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Abstract: Laser surface texturing and micro-arc oxidation provide excellent approaches to enhance
the adhesion strength and anti-corrosion performance of adhesive bonding interfaces in aluminum
alloys, which can be applied in the field of automotive light weighting. Herein, micro-arc oxidation
coatings were fabricated on the laser-textured aluminum surface under the voltage of 500 V for
various treatment times (5 min, 15 min, 30 min, 60 min). The anti-corrosion performance of ceramic
coatings on the laser-textured surface was analyzed using electrochemical measurements. The results
of electrochemical measurement indicate that the coating on the sample surface presents two time
constants corresponding to a dual-layer structure. The sample grown under 500 V for 60 min exhibits
excellent protective performance with a value of 1.3 × 107 ohm·cm2. The adhesion strength of
laser-textured ceramic coating is improved compared with the as-received substrate. The sample
treated with 500 V for 30 min exhibits the highest bonding strength with a value of 52 MPa. The wider
pores and bulges for the sample grown in 60 min would introduce microcracks and consequently
reduce the adhesion strength.

Keywords: micro-arc oxidation; laser texture; aluminum alloy; electrochemical measurement;
adhesive bonding

1. Introduction

Aluminum alloy, known for its exceptional combination of low density and high
strength, has become an essential material in various industries, such as automotive [1] and
aerospace industries [2]. The application in lightweight structural components effectively
enhances performance [3,4]. Their light weight contributes to fuel economy, reducing
the overall weight of the vehicle without compromising the structural integrity in the
automotive industry, while the aerospace industry relies on aluminum alloys for their
structural components, due to their strength-to-weight ratio, corrosion resistance, and
compatibility with manufacturing processes. However, aluminum alloys present specific
weldability challenges, especially when joining dissimilar materials. Adhesive bonding, an
efficient, cost-effective, and environmentally friendly processing technique, has emerged
as an alternative. It not only reduces the structural weight by about 25%–30% compared
to traditional methods like riveting and welding, but also provides advantages including
decreased stress concentrations at joints, corrosion resistance, and efficiency [5,6].
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The surface modification of aluminum plays a central role in determining adhesion
strength and durability for applications. Laser texturing has attracted much attention by
creating diverse micro- and nanostructures with many advantages [7]. F. Lambiase et al.
treated aluminum surfaces before joining to enhance the mechanical interlock between
substrates by laser texturing [8]. Wan et al. demonstrated that laser treatment induces
physicochemical changes, increasing joint strength by 374% and transitioning the failure
mode from interfacial to mixed [9]. However, adhesive joints encountered the degradation
and poor durability stemming from the interfacial corrosion in humid, hot environments. In
light of this, Bora et al. investigated laser texturing and silane treatment on adhesive perfor-
mance [10]. Notably, silane treatment’s effect on interfacial bond strength is unpredictable
and may reduce interfacial bond strength.

Micro-arc oxidation (MAO) is considered an eco-friendly and effective surface treat-
ment for aluminum. MAO exploits transient high-temperature and high-pressure con-
ditions created by an electrical discharge in an electrolyte solution to promote in situ
generation of oxide ceramic films on metal surfaces, including magnesium, aluminum,
and titanium. The electrical parameters have a significant impact on the discharge energy,
ultimately influencing the microstructure of the ceramic coating. Wang et al. emphasized
that coatings with remarkable corrosion resistance can be obtained by controlling process
parameters [11]. Many studies have explored the corrosion resistance of MAO-treated
aluminum surfaces, confirming its effectiveness. The corrosion resistance performance
is closely associated with process parameters and electrolyte composition. Tran et al.
achieved rapid growth of the micro-arc oxidation layer and improved corrosion resistance
and hardness by adding ammonia to the sodium silicate electrolyte solution [12], while
Wang et al. adjusted the electrical parameters to obtain a coating with improved corrosion
resistance [13]. The dense ceramic coatings exhibit excellent corrosion properties [14–16].
Furthermore, Guan et al. involved the MAO treatment of valve metal surfaces, resulting in
significant adhesive property improvements [17]. The mechanical bond strength is further
improved as the coating roughness and micropore size on the surface increase. Physical
interlocking of the ceramic coating and substrate contributes to excellent adhesion [18–21].
These ceramic coatings exhibit high bonding strength and other advantages such as ex-
cellent durability, corrosion resistance, and insulation. Micro-arc oxidation application
has the potential to significantly improve the surface strength and corrosion resistance of
aluminum alloys [22–24]. However, less attention has been paid to correlations between
laser surface texturing and MAO on the adhesion strength of the 5052 aluminum alloy.

