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Abstract: This paper investigates the influence of soil with finite depth on the vibrational behavior
of a multi-span continuous beam resting on an elastic foundation. The simplified model of the
Timoshenko beam supported on soil with finite depth is established, introducing the foundation
displacement decay function. The numerical solution of the continuous beam’s vibration response
on the elastic foundation is obtained by using the transfer matrix method (TMM) and fourth-order
Runge-Kutta method (RK4). Taking a two-span continuous beam as an illustrative example, the
validity of the calculation theory is validated by comparing it with the outcomes obtained from the
finite element method (FEM). Utilizing numerical computation and parametric analysis, the vibration
response of continuous beams is evaluated in terms of its influence by various factors such as soil
thickness, viscous damping coefficient of the soil, subgrade reaction coefficient, and span ratio. The
findings indicate that the inertial motion of the soil with a finite depth significantly reduces the
continuous beam’s inherent frequency and enhances the structure’s resonance effect. The rise of
the subgrade response coefficient increases the system’s resonant frequency while decreasing the
displacement response amplitude. The ratio between the adjacent spans determines the effect of
beam span vibration energy transfer to adjacent spans. In addition, compared with the span directly
excited by a concentrated harmonic load, the impact of soil thickness, subgrade reaction coefficient,
and viscous damping, the coefficient of the soil is more significant on the indirect influence span of a
continuous beam.

Keywords: multi-span continuous beam; Winkler foundation; finite-depth soil motion; Timoshenko
beam; transfer matrix method; dynamic response

1. Introduction

Continuous beam structure is typical in civil engineering, and studying its vibration
characteristics has essential engineering significance. Many scholars have researched
the eigenvalue of continuous beam structures. Based on the classic vibrational bending
theory on beams, Hayashikawa et al. developed the analytical method for determining
the eigenvalues of continuous beams [1]. Busool and Eisenberger studied the effect of
tension and compression under a constant axial load on the natural frequencies of uniform
multi-span beams [2]. Lee used the pseudo-spectral method to analyze the eigenvalue
of a two-span Timoshenko beam [3]. Tullini et al. employ a coupling method involving
finite elements and boundary integral equations to analyze the eigenvalues of Timoshenko
beam under various conditions [4]. For the vibrational behavior of a multi-span beam,
Seetapan analyzed the impact of span ratio on the dynamic response of vehicle and rough
surface two-span beam coupled system [5]. Wang and Wei conducted a study on the
acceleration response of a two-span continuous railway bridge, exploring both resonance
and sub-resonance effects under the influence of moving train loads [6]. Comparing
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the finite element analysis and experimental results, Wang et al. conducted a study to
assess the impact of beam stiffness degradation on the dynamic behavior of a multi-span
continuous bridge when subjected to the dynamic interaction of traffic loads and vehicles [7].
Tamaddona studied the influence of near-source earthquakes on the impact phenomenon
of a two-span continuous concrete curved bridge [8]. Lee accurately estimated the damping
parameters of the two-span H-Beam by a modified continuous wavelet transform [9].

Based on the analysis of the vibrational characteristics of continuous beam structures,
the effect of soil-structure interaction is also crucial in the seismic and vibration analysis
of these structures [10–13]. Smith and Brown provided a comprehensive analysis of con-
tinuous beams in modern bridge construction, emphasizing the role of soil conditions on
the structural integrity and dynamic response of bridges [14]. Lee and Kim conducted
an in-depth vibration analysis of continuous beams on elastic foundations, highlighting
how variations in soil properties can significantly alter the natural frequencies and mode
shapes of the beams [15]. Zhang and Li presented several case studies on the performance
of continuous beams supported by soil, offering insights into real-world applications and
the practical challenges faced when dealing with varying soil conditions [16]. Miller and
Thompson explored the structural behavior of continuous beams under varying soil condi-
tions, providing valuable data on how different soil layers and their mechanical properties
affect beam stability and vibration characteristics [17].

In addition, as the study of soil-structure interaction has progressed, numerous schol-
ars have increasingly recognized the significant impact of finite-depth soil motion on the
vibration characteristics of its supporting beam. Rades performed the dynamic analysis
on the inertial foundation model by applying equivalent mass to the beam [18], while
Jaiswal and Iyengar uncovered the vibrational properties of an infinite beam resting on
an elastic foundation with finite depth under a moving concentrated force [19]. Metrikine
et al. precisely substituted the 3D layer with a 1D equivalent foundation and explored
the steady-state behavior of infinite beams supported by a viscoelastic layer with finite
depth, considering the influence of a moving load [20]. Ma et al. derived the nonlinear
motion equation of the finite depth and comprehensively analyzed the nonlinear vibration
characteristics of the beam on an elastic foundation [21].

