogen content could remain at
2.79% at the temperature of 700 ◦C; this not only could reduce the formation of the SEI
film by restraining the electrolyte decomposition, but could also decrease the surface side
reactions of the electrodes with the electrolyte [19]. Figure 5d shows that the O1s spectrum
possesses three peaks located at 531.2 eV, 532.4 eV, and 533.3eV, mainly the varieties
of oxygen functional groups, corresponding to C=O, O-C-O, and O=C-O, respectively.
Compared with N on the surface of BSC, O could also increase the intensity of disorders
and defects, which is beneficial for Li-ion storage [43]. It can be found from the above
analysis that the as-obtained nitrogen-doped carbon of BSC possessed an abundance of
disorders, morphologies, pore structures, and chemical compositions, and is expected to be
a high-quality anode material for LIBs.
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To evaluate the electrochemical performance of BSC, 2025-type coin cells were assem-
bled in the argon-filled glovebox. Figure 6 shows the cyclic voltammetry (CV) curves of
BSC for the initial three cycles at a scan rate of 0.1 mV s−1 in the voltage range of 0.01~3.0 V.
The obtained carbon-based anode material presented typical CV curves. The CV curve
of the first cycle differs from the second and third cycle, especially for negative scanning.
There is a pronounced cathodic peak at about 0.02~2.2 V during the first cycle, which is
ascribed to the ability of lithium to reversibly move in the carbon skeleton and nanoscale
pore structures [14]. However, this phenomenon was not found during the following
two cycles, and the intensity of the peak in the first cycle was much stronger than in the
subsequent two cycles. These differences might be due to the presence of the SEI layer, the
insertion of Li-ion into the active sites of BSC, and the decomposition of the electrolyte [14].
It was seen that the CV curves of the second and third cycle almost overlapped, implying
the stability and good reversibility of BSC as the anode in LIB.

The first, second, third, fifth and tenth charge−discharge curves at 0.1 A g−1 are shown
in Figure 7a,b. From Figure 7a, it can be seen that the initial discharge and charge capacities
of NBSC are 556.4 and 234.8 mA h g−1, and the initial Coulombic efficiency is 42.2%.
Compared with NBSC, BSC shows higher discharge and charge capabilities. As shown in
Figure 7b, the initial discharge and charge capabilities are 1269.4 and 690.6 mA h g−1, and
the initial Coulombic efficiency is 54.4%. It can be found that the BSC has high reversible
capacities, which could be attributed to the hierarchically porous structure and the large
specific surface area. These can provide enough electrode–electrolyte interfaces and offer
more beneficial paths for the penetration and transfer of ions [38,44]. The reason for the
low initial Coulombic efficiency could be the formation of a solid electrolyte interface (SEI)
layer, which has an effect on the irreversible consumption of charge [40], this is the common
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limit condition for most anode materials [45]. In addition, the disordered structures of
BSC also have a greater effect on the larger irreversible capabilities than those of NBSC.
Though a high irreversible capacity loss is presented in the first cycle, there is a tiny change
in both discharge and charge curves in the following cycles, and the Coulombic efficiency
of the second cycle increases sharply to 88.2% and 92.7%. In the following discharge and
charge curves of NBSC and BSC, it can be clearly seen that they almost overlap, and BSC
always retains a higher reversible capacity (565 mA h g−1 at the 5th cycle, 549.4 mA h
g−1 at the 10th cycle), which further demonstrates that BSC is stable during the process of
charge–discharge.
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As one of the essential factors in evaluating electrochemical behavior, the rate capabil-
ity of the obtained carbon as anodes was tested. Figure 8a shows the specific capacities of
NBSC and BSC at various current densities from 0.05 to 2 A g−1. At each rate, 10 cycles
of charging and discharging were performed, before 0.05 A g−1 for 40 cycles. Compared
with NBSC, BSC exhibits superior reversible capacities and rate capacities. Notably, at
the high current density of 2 A g−1, the reversible capacity of the BSC was 180.0 mA h
g−1, higher than that of NBSC (51.7 mA h g−1). When the charge–discharge was back
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to 0.05 A g−1, the reversible capacity of BSC at the 100th cycle maintained 611.3 mA h
g−1, implying that the electrodes and SEI had strong stability during the electrochemical
cycling. Table 1 lists the reversible capacities of BSC at different current densities, and the
corresponding capacity loss ratios with the increase in current densities from 0.05 A g−1