In this work, 20 W nanosecond pulsed laser pulses were used to fabricate microholes
in the 5052 aluminum alloy substrate. We investigated the impact of micro-arc oxidation
treatment time on the corrosion resistance and adhesion strength performance of the laser-
textured surface. The aim was to evaluate the performance of the combination of laser
surface texturing and micro-arc oxidation on adhesion strength. The influence of micro-arc
oxidation time on the adhesion strength of laser microtextured surfaces will be elucidated.
Other parameters, such as the electrolyte, voltage, and current density, will not be discussed
in this study. The micromorphology of ceramic coatings was characterized by scanning
electron microscopy (SEM) and analyzed using an energy-dispersive spectrometer (EDS).
The corrosion resistance was evaluated on an electrochemical workstation. The adhesion
strength was measured by the pull-out method.

The objective is to determine the optimal parameters for the micro-arc oxidation appli-
cation of aluminum alloys, providing both theoretical information and technical support
for the advancement of lightweight materials in the automotive industry. The combina-
tion of increased strength and suitable surface properties can lead to the development of
lightweight components with improved durability and corrosion resistance. The study not
only contributes to ongoing efforts in materials science for automotive applications but
also highlights the importance of surface engineering techniques in pushing the limits of
performance and functionality of lightweight materials.
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2. Materials and Methods
2.1. Material and Coating Preparation

The chemical compositions of the 5052 aluminum alloy used in this research are shown
in Table 1. Plates with a thickness of 2 mm were cut to dimensions of 25 mm × 50 mm.

Table 1. Chemical composition of 5052 aluminum alloy (in wt%).

Element Si Fe Cu Mn Mg Cr Zn Al

Content 0.06 0.21 0.01 0.01 2.66 0.19 0.01 Bal.

The samples were polished using sandpaper until they reached a grit of #2400, after
which they were dipped into a 4 g/L NaOH solution at 80 ◦C for 10 min. Afterwards, the
samples were soaked in a 10% HCl solution at room temperature for 2 min and subsequently
washed with deionized water.

2.2. Laser Surface Texturing and Micro-Arc Oxidation Treatment

The nanosecond laser system (KX-200) is represented in Figure 1 with a schematic
illustration. Samples were mounted on a 3-dimensional translation stage. A 20 W pulsed
laser was used to generate a sinusoidal pattern on aluminum, as shown in Figure 1. The
scanning speed was set at 1000 mm/s. This study aims to investigate and improve adhesion
strength through combined laser microtexturing and micro-arc oxidation. The distinction
in bonding strength is also influenced by laser texturing parameters. Further information is
essential to elucidate this point.
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Figure 1. Schematic illustration of the nanosecond laser system.

A series of samples was obtained by micro-arc oxidation using the experimental
system shown in Figure 2. The silicate electrolyte with KOH (4 g/L) and K2TiF6 (5 g/L)
was introduced. Micro-arc oxidation was conducted at 750 Hz, with a positive-to-negative
duty ratio of 35% and a current density of 2 A/dm2. The laser-textured substrate was
treated with various treatment times, as shown in Table 2. The voltage was selected as
500 V for micro-arc oxidation. To remove residual alkali solution on the ceramic coating
surface and prevent erosion, the fabricated samples were immersed into deionized water
with 5–10 min ultrasonication treatment and then dried.

