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Abstract: We reassess a method for increasing the computational accuracy of lattice Boltzmann
schemes by a simple transformation of the distribution function originally proposed by Skordos
which was found to give a marginal increase in accuracy in the original paper. We restate the method
and give further important implementation considerations which were missed in the original work
and show that this method can in fact enhance the precision of velocity field calculations by orders of
magnitude and does not lose accuracy when velocities are small, unlike the usual LB approach. The
analysis is framed within the multiple-relaxation-time method for porous media flows, however the
approach extends directly to other lattice Boltzmann schemes. First, we compute the flow between
parallel plates and compare the error from the analytical profile for the traditional approach and the
transformed scheme using single (4-byte) and double (8-byte) precision. Then we compute the flow
inside a complex-structured porous medium and show that the traditional approach using single
precision leads to large, systematic errors compared to double precision, whereas the transformed
approach avoids this issue whilst maintaining all the computational efficiency benefits of using
single precision.

Keywords: lattice Boltzmann; porous media; precision

1. Introduction

The lattice Boltzmann (LB) method solves a discrete, meso-scale form of the Boltzmann
equation [1], which can be shown to reduce to the incompressible Navier-Stokes equation in the
low Mach number limit. Because of its computational efficiency and simplicity, the LB approach is now
widely-used in many fields of computational fluid dynamics such as thermal and multiphase flows [2]
and reactive transport [3], while rapidly developing in applications such as turbulent flows [4].

In a 1993 paper, Skordos presented an approach to increase the computational precision of lattice
Boltzmann schemes in which the distribution functions were transformed by negating the equilibrium
zero-velocity distribution function [5]. In principle, this should have maintained more significant bits
during the calculation, leading to higher accuracy which no longer depended on the local velocity.
Curiously though, when compared with the standard method of calculation involving the unmodified
distribution functions, the approach was shown only to provide a very minor benefit to the accuracy
of the calculation, which was still strongly dependent on the velocity (see Figure 4 in [5]).

In this work, we revisit the idea and show that application of the method with an important
extra consideration can indeed lead to orders of magnitude increase in the accuracy of LB calculations
while incurring no extra computational cost. The velocity-dependence of the accuracy, which is
observed with the standard approach, is also removed. In the first section, we describe the method and
highlight important considerations in the implementation that were missed in Skordos’ original paper
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which probably account for the underwhelming result. Then we demonstrate in a simple capillary
how the accuracy of the solution is greatly improved, and unfavourable velocity-dependence of the
accuracy is removed. Finally, the method is applied to the calculation of single-phase flow in a complex
porous medium and shown to be critical to obtaining the correct flow-field if single precision is to be
used. Many researchers have incorporated this method into their codes in recent years, including the
open-source codes Palabos [6] and OpenLB [7]. Dellar, for example, also used Skordos’ approach [8]
but, to the best of our knowledge, the full potential of this method has not been shown or quantified in
the literature. This paper is intended to serve as a concise manual which will help LB practitioners
fully exploit this simple but highly effective method.

The performance of optimised implementations of the LB model are known to be bound by
memory bandwidth on CPUs and graphics processing units (GPUs). Using the single precision
(float) datatype rather than double precision can provide up to twice the throughput between the
main memory and the cache, offering a comparable performance enhancement. Cache occupancy
is also doubled, resulting in fewer cache-misses. Single-precision arithmetic itself is faster than
double precision in GPUs, and can be on CPUs if compiled using optimal hardware instructions. The
performance benefits of using single precision rather than double precision are greatly advantageous
in multi-component or reactive flow simulations which may take days to run, as well as the reduced
memory requirement, which is often a limiting factor on modern GPUs.

Here, we apply LB to single-phase flow calculations in a porous medium, such as is used for
permeability and transport calculations in petro-physical analysis, as a practical example. Pore
structures in certain carbonate rocks can be extremely heterogeneous [9] and as such lead to wide
flow-velocity distributions. When simulating flow in these cases, it is important not to have
velocity-dependence in the accuracy of the calculation as low velocity regions are found to play
an important role in transport properties [10,11].