However, the studies mentioned earlier primarily focus on assessing the impact of
finite-depth soil motion on the vibrational characteristics of single-span beams. In practical
engineering, continuous beam structures are more common. To date, there has been limited
research on the vibration response of continuous beam structures interacting with soil of
finite depth. To enhance the understanding of how finite soil depth motion affects the
vibration response of beams on an elastic foundation, in-depth research is needed on the
impact of finite-depth soil motion on the resonance characteristics of continuous beams.

This paper investigates how the response of soil with finite depth influences the
resonance characteristics of a continuous beam resting on an elastic foundation. There
are six sections to this paper. In Section 2, the Timoshenko beam vibration model is
introduced, considering the influence of a finite-thickness foundation’s elastic response.
Section 3 utilizes the solution methods [22,23] to obtain numerical solutions for the dynamic
response of the continuous beam on an elastic foundation. In Section 4, the finite element
method is used to verify the displacement expressions in Section 3. In Section 5, the effects
of soil thickness, viscous damping coefficient of the soil, subgrade reaction coefficient, and
span ratio on the vibration response of a two-span continuous beam are analyzed. Finally,
the summary of the results is presented in Section 6.

2. Basic Relationships

Based on Timoshenko’s theory and the elastic foundation motion theory, a contin-
uous beam resting on the elastic foundation under harmonic excitation at an arbitrary
point is investigated. In Figure 1, the cartesian coordinate system O − xy is established,
where pj(x, t) = Pjδ(x − x0)eiΩt is the harmonic excitation acting on the jth beam at x0.
Pj and Ω are the excitation load’s amplitude and frequency, respectively. lj is the beam’s
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length at the jth span. H is the depth of the soil supporting the multi-span continuous
beam. w(x, t) signifies the displacements of the beam, ws(x, y, t) signifies the soil’s displace-
ments in the y-axis, and wr(x, y, t) is the displacement discrepancy between the beam and
the foundation.
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Figure 1. Continuous beam supported on soil with finite depth.

The construction of the dynamic equation is undertaken for the jth span beam resting
on soil with finite depth. The axial displacement of the elastic foundation beam is neglected,
and only the vertical displacement w(x, t) and the rotational displacement θ(x, t) are
considered. According to Timoshenko’s theory [10], the equation governing the linear
motion of an elastic foundation beam can be formulated.

KGA
(

∂θ(x, t)
∂x

− ∂2w(x, t)
∂x2

)
+ m

∂2w(x, t)
∂t2 + c

∂w(x, t)
∂t

= p(x, t)− q(x, t), (1)

EI
∂2θ(x, t)

∂x2 − KGA
(

θ(x, t)− ∂w(x, t)
∂x

)
− γ

∂2θ(x, t)
∂t2 = 0, (2)

where m is the mass of the unit length beam. γ is the beam’s inertia moment, c is the
viscous damping coefficient per unit length of the beam, EI and KGA reflect the stiffness
characteristics of bending and shear, respectively, q(x, t) represents the response of the
subgrade, and p(x, t) represents the external stimulus or forcing function.

Assuming linear elasticity and isotropic properties for the foundation material [19],
the motion equation of the elastic foundation with finite thickness is

ρs
∂2ws(x, y, t)

∂t2 + cs
∂wr(x, y, t)

∂t
= k f H

∂2ws(x, y, t)
∂y2 , (3)

where ρs represents the mass per unit depth of the foundation beneath the per unit length
of the beam; cs represents the unit thickness foundation’s viscous damping factor beneath
the beam per unit length; and k f denotes the coefficient of subgrade reaction according
to the Winkler foundation model. Therefore, the subgrade reaction force at the contact
between the beam and the foundation is expressed as

q(x, t) = k f
∂ws(x, y, t)

∂y

∣∣∣∣y=0. (4)

φ(y) denotes the displacement decay function [24], wr(x, y, t) = w(x, t)[1 − φ(y)],
ws(x, y, t) = w(x, t)φ(y), where the decay function is expressed as

φ(y) =
sin h[α(1 − y

H )]

sin h(α)
, (5)

In the present study, the attenuation coefficient α is set to 0.01. The boundary con-
ditions are established to ensure the continuity of deformation among the beam and the
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supporting foundation, adhering to engineering experience, which translates to the condi-
tions of ws(x, 0, t) = w(x, t) and ws(x, H, t) = 0.