Table 2. The treatment method and treatment time utilized in this study.

No. Surface Treatment MAO Voltage (V) MAO Time (min)

1 As-received - -
2 LST - -
3 LST + MAO 500 30
4 LST + MAO 500 5
5 LST + MAO 500 15
6 LST + MAO 60 60
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Figure 2. The micro-arc oxidation experimental system.

2.3. Characterization Methods and Electrochemical Measurement

MAO ceramic coatings were observed via scanning electron microscope (SEM, SUS3800,
Hitachi, Tokyo, Japan). The texture geometry was evaluated by the 3D profile measurement
microscope (VHX-5000, KEYENCE, Osaka, Japan). Energy-dispersive X-ray spectroscopy
(EDS) characterized element distribution and content on the ceramic coatings.

Electrochemical measurements were carried out by an electrochemical workstation
with a 3.5 wt% NaCl solution (Reference 3000, Gamry, Warminster, PA, USA). A three-
electrode system was employed with the sample as the working electrode. A platinum
mesh was regarded as the counter electrode. The reference electrode was selected as an
Ag/AgCl electrode (3M KCl). Potentiodynamic (DP) measurements were conducted with
the scanning rate of 1 mV/s (over ±0.1 V vs. open circuit potential). Electrochemical
impedance spectroscopy was performed with the following characteristics: exposure
area of 1 cm2, frequency from 100 kHz to 0.01 Hz with the voltage amplitude of 20 mV.
Acquired data were analyzed using Zview software (Version 3.2) with specified equivalent
circuit models to obtain comprehensive information on the electrochemical behavior of the
measured samples.

2.4. Characterization Methods and Electrochemical Measurement

The epoxy (AV138M-1, ARALDITE, Basel, Switzerland) was selected as the adhesive in
this study. The base and hardener of the two-component coating were completely blended
together. The coating was placed in a ventilated environment at 25 ◦C for seven days to
carry out the follow-up test. The adhesion strength for the interface was evaluated based
on the ASTM D4541-2017 standard test method [25].

3. Results and Discussion

The ablation signature indicates sequential layer-by-layer removal of material, similar
to the ablation observed in Al2O3 when fabricated with a picosecond laser [26]. As depicted
in Figure 3a, a distinct microwall-like structure is formed due to the melted and recast
material. This phenomenon is further emphasized by the inward flow of the molten
material stemming from the impact of laser pulses. The presence of the microwall structure
above the aluminum substrate increases the depth, which is positive to the enhancement of
adhesion strength.
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Figure 3. SEM top-view of laser texture (a) and 3D profile microscope images (b) of aluminum surface.

Figure 3b indicates the 3D profile microscope images of the aluminum surface with
the microtexture. Microvalleys with complex structures were fabricated by nanosecond
laser ablation, reaching a vertical depth of approximately 28 µm. During nanosecond laser
ablation of the aluminum surface to create lines, many nanoparticles and microparticles
were removed and then deposited along the sides of the ablated lines. These particles were
redeposited along two sides of the ablated lines. The depth illustrates nonuniformity. Rims
and valleys can be observed. This inhomogeneity arises from the formation and expulsion
of molten material owing to local high pressure during laser texturing. The formation of
recast material both within and around the concealed microholes contributes to the growth
of microwalls surrounding blind micropores.