to 2 A g−1. According to Figure 8a and Table 1, BSC displays better behavior than NBSC,
and the reversible capacities were 868.4, 613.7, 466.6, 310.3, 240.7, and 180.0 mA h g−1 at
current rates of 0.05, 0.1, 0.2, 0.5, 1.0 and 2.0 A g−1, respectively. Additionally, when back
to 0.05 A g−1, BSC had a higher capacity than the other sample. It also can be found that
the corresponding capacity loss ratio of BSC was lower than that of NBSC, which means
the mesoporous and microporous carbons obtained at a high calcination temperature of
700 ◦C displayed a relatively better rate capability. This can mainly be attributed to the
enhancement of the degree of graphitization at a higher temperature, and defects that have
a nitrogen-doping beneficial effect on the corresponding improvement in conductivity [18].
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0.1 A g−1.

Table 1. The reversible capacities and the corresponding capacity loss ratios of BSC at different
current densities.

Current Density
(A g−1)

Charge Capacity
(mA h g−1)

Discharge Capacity
(mA h g−1)

Coulombic Efficiency
(%)

0.05 868.4 1416.0 61.3
0.1 613.7 666.0 92.1
0.2 466.6 491.7 94.9
0.5 310.3 337.2 92.0
1.0 240.7 257.7 93.4
2.0 180.0 192.8 93.4

0.05 611.3 619.1 98.7

The cycling performance and corresponding Coulombic efficiency for 300 discharge-
charge cycles at a current density of 0.1 A g−1 were investigated, which is more effective
for the evaluation of the electrochemical performance of BSC. As depicted in Figure 8b, the
reversible capacity was still kept at 436.1 mA h g−1 after 300 cycles, which is superior to
NBSC, and the corresponding Coulombic efficiency was more than 92.0% after the first
cycle, suggesting BSC as anode for LIB had excellent cyclic stability and reversibility. For
BSC, the porous structure and the defects play an important role in the electrochemical
performance. The relatively higher nitrogen content and specific surface area of BSC
increase its conductivity and provide more contact sites and spaces between the electrolyte
and BSC. In addition, we compared the electrochemical behavior of this study with other
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reports (Table 2), and found that the electrochemical performance of the BSC anode is not
always superior to them [16,25,46–48]. In this work, BSC showed superior electrochemical
behavior with the two samples. The synergy of these factors made BSC as an anode achieve
superior electrochemical performance than other biomass-based carbons [21,25,47,49,50].

Table 2. Comparison of carbon materials derived from biomass and their electrochemical perfor-
mances as LIB anodes.

Carbon Source Current Density
(mA g−1) Cycle Number Reversible Capacity

(mA h g−1) Reference

Reed flowers 100 100 581.2 [16]
Coir pith waste 100 50 837 [46]

Walnut shell 100 200 280 [47]
Rice husks 100 100 429 [48]

Orange peel 1000 100 301 [25]
Bamboo shoot 100 100 449.9 This work
Bamboo shoot 100 300 436.1 This work

4. Conclusions

Hierarchical porous nitrogen-doped carbon materials derived from bamboo shoot were
obtained via a one-step or one-pot synthesis method in this work. This study demonstrates
the substances in bamboo shoot, including proteins, carbohydrates, and minerals, make it
a superior precursor for nitrogen-doped carbon materials for the storage of energy. The
obtained carbon of BSC possessed a large specific surface area, different pore sizes from
micro- to macropores, and retention of N at high temperatures. When used as the active
material for LIB anodes, BSC exhibited superior specific capacities and rate capabilities
than NBSC. These performances are related to the synergistic effect of the structures and
functional groups of the obtained nitrogen-doped carbon material, which could enlarge
the fields of the as-prepared nitrogen-doped carbons and form a promising material for
energy storage.
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