Equation (3) is integrated over the interval [0, H] and substituted Equation (4) to
obtain

q(x, t) = ρs
∂2w(x, t)

∂t2

H∫
0

φ(y)dy + cs
∂w(x, t)

∂t

H∫
0

[1 − φ(y)]dy +
k f w(x, t)α
sin h(α)

(6)

where α/sin h(α) ≈ 1.
Substitute Equation (6) into Equation (1) to obtain

KGA
(

∂θ(x, t)
∂x

− ∂2w(x, t)
∂x2

)
+ (m + ρs

H∫
0

φ(y)dy)
∂2w(x, t)

∂t2 + (c + cs
H∫
0
[1 − φ(y)]dy)

∂w(x, t)
∂t

= pj(x, t)− k f w(x, t).
(7)

EI
∂2θ(x, t)

∂x2 − KGA
(

θ(x, t)− ∂w(x, t)
∂x

)
− γ

∂2θ(x, t)
∂t2 = 0, (8)

Equations (7) and (8) are the jth span Timoshenko beam’s vibration model on an elastic
foundation considering of soil motion with finite thickness. The following contents are
calculated and analyzed based on this model.

3. Analytical Solution of the Continuous Beam Vibration

According to the interaction dynamic model between the soil with finite depth and
the jth span Timoshenko beam, this section obtains the multi-span continuous beam’s
natural frequencies and vibration modes by employing TMM. Then the numerical solution
of the multi-span continuous beam’s dynamic model excited at any position is obtained by
using RK4.

The calculation process is as follows. The beam’s free vibration is presumed to be a
periodic motion with a constant frequency.

w(x, t) = W(x)eiωt, θ(x, t) = Ψ(x)eiωt, (9)

where i =
√
−1, ω is the inherent frequency of the system.

Substituting Equation (9) into Equations (7) and (8), the governing equation for the
free vibration state of an undamped Timoshenko beam resting on an elastic foundation,
accounting for finite-depth soil motion, is derived.

d4W(x)
dx4 +

(
BM + γω2)

AM

d2W(x)
dx2 +

BM

A2
M

(
γω2 − KGA

)
W(x) = 0, (10)

where AM = EI, BM = EI(mω2 + ρsω2
H∫
0

φ(y)dy − k f )/KGA.

The different general solutions can be obtained by judging from ∆ = ((BM − γω2)
2
+

4BMKGA)/A2
M. Taking ∆ < 0 as an example to illustrate the calculation process [22], the

general solution of Equation (10) is

W(x) = C1 cosh λ1x + C2sinhλ1x + C3 cos λ2x + C4 sin λ2x, (11)

where λ1 =

√(
−b +

√
∆
)

/2, λ2 =

√(
b +

√
∆
)

/2, b =
((

BM − γω2)/AM
)2, C1 ∼ C4

are undetermined coefficients.
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According to the calculation principle of TMM and Equation (9), the state vector of the
jth span’s beam element, expressed in modal coordinates, can alternatively be described as:

Zj(x) =
[
W(x), Ψ(x), Qy(x), Mθ(x)

]T
j , (12)

where T stands for matrix transpose, W(x), Ψ(x), Qy(x) and Mθ(x) are respectively the
modal coordinates of vertical displacement, angular displacement, shear force, and bending
moment. 

Mθ(x) = EI dΨ(x)
dx ,

Ψ(x) = dW(x)
dx − Qy(x)

KGA ,

Qy(x) = dMθ(x)
dx − γω2Ψ(x),

dQy(x)
dx = ((m + ρs

H∫
0

φ(y)dy)ω2 − k f )W(x).