We use an LB model which is particularly suited to porous media flows in this work. Although
the Bhatnagar-Gross-Krook (BGK) approximation of the collision operator in conjunction with the
halfway bounce-back scheme for treating solid-fluid boundaries is most commonly found in the
literature, this model suffers from deficiencies such as viscosity-dependent slip at the walls [12] and
low numerical stability. As such, it is difficult to obtain the true flow properties of a porous medium
with this method. Instead, the multiple-relaxation-time (MRT) model offers much greater flexibility
by transforming the distribution function into a set of moments, each of which may be relaxed with
an individual rate [13,14]. By tuning the unphysical relaxation parameters, viscosity-independence
can be achieved with the bounce-back boundary conditions [15]. Although boundary interpolation
schemes demonstrate slightly more consistent behaviour [16,17], we have found that the standard
bounce-back method gives accurate results for flow in complex porous media [18] and remain with
this approach here for its computational efficiency. The fluid is driven by a body-force term, for which
a precise treatment is needed to eliminate error terms in velocity gradients [19] and is incorporated
into the MRT framework [20,21].

2. Method

The multiple-relaxation-time (MRT) calculation proceeds through the following steps.
Firstly, the macroscopic node variables density ρ and velocity u are obtained from the distribution

function f (x, t)
ρ “

ř

i
fi ρu “

ř

i
ei fi `

ρg
2 (1)

The definition for velocity is according to the forcing scheme of Guo [21] where g is a body-force,
and ei is the ith of the 19 velocity vectors at each node (Figure 1) which are defined as
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where c = dx/dt is the lattice speed. The lattice spacing dx and time-step dt are both unity.Computation 2016, 4, 11 3 of 9 
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The equilibrium distribution fEq(ρ, u) and forcing term F are then computed from the density and
velocity of the node where the components are [21]

f Eq
i pρ, vq “ ρwi

„

1` 3ei ¨ u`
9
2
pei ¨ uq2 ´

3
2

u2


(3)

Fi “ 3wi rei ¨ g` ug : p3eiei ´ Iqs (4)

Here wi is the weight coefficient for the corresponding velocity vector, given by w0 = 1/3,
w1´7 = 1/18, w8´18 = 1/36 and I is the identity matrix.

The post-collision distribution function f 1(x, t) is computed using the MRT operator

f1 px, tq “ f px, tq `M´1
„

SM
´

fEq ´ f
¯

`

ˆ

I´
1
2

S
˙

MF


(5)

where M is the orthogonal matrix which transforms the distribution function into moment space
and M´1 is its inverse. S is the diagonal matrix of relaxation rates for each moment. Full details
of the MRT model can be found in [13]. Finally, the post-collisional distribution is streamed to the
neighbouring nodes

fi px` eidt, t` dtq “ f 1i px, tq (6)

To illustrate how accuracy is lost when computing the algorithm numerically, we consider an
expansion of the summations involved in computing the macroscopic velocity at the node

ρu “

¨

˚

˝

f1 ´ f2 ` f7 ´ f8 ` f9 ´ f10 ` f15 ´ f16 ` f17 ´ f18

f3 ´ f4 ` f7 ` f8 ´ f9 ´ f10 ` f11 ´ f12 ` f13 ´ f14

f5 ´ f6 ` f11 ` f12 ´ f13 ´ f14 ` f15 ` f16 ´ f17 ´ f18

˛

‹

‚

`
ρg
2

(7)

Each component of the velocity is a summation of differences (subtractions). Physically this is the
difference between vectors of opposing direction (Figure 1). If the node velocity is very small (and
hence the distribution is quite symmetric), these differences can become smaller than the ability of the
floating point data type to resolve, and the calculation becomes unstable.