The SEM surface morphology of the ceramic layers on the laser-textured aluminum
surface grown at 500 V for 30 min is depicted in Figure 4. A porous structure is observed.
The sample develops an in situ MAO ceramic coating on the laser-textured substrate. The
aluminum surface has a microtextured structure with ridges and valleys (Figure 4b) in
addition to micro-nanoholes in the micro-arc oxidation coating. It is worth emphasizing that
applying high voltage causes electrical sparks stemming from a higher electrical current.
The strong electric avalanches lead to the initiation of wider micropores. When the voltage
applied is high, the positive voltage more easily suffers from the breakdown potential
of the ceramic coating. Consequently, lots of electron avalanches occur in the vicinity of
the anode leading to more pore initiation. The consolidation of the structural pores is
a result of the high-energy sparks [27]. The ceramic coating is subjected to high electric
current in order to sinter it. The laser-textured aluminum substrate has more concave and
convex microstructuring than the as-received aluminum alloy with faster molten oxidation
in protruding parts. The bonding strength would be affected. According to the EDS
mapping results shown in Figure 5, element mapping of Al, O, Si, Mg, and Ti indicates
that these elements are homogeneously distributed in the coating. The surface analysis
results from the EDS are presented in Table 3, giving an indication of the proportion for
each element. The analysis showed that Al and O were found in the film, occupying a
large proportion, whereas Si, Mg, and Ti account for relatively smaller proportions. The
ceramic coating is mostly composed of silicon–oxygen, magnesium–oxygen, and titanium–
oxygen compounds. Silicon–oxygen compounds have an influence on the roughness of the
MAO coating. The presence of titanium–oxygen compounds can positively enhance the
corrosion properties.
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Figure 5. EDS elemental mapping of laser-textured aluminum with MAO treatment at 500 V for
30 min.

Table 3. The compositions on surfaces from EDS analysis (wt%).

Elements Al O Si Mg Ti

content 43.79 41.20 5.81 4.51 3.75

The coating that was developed at a voltage of 500 V displayed a suitable morphology
and chemical composition. Herein, the textured samples were fabricated by micro-arc
oxidation at 500 V for 5 min, 15 min, and 60 min. It is worth reminding that the growth
time of 30 min was investigated earlier. Figure 6 illustrates the impact of growth time
on the surface morphology of the coatings. It can be observed that the diameter of pores
increases over the treatment time, whereas there are cracks and breakdowns on the coarse
surface [28]. The diameter of the micropore is appropriately 3 µm for the ceramic coating
grown under the condition of 500 V for 30 min. The formation of a structural pore through
an electrical spark increases its susceptibility to subsequent electron avalanches due to
its lower breakdown voltage compared to non-porous areas. Furthermore, the sequential
occurrence of electrical sparks at a single point leads to larger pores. The coating became
exfoliative and coarse when the applied voltage exceeded a critical value for an extended
treatment time, making optimization impossible to a certain extent. Jiang et al. demon-
strated that high voltage in the electrolyte led to the occurrence of intense sparking arcs,
resulting in negative consequences like the thermal cracking of coatings [29]. A lot of
bulges can generate under the condition of 500 V for 60 min. The formation of wider pores
and bulges initiates microcracks, which in turn reduce the surface area and subsequently
weaken the adhesion between the coating and the substrate.
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Figure 6. SEM top-view of the micro-arc oxidation coatings grown under the voltage of 500 V for
different times: (a) 5 min, (b) 15 min, (c) 30 min, (d) 60 min.

The potentiodynamic polarization curves of the coatings are illustrated in Figure 7.
The results show that the corrosion potential of ceramic coatings is almost similar to that
on the substrate. However, the MAO coating exhibits a relatively lower current density,
which can be related to the presence of metal oxides in the coatings. Based on Figure 7a, it
can be observed that the coatings display a consistent decrease in corrosion current density
as the voltages increase, while corrosion potential and polarization resistance continuously
increase. A low corrosion current density suggests a good corrosion resistance. The
corrosion potential and polarization resistance of the bare substrate are −680 mV and
0.69 µA/cm2, respectively. These values slightly increase to −650 mV and 0.63 µA/cm2