(13)

Equation (13) can thus be expressed in matrix form

Zj(x) = Bj(x)CT, (14)

where C = [C1, C2, C3, C4]
T Bj(x) is a matrix with four rows and four columns,

Bj(x) =


cosh λ1x sinhλ1x cos λ2x sin λ2x

C f 1λ1sinhλ1x C f 1λ1 cosh λ1x C f 2λ2 sin λ2x C f 3λ2 cos λ2x
CQ1λ1sinhλ1x CQ1λ1 cosh λ1x CQ2λ2 sin λ2x CQ3λ2 cos λ2x
CM1 cosh λ1x CM1sinhλ1x CM2 cos λ2x CM2 sin λ2x

, (15)

where C f1 =
(

A f λ2
1 + B f

)
, C f2 =

(
A f λ2

2 − B f

)
, C f3 =

(
−A f λ2

2 + B f

)
, CQ1 =

(
AQλ2

1 + BQ
)
,

CQ2 =
(

AQλ2
2 − BQ

)
, CQ3 =

(
−AQλ2

2 + BQ
)
, CM1 =

(
AMλ2

1+ BM), CM2 =
(
−AMλ2

2 + BM
)
,

A f = AQ/(KGA), B f = 1 − BQ/KGA, AQ = EIKGA/(KGA − γω2), BQ = (EIk f −

EI(m +ρs
H∫
0

φ(y)dy)ω2 − γω2KGA)/(KGA − γω2).

Substituting the boundary condition at x = 0, we can get the state vector of any point
on the jth span of the beam.

Zj(x) = Bj(x)Bj
−1(0)Zj(0) = Dj(x)Zj(0), (16)

where Dj(x) is the transfer matrix of the jth span of the beam.
At the multi-span continuous middle support. According to the continuity condition

and the force equilibrium condition of the beam elements on both sides of the support, it
can be obtained 

Wr
j (x) = W l

j+1(x),

Ψr
j (x) = Ψl

j+1(x),

Qy
r
j (x) + Rj,j+1 = Qy

l
j+1(x),

Mz
r
j (x) = Mz

r
j+1(x),

(17)

where the superscripts l, r denotes the leftmost and rightmost sides of the beam elements,
respectively, and Rj,j+1 denotes the intermediate support reactions of beam elements j and
j + 1. Therefore, the state vector relation of the beams on both sides of the support can be
expressed as follows

Zl
j+1(x) = Dj,j+1Zr

j (x) =


1 0 0 0
0 1 0 0

Kvu Kvφ 1 + Kvq Kvm
0 0 0 1

Zr
j (x), (18)
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where Kvu, Kvφ, Kvq, and Kvm are the undetermined coefficient. According to the fact that
the vertical displacement at Zr

j+1
(
lj
)

is zero, it can be concluded that the elements in the
first row of Dj+1(x)Dj,j+1 are all zero. Thus

Kvu = − A(1, 1)
A(1, 3)

, Kvφ = − A(1, 2)
A(1, 3)

, Kvq = −1, Kvm = − A(1, 4)
A(1, 3)

, (19)

where A
(
ai, aj

)
represents the element of row ai and column aj of the matrix Dj+1(x).

So far, the output end G of the nth span continuous beam can be calculated from the
matrix input point O, that is

Zn(l) = Bn(ln)Bn
−1(0)Zl

n(0) = Bn(ln)Bn
−1(0)Dn−1,nZr

n−1(ln−1)

= Bn(ln)Bn
−1(0)Dn−1,nBn−1(ln−1)Bn−1

−1(0)Zl
n−1(0)

= Bn(ln)Bn
−1(0)Dn−1,n · · · B1(l1)B1

−1(0)Z1(0)

= DnDn−1,nDn−1Dn−2,n−1 · · · D1Z1(0)

= Dn

(
n−1
∏
j=1

Dj,j+1Dj

)
Z1(0).

(20)

Equation (20) is the overall transfer matrix expression of the system, where

Dn

(
n−1
∏
j=1

Dj,j+1Dj

)
is the overall transfer matrix, which can be expressed as

Dn

(
n−1

∏
j=1

Dj,j+1Dj

)
=


u11 u12 u13 u14
u21 u22 u23 u24
u31 u32 u33 u34
u41 u42 u43 u44

. (21)

The state vector at the boundary can be obtained according to different boundary
conditions of the continuous beam at input O and output G. Taking the supported beam as
an example, we can obtain [

0
0

]
=

[
u22 u23
u32 u33

][
Ψ(0)
Qy(0)

]
. (22)

If Equation (21) has a nontrivial solution, the coefficient matrix’s determinant is zero,
and the natural frequencies ωj of each order can be obtained by solving the initial state
vector Z1(0) = [0, 1,−u22/u23, 0]T; this can be obtained by substituting Equation (22), and
the corresponding mode shapes can be obtained by coupling Equation (20).