Floating point types are stored as two parts: a mantissa (1.2666665) and exponent (´1) in
the example

1.2666665ˆ 10´1 (8)
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The mantissa in single precision (4-byte float) types is accurate to around 7 decimal places
(in base 10), and the exponent ranges from ´38 to +38. Therefore a difference can only be resolved to
an accuracy of 10´7 the largest value in the negation. For a node with a small velocity, and distribution
close to the zero-velocity (equilibrium) distribution f 0(ρ0 = 1, u0 = 0), defined in D3Q19 by

f0 “ ρ0wi “

$

’

&

’

%

3.3333333ˆ 10´1 i “ 0
5.5555556ˆ 10´2 i “ 1 to 6
2.7777778ˆ 10´2 i “ 7 to 18

(9)

only velocities larger than O(10´2) ¨ 10´7 = 10´9 can be resolved at all, and the calculation is verifiably
unstable when velocities are less than 10´7 since only a few decimal places accuracy is maintained.

When computing the flow in complex geometries, often with minimal connectivity, the magnitude
of the velocity vectors can become smaller than this. A double precision implementation can handle
this easily, but comes with the drawback of requiring considerably more compute time and memory
than float precision. The small velocity can, in some cases, be counteracted by choosing a larger
body-force. However if this is too large, it can exceed the model stability limits and the calculation will
fail. Non-Darcy effects may also begin to appear in faster flow paths if the Reynolds number becomes
too high [22]. In these cases, slow flows are desirable for accurate permeability calculation. Ideally, it
should not become an art to choose an appropriate body-force for a given simulation domain; often
the connectivity in a simulation is not known beforehand.

The calculation variables can be transformed so that greater accuracy is obtained. Instead of
storing the distribution function f (x, t), we define a perturbation df from the zero-velocity distribution
in the following way, as was suggested by Skordos [5]

f px, tq “ f0 ` df px, tq (10)

so that the distribution function at the node is decomposed into a reference distribution, chosen
as the zero-velocity equilibrium distribution f 0(ρ0, u0) with ρ0 = 1 and u0 = 0, and a perturbation
df. The appropriateness of this transformation rests on the lattice Boltzmann algorithm being
memory-bandwidth-limited. This means that it would be preferable to compute the full distribution
function locally by adding together f0

dbl and df f lt using double precision arithmetic (and where the
subscripts dbl and flt express the variable’s data type), storing df as a single-precision (float) data type
in the main memory. However, even this is unnecessary if we transform the macroscopic quantities

ρ “
ÿ

i

f 0 `
ÿ

i

d fi “ 1`
ÿ

i

d fi (11)

ρu´
ρg
2
“
ÿ

i

eid fi (12)

Although we are still computing differences in the expression for velocity, the zero-velocity
expression for the distribution df is 0, so these differences are not bound by the order of magnitude of
the calculation values, and are computed to full 7 d.p. accuracy. Note that the expression for the local
density is still bound by the order 100.

The difference fEq ´ f which arises in the collision term should be considered as well to maximise
the accuracy of the calculation. Writing this in terms of the deviation distribution df, and using the
subscripts dbl and flt to indicate the precision (double and single respectively) to which the variables
might be stored or calculated, we obtain

´

fEq ´ f
¯

f lt
“ fEq

dbl ´
´

f0
dbl ` df f lt

¯

dbl
(13)
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The difference could be computed to double precision and converted back to single precision
afterwards. This is because the node distribution and equilibrium distribution will be of order 10´1,
but the difference often considerably smaller.

Finally though, the need for double precision can be avoided completely if we first compute
the equilibrium distribution as a perturbation from the zero equilibrium dfEq = fEq(ρ, u) ´ f 0(ρ0, u0)
such that

d f Eq
i “ ρwi

„

3ei ¨ u`
9
2
pei ¨ uq2 ´

3
2

u2


` pρ´ ρ0qwi (14)

The density difference ρ ´ ρ0 will be small relative to the density values of order 100. However,
this calculation can be made more accurate if we identify the following

ρ´ ρ0 “
ÿ

i

d fi (15)