for the laser-textured surface. The ceramic coating after LST exhibits a maximum of
−616 mV and 4.47 nA/cm2, respectively. The current density dropped almost two orders
of magnitude compared to that of the substrate. Figure 7b illustrates the potentiodynamic
polarization curves of ceramic coatings obtained under 500 V with different treatment time.
The corrosion current density noticeably decreases as the treatment time increases, reaching
a minimum of 2.04 nA/cm2 after 60 min. The current density of the MAO sample was
more than 100 times lower than that of the substrate.
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Figure 8a illustrates impedance spectra in the Nyquist plot for the aluminum substrate
with/without laser texturing and micro-arc oxidation. Generally, the relationship between
resistance and capacitance in charge transfer processes can be reflected by the impedance
arc in the Nyquist plots. The radius of the arc on the impedance is directly proportional
to the corrosion resistance of the sample. A larger radius indicates better corrosion resis-
tance [30–32]. The Nyquist plots of the substrate with/without laser texturing indicate
similar electrochemical behavior. Poor corrosion resistance can be observed in the substrate
for 1.04 × 105 ohm·cm2. However, micro-arc oxidation coating can effectively enhance the
impedance. Laser microtexturing mainly affects the microscopic surface morphology of the
substrate, while micro-arc oxidation leads to the formation of a ceramic coating between
the substrate and electrolyte, showing the possibility of excellent corrosion resistance. The
Nyquist plot shows its high impedance characteristics. The complex plane of coating grown
on the textured surface at 500 V for 30 min was manifested as a straight line, which exhibits
the highest impedance with about 2 × 106 ohm·cm2.
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MAO treatment time at 500 V.

Figure 8b shows the Nyquist and Bode plots of micro-arc oxidation coatings grown
under different treatment times. The Nyquist plot of the sample grown under 500 V for
60 min displays a large arc that does not end in the low-frequency range, which indicates
the excellent protective performance. The compressed arc, implying two overlapping time
constants, can be deduced from the Nyquist plots for all samples. As the micro-arc oxidation
time increases, the thickness of the ceramic coating continues to increase, thus leading to a
corresponding increase in its impedance. The values of the impedance modulus increased
remarkably from 1.16 × 105 ohm·cm2 to more than 107 ohm·cm2. The sample grown at
500 V for 60 min displays a very high impedance with a value of 1.3 × 107 ohm·cm2.

Figure 9 illustrates the equivalent circuit to elucidate the EIS spectra for the samples
with and without micro-arc oxidized coatings. Model A and model B are employed to fit
the EIS spectra of the substrate and textured sample with ceramic coating, respectively.
Constant phase elements (CPEs) are incorporated into the equivalent circuit. Re represents
the electrolyte resistance. R1 and CPE1 indicate the equivalent resistance and capacitance
of the outer layer of the coating, while R2 and CPE2 represent the equivalent resistance and
capacitance of the inner layer of the coating. Generally, the condensed inner layer exhibits
better corrosion resistance for external corrosive ions, resulting in higher impedance values.
Conversely, the micro-arc oxidation outer layer of the coating is thinner and contains
certain voids, facilitating the passage of corrosive ions and thus leading to a relatively
lower impedance value. Polarization resistance Rpl (Rpl = R1 + R2) is commonly considered
as a parameter to evaluate the protective performance. The sample fabricated under the
condition of 500 V for 60 min exhibits the highest resistance value of 1.3 × 107 ohm·cm2,
indicating the best corrosion resistance among the samples. This suggests that this is an
appropriate voltage to reduce the number and size of pores. Moreover, the formed oxides
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such as Al2O3 and TiO2 can obstruct the erosion of corrosive ions, enhancing the corrosion
resistance of the ceramic coating [33,34].
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Sandblasting is widely regarded as a method of surface treatment, but noise and dust
from sandblasting may be detrimental to the environment. Furthermore, as indicated in
Table 4, preliminary experimental studies show slightly lower adhesion strength in the
samples with sandblasting + MAO treatment compared to those treated with LST + MAO.
The combination of laser microtexturing and micro-arc oxidation can create a structure
on the substrate similar to a gecko’s foot pad, which can increase adhesion strength. The
laser microtexturing treatment is at the center of our attention here. The tensile test results
of the substrate with and without laser texture and micro-arc oxidation are revealed in
Figure 10. Compared with the bare substrate, the textured sample shows an adhesion
strength improvement of 65% with 33 MPa. The textured sample with micro-arc oxidation
illustrates improved adhesion strength with the value of 52 MPa. According to the SEM
graphs, it is clear that in samples without MAO treatment, the adhesive components are
damaged at the interface between the adhesive layer and the substrate. In contrast, for
samples subjected to MAO treatment, the adhesive layer exhibited fractures, resulting
in cohesive failure. This result can be relevant to the porous surface of the aluminum.
The presence of pores on the surface would promote a mechanical interlock between the
oxide layer and the adhesive. When the ceramic coating is subjected to tensile loading, the
distribution and configuration of pores in fact lead to weaknesses in the bonds [35]. The
textured aluminum treated with micro-arc oxidation exhibits enhanced adhesive strength
from 33 MPa to the maximum of 52 MPa. Laser texturing effectively minimizes both
breakage and delamination of MAO coatings, consequently reducing the formation of
the peeling layer. This is achieved by forming an oxide layer after undergoing micro-arc
oxidation treatment. It can be observed that the textured sample with/without micro-arc
oxidation exhibits a similar fractured morphology characterized by an identical pattern.
However, it is important to note that the sample without ceramic coating presents adhesive
failure, while the textured sample with micro-arc oxidation indicates cohesive fracture.
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Table 4. The adhesion strength for different surface treatments.