According to the principle of modal superposition, the system’s vibration response
v(x, t) can be stated as

v(x, t) =
N

∑
k=1

Vk(x)qk(t), (23)

where v(x, t) = [vT
1 (x, t), vT

2 (x, t), . . . vT
n(x, t)

]T,vn = [wn(x, t), θn(x, t)]T, Vk(x) =[
VkT

1 (x), VkT
2 (x), . . . , VkT

n (x)
]T

is the kth mode shape of the n-span continuous beam sys-

tem, Vk
j (x) =

[
Wk

j (x), Ψk
j (x)

]T
is the modal coordinate of the continuous beam of j-span,

qk(x)(k = 1, 2, 3, . . . , N) is the generalized coordinate, and N is that number of the trun-
cated modal term.

Substituting Equation (23) into Equations (7) and (8), and simplifying to obtain

N

∑
k=1

(
MVk(x)

..
qk
(t) + CVk(x)

.
qk
(t) + KVk(x)qk(t)

)
=

n

∑
j=1

Φj(x)PjeiΩt, (24)
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where M = diag(M1, M2, . . . Mn), C = diag(C1, C2, . . . Cn), and K = diag(K1, K2, . . . Kn)
represent the mass augmentation operators, the damped augmentation operators, and the
stiffness augmented operators, respectively. Mj, Cj, and Kj represent the mass parameter
matrices, damping parameter matrices, and stiffness parameter matrix of jth spans, Pj
represents the magnitude of the force on the jth span, and Φj(x) is a single-column matrix
in which the position of the load on the jth span is represented by a Dirac function and the
remaining elements are 0.

Mj =

 m + ρs
H∫
0

φ(y)dy 0

0 γ

, Cj =

 c + cs
H∫
0
[1 − φ(y)]dy 0

0 0

,

Kj =

 k f − KGA
∂2

∂x2 KGA
∂

∂x

−KGA
∂

∂x
KGA − EI

∂2

∂x2

.

(25)

Both sides of Equation (24) are multiplied by Vs(x)(s = 1, 2, 3, . . . , N). According to
the orthogonality of augmented eigenvectors [25], the simplification can be obtained

..
qs
(t) + 2ξsωs

.
qs
(t) + ω2

s qs(t) =
n

∑
j=1

PjuseiΩt (26)

where 2ξsωs =
N
∑

k=1

〈
CVk(x), Vs(x)

〉
/Ms, us =

〈
Φj(x), Vs(x)

〉
/Ms, Ks = ωs

2Ms,

Ms =
〈

MVk(x) , Vs(x)⟩ =
n
∑

j=1

∫ lj
0 VkT

j (x)Vs
j (x)dx, ⟨, ⟩ represents the inner product of

two matrices.
Equation (26) can be written as y′ i(t) = fi(t, y1(t), y2(t)), i = 1, 2, namely

f1

(
t, qs(t),

.
qs
(t)
)
=

.
qs
(t),

f2

(
t, qs(t),

.
qs
(t)
)
=

n
∑

j=1
PjuseiΩt − 2ξsωs

.
qs
(t)− ω2

s qs(t).
(27)

According to the calculation principle of RK4 [23], the calculation results of time tj to
tj+1 = tj + h are as follows.

qs
j+1,i(t) = qs

j,i(t) +
h
6
(k1,i + 2k2,i + 2k3,i + k4,i) i= 1, 2, (28)

where k1,i = fi

(
tj, qs

j (t),
.
qs

j (t)
)

, k2,i = fi

(
tj + h/2, qs

j (t) + hk1/2
)

, k3,i = fi

(
tj + h/2, qs

j (t)

+hk2/2,
.
qs

j (t) + hk2/2
)

, k4,i = fi
(
tj+h, qs

j (t) + hk3,
.
qs

j (t) + hk3

)
, and h is the time period

step.
According to the initial state v(x, 0) = 0,

.
v(x, 0) = 0 of the elastic foundation beam,

the numerical solutions of the functions qs(t) and
.
qs
(t) will be calculated step by step,

According to Equation (24), the analytical solution of the system’s first n-order vibration
response can be obtained by superposition.

4. Numerical Tests and Model Validation

For numerical verification and analysis, based on previous studies, physical parame-
ters required to calculate the system response are given in Table 1 [10,21], where the shear
modulus is G = E/(2(1 + ν0)), the shear correction factor is K = 10(1 + ν0)/(12 + 11ν0),
and external excitation amplitude is P = 65 kN.



Coatings 2024, 14, 864 8 of 16

Table 1. Physical parameters of the beam and foundation.

Physical Meaning Symbol Unit Numerical Value

The jth span length of a continuous beam lj m 6.096
The beam’s width b m 0.61
The beam’s height h m 0.305

The per unit length beam’s mass m kg · m−1 447.08
Damping factor per unit length c kN · s · m−2 1.0

Moment of inertia of the per unit length beam γ kg · m 3.466
Young’s modulus of the beam E MPa 2.482 × 104

Poisson ratio of the beam ν0 —— 0.25
Soil mass per unit thickness of the per unit length beam ρs kg · m−2 1037

Viscous damping coefficient of the soil per unit
thickness of the per unit length beam cs kN · s · m−3 3.6

Modulus of subgrade reaction k f MPa 16.55
Soil thickness H m 5

4.1. Simply Supported Beam

To ensure the accuracy of the theoretical calculations presented, a single-span beam is
chosen for detailed computational and analytical examination. Based on the parameters in
Table 1 and Equation (10), Table 2 compares the present methods with the first four natural
frequencies in existing references [26,27]. The results show that there is no significant
difference in the natural frequencies obtained between them. So, the numerical solution
has been verified for accuracy and validity, demonstrating that the theory is applicable to
single-span beams. Additionally, it confirms that selecting the Timoshenko beam for this
study is appropriate.

Table 2. Natural frequency of the simply supported beam on an elastic foundation.

Natural
Frequency

(Hz)

(Timoshenko
S., 1974) [10]

(Thambiratnam
and Zhuge,
1996) [26]

(Friswell
et al., 2007)

[27]

The Present Study

Euler-
Bernoulli Timoshenko

ω1 32.9063 32.9033 32.898 32.8749 32.8289
ω2 56.8135 56.8193 56.808 56.8040 56.1037
ω3 112.908 111.961 111.900 111.9186 108.303
ω4 193.760 193.8085 182.7608

4.2. Two-Span Continuous Beam

To confirm the theory is also applicable to multi-span continuous beams, the theoretical
calculations are contrasted with the outcomes obtained from numerical simulations. Due
to the rise in the quantity of beam spans, their mutual operation forms become complicated
accordingly. To not lose generality, the article selects a two-span beam for specific analysis.
Based on the parameter values outlined in Table 1, the two-span continuous beam model
depicted in Figure 2 is selected for consideration. The first span is the direct excitation
span under load and the second is the indirect influence span without load excitation.
The system damping is characterized using the Rayleigh damping coefficient. In the
process of modeling, following the attenuation characteristics of the vertical displacement
of the foundation, the motion effect of the soil is equivalent to the additional mass on
the continuous beam. The corresponding program is written to establish the numerical
simulation model by using the ANSYS software(Mechanical APDL 2023 R1), and the
complete method in the finite element method (FEA) is used to analyze the harmonic
response. Meanwhile, the theoretical calculations are performed using MATLAB 2024a
by combining the TMM and RK4 methods. According to the outcomes derived from
the theoretical calculation method and FEM, Figure 3 shows the amplitude-frequency
curves in the middle of each span of the two-span continuous beam. The graphs produced
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by both methods are highly similar, thus verifying the applicability of this theory to
continuous beams. Additionally, Figure 3 shows that the inertial motion of the soil with
finite depth significantly enhances the displacement resonance characteristics of the two-
span continuous beam, making the vibration performance of the continuous beam structure
more complicated. Therefore, it is essential to investigate the effect of foundation response
with finite-thickness on the continuous beams’ dynamic response.
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5. Results and Discussion

This section focuses on the two-span continuous beam model depicted in Figure 2,
utilizing the parameter values outlined in Table 1. An extensive analysis is conducted
to assess the impact of various parameters, including soil thickness, viscous damping
coefficient of the soil, subgrade reaction coefficient, and span ratio, on the mid-span
deflection of each span of a continuous beam. The objective is to gain insights into how the
finite depth foundation response impacts the resonant response of the continuous beam.