Surface Treatment Adhesion Strength (MPa)

As-received 20 ± 3
Sandblasting 30 ± 1.5

LST 33 ± 3
Sandblating + MAO 46 ± 1.5

LST + MAO 52 ± 1

Figure 11 illustrates the tensile test results of the ceramic coatings grown at 500 V
with treatment times. The adhesion strength gradually increases during 5 to 30 min of
micro-arc oxidation treatment. However, as the treatment time extends to 60 min, the
adhesion strength decreases slightly to 45 MPa. It may be suggested that the presence of
the oxide layer determined the bond strength of the aluminum–epoxy system. The findings
of this research align with previous studies that attribute decreased bond strength to the
presence of a thick oxide layer on the metal surface [36]. The wider pores and bulges
for the sample grown in 60 min shown in Figure 6d would introduce the microcracks
and consequently reduce the bonding strength between the coating and the substrate.
Contrarily, Figure 6c revealed a compact and smooth structure with minimal large pores.
This feature is advantageous as it enhances the effective contact area between the coating
and the substrate while also preventing any potential breakage or spalling.
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4. Conclusions

This study investigated the influence of micro-arc oxidation treatment times on the
adhesion strength and corrosion mechanism of ceramic coating on laser-textured 5052 alu-
minum alloy. The size of pores increases with the applied voltage because of the higher
electrical current flowing through the electrochemical cell. The diameter of the micropore
is appropriately 3 µm for the MAO coating grown under the condition of 500 V for 30 min.
The Nyquist plot of the sample grown under 500 V for 60 min displays a large arc, which
indicates an excellent protective performance with a value of 1.3 × 107 ohm·cm2. The
textured aluminum treated with micro-arc oxidation exhibits enhanced adhesive strength
ranging from 33 MPa to 52 MPa. The sample without ceramic coating presents adhesive
failure, while the textured sample with micro-arc oxidation indicates cohesive fracture. The
sample treated with 500 V for 30 min exhibits the highest bonding strength. The wider
pores and bulges for the sample grown in 60 min would introduce the microcracks and con-
sequently reduce the bonding strength between the coating and the substrate. This study
mainly focuses on the combined effects of laser microtexturing and micro-arc oxidation
on the adhesion strength of the aluminum alloy surface. Several parameters play a role



Coatings 2023, 13, 2098 11 of 12

in this process, such as laser microtexture pattern, laser processing parameters, electrical
parameters for micro-arc oxidation, and electrolyte composition. Further information is
essential to explore and elucidate the influence of these factors.
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