5.1. Effect of Soil Thickness

Figure 4a illustrates the relationship between soil depth and the first six natural
frequencies of the two-span continuous beam. As the soil depth increases, the system’s
natural frequency decreases significantly, and the deeper soil motion has little effect on
the change of natural frequency. This observation can be attributed to the increase in the
half-wave period of the system’s vibration response due to the finite depth soil’s inertial
motion. Figure 4b,c depict the amplitude-frequency curves of the mid-span displacement
for two-span continuous beams. Figure 4b reveals that as soil thickness increases, the
system’s resonant frequency decreases significantly, leading to an increase in displacement
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resonance amplitude. On the other hand, Figure 4c shows the displacement resonance
amplitudes at each span of the continuous beam are relatively close. When the excitation
frequency is lower than the resonant frequency of the first-order system, the amplitude at
the second span is less affected by the load excitation effect at the first span.
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Figure 4. Effect of soil thickness on a two-span continuous beam: (a) natural frequency; (b) the first
span; (c) H = 5 m.

Figure 5 illustrates the enhancement effect of soil depth on the first-order resonance
amplitude of each span of the two-span continuous beam. w1represents the displacement
resonance amplitude of each span when considering the fi-nite depth of the soil. As the soil
depth increases, the resonance amplitude of the second span experiences a significantly
greater increase compared to the first span. This empha-sizes that the influence of soil
depth on the amplitude of the second span is stronger than that of the first span. This
observation can be attributed to the suppression of the inertial motion of soil with finite
depth by external excitation. Furthermore, it indicates that the soil depth has a lower
enhancement effect on the displacement resonance amplitude of the beam span subject to
direct excitation compared to the beam span influenced indirectly.
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5.2. Effect of the Viscous Damping Coefficient of the Soil

The viscous damping coefficient of the soil is the only variable; according to the
parameters in Table 1, cs = 3.6 kN · s · m−3, 7.6 kN · s · m−3, and 11.6 kN · s · m−3 are
selected for analysis. Figure 6 shows the effect of the cs on the displacement of a two-span
continuous beam. Figure 6a presents the impact of the viscous damping coefficient of
the soil on the displacement response amplitude of the first span of a continuous beam.
For the low damping system, as the increase of viscous damping coefficient of the soil,
the displacement resonance amplitude decreases significantly, and the suppression of the
non-resonance amplitude is weak. Based on the resonance amplitude wcs1 generated by
cs = 3.6 kN · s · m−3, Figure 6b depicts the suppressing effect of the first-order resonant
amplitude of each span by the viscous damping coefficient of the soil. The inhibition of
the displacement resonance amplitude of the second span by cs is significantly stronger
than that of the first span, indicating that the suppression effect of the viscous damping
coefficient of the soil on the indirect influence span is significantly stronger than that of the
direct excitation span.
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5.3. Effect of Subgrade Reaction Coefficient

The impact of the subgrade reaction coefficient on the system’s first six natural fre-
quencies is graphically represented in Figure 7a. The natural frequency rises considerably



Coatings 2024, 14, 864 12 of 16

as k f increases, and compared with the influence on higher-order natural frequencies,
lower-order frequencies are more significant. According to the parameter values in Table 1,
k f = 8.275 MPa, 16.55 MPa, 33.1 MPa, and 165.5 MPa are selected. Figure 7b is the impact
of the foundation reaction coefficient on the amplitude-frequency response curve at the
middle of the first span. As the subgrade reaction coefficient increases, the amplitude of
the displacement response decreases significantly, and the resonance frequency increases.
Among these changes, the first and second-order resonance characteristics exhibit the most
pronounced variations.
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Figure 7. Impact of subgrade reaction coefficient on vibration response of a two-span continuous
beam: (a) natural frequency; (b) mid-span of the first span.

The displacement resonance amplitude difference between different subgrade reaction
coefficients and wk f 1 (k f = 8.275 MPa) is selected. Figure 8 shows the suppressing degree of
the subgrade reaction coefficient on the displacement resonance amplitude (Ω = ω1) of
a two-span beam. As shown in Figure 8, the difference curve of the resonance amplitude
reflects that the subgrade reaction coefficient has the same suppression trend on the reso-
nance amplitude of each span. Compared to the first span, the subgrade reaction coefficient
exerts a more pronounced influence on the second span. This indicates that the suppressive
impact of the subgrade reaction coefficient on the indirectly influenced span is significantly
stronger than its impact on the directly excited span. The main reason is that the direction
of load excitation is opposite to that of the foundation reaction.
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5.4. Effect of Span Ratio

The span ratio of the first span to the second span is defined as ε = l1/l2. According
to the parameter values in Table 1, select ε = 1 (6.096 m + 6.096 m), 0.6 (4.572 m + 7.620 m),
0.33 (3.048 m + 9.144 m). The span ratio’s effect on the mode of a two-span continuous
beam is shown in Figure 9. As the span ratio decreases, the mode changes significantly. The
wave number of the short-span mode drops, while the wave number will increase in the
long-span mode. Compared with asymmetric structures, even-order modes of symmetric
structures always have the least half-wave number, while the minimum half-wavelength of
odd-order modes is always the longest.
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Figure 10 further shows the effect of different span ratios on the natural frequency.
As shown in Figure 10, the span ratio impacts the natural frequency of different orders
differently. When ε = 1.00, compared with other span ratios, the natural frequency value of
the odd-order mode is the largest, the natural frequency value of the even-order mode is the
smallest. The reason is related to the half-wave number and the minimum half-wavelength
of each mode in Figure 9.
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Figure 10. Effect of span ratio on the natural frequency of the two-span beam.

Figure 11 shows the amplitude-frequency curves of the two-span beams with different
span ratios. When ε ̸= 1, the structure is transformed into an asymmetric system, the
difference between the continuous beam’s first and second resonance rises significantly.
With the decrease in span ratio, the half-wave number of the first span structure decreases,
which leads to the maximum response amplitude moving to the high-order resonance.
While the half-wave number of the second span structure increases, which leads to the
resonance frequency of the maximum displacement amplitude decreasing compared with
the first span. The amplitude-frequency curves of the second span ε = 3.00 and ε = 0.33 are
almost coincident, indicating that the span ratio determines the resonance characteristics
that load indirectly affect the beam span.
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6. Conclusions

This study has conducted a detailed investigation into the impact of the finite depth
foundation response on the vibration characteristics of continuous beams. By integrating
the response of the finite depth foundation into a coupled model of a multi-span continuous
beam resting on the elastic foundation, the study combines the Timoshenko beam theory
with the motion theory of elastic foundations. The numerical solution of this coupled model
is obtained using the transfer matrix method (TMM) and the fourth-order Runge-Kutta
method (RK4). Taking a two-span continuous beam as a representative case, the study
analyzes the influence of soil thickness, viscous damping coefficient of the soil, subgrade
reaction coefficient, and span ratio on the vibration response of the continuous beam. The
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following conclusions can be explicitly drawn from the results and discussions presented
in this research:

1. As the thickness of the soil involved in the movement increases, the continuous beam’s
natural frequency will decrease, and the resonance amplitude increases significantly.
When comparing the dynamic responses of different beams, the enhancement impact
of finite depth soil motion on the response amplitude of the indirect excitation beam
section is more significant than that of the direct excitation beam section.

2. The viscous damping coefficient of the soil and the coefficient of subgrade reaction
have a greater inhibition effect on the indirect influence span than on the direct
excitation span. As the coefficient of the subgrade reaction increases, the system’s
natural frequency increases, and the resonant response amplitude decreases.

3. The adjustment of the span ratio has a significant influence on the dynamic response
of the multi-span beam system. (1) Compared with other span ratios, the odd-order
natural frequency is the largest and the even-order natural frequency is the smallest
when ε = 1.00. (2) The smaller the span ratio is, the more pronounced the increasing
effect of the resonant frequency is. (3) When the span ratio is determined, no matter
whether the load acts on the long span or the short span, the response amplitude of
the beam span indirectly affected by the load is certain.

In this paper, the model presented is limited to the dynamic response analysis of multi-
span continuous beams on a linearly elastic, idealized Winkler foundation. It does not
consider cases such as non-uniform beams, nonlinear soil behavior, and multiple excitation
sources. Additionally, there are certain limitations in using the vertical displacement
attenuation function derived from the Vlasov foundation model to incorporate finite
depth soil movement into the Winkler elastic foundation model. To advance research and
application in this field, it is necessary to continue modeling studies of beams on elastic
foundations under complex foundation conditions. This will aim to accurately analyze the
dynamic characteristics of beams on finite depth foundations.
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