We must explicitly compute this density difference from the right hand side summation and not
via the densities themselves, otherwise precision is lost. This substitution is particularly important
in the low velocity limit and was not mentioned in Skordos’ original paper which only considered
how the now comparable magnitudes of each term in (our) Equation (14) increases accuracy under
addition, rather than the precision of each individual term [5]. Using the transformed quantities, the
evolution of the LB equation is given as

df1 px, tq “ df px, tq `M´1
„

SM
´

dfEq ´ df
¯

`

ˆ

I´
1
2

S
˙

MF


(16)

d fi px` eidt, t` dtq “ d f 1i px, tq (17)

In the single-relaxation-time (BGK) scheme, the collision part would similarly be written with a
relaxation time τ

df1 px, tq “ df px, tq `
1
τ

´

dfEq ´ df
¯

`

ˆ

1´
1

2τ

˙

F (18)

3. Results

The two methods of calculating the collision term are compared by computing the velocity
distribution U(x) between two infinite parallel plates of separation L (Figure 2), for which the analytical
solution is well known, using a viscosity µ and body-force component g in a direction parallel to
the plates:

U pxq “
g

2µ
x pL´ xq (19)
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The method in which the complete distribution function is used, Equation (5) is referred to
as the distribution method, and the scheme evolving the perturbation from the zero distribution,
Equation (16) is referred to as the perturbation method. The deviation from the analytical solution for
each method is computed as the relative error

ε pxq “
|u pxq ´U pxq|

U pxq
(20)

where u(x) is the computed velocity component in the body-force direction as a function of position x
between the plates.

For assuredly good convergence, computations are run for 106 time-steps. The error is shown
in Figure 3 for the distribution and perturbation methods using respectively float (single-precision)
data types and double (precision) data types. The body force used was g = 10´6 in dimensionless

lattice units (Lu) and the viscosity µ “
1
6

For this system, the perturbation methods are consistently
2 to 3 orders of magnitude more accurate than the distribution method of the same data type, though
the perturbation method with float precision cannot match the accuracy of the double-precision
distribution method in this calculation.
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Figure 3. The relative error of the flow between plates for different calculation schemes and precisions
for a body-force of 10´6.

To illustrate how the accuracy of the perturbation scheme is freed from dependence on the
magnitude of the velocities, the relative error averaged across the flow profile is plotted in Figure 4
for different average flow velocities. These were obtained by systematically reducing the body-force.
It is clear that as the distribution methods lose accuracy for lower lattice velocities, the perturbation
methods maintain a consistent relative error. We also note that the accuracy of the distribution methods
converge to those of the perturbation schemes as the magnitude of the velocities approaches that of the
zero equilibrium distribution Equation (9). Finally, the accuracy of the perturbation method with float
precision can exceed that of the distribution method with double precision at grid velocities below
around 10´11.

To demonstrate the practical advantages of the enhanced accuracy afforded by the perturbation
scheme at low velocities, we compute the flow in a 3D pore space image of a Portland carbonate rock
sample (Figures 5 and 6) obtained from micro-CT imaging [10]. The sample is 4003 lattice units in size,
but reflected about the x = 0 plane to give continuous loop boundary conditions so that a body-force
may be used [10]. The structure of the pore-space is highly heterogeneous and of low permeability.

The body-force used was again gx = 10´6 and the viscosity µ “
1
6

.
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The average velocity throughout the medium is given over the simulation time for the different
schemes in Figure 7. Most strikingly, the distribution method using floating point precision exhibits a
large, systematic deviation from the double precision calculation of almost 50% and as such would
give an overestimate of the permeability by the same amount. The perturbation method with float
precision on the other hand matches the double-precision distribution calculation closely, yet requires
considerably less memory and computing time to perform. Run on a Tesla K20 GPU, the float precision
calculations required 27.8 s per 1000 time-steps and the double precision calculation required 48.3 s. In
our sparse grid implementation, the array indices of each fluid node’s 18 neighbours are also read in
from the memory. Since these are stored as 4-byte integers in both float and double implementations,
the speed up of 1.74x is in line with a memory-bandwidth-limited model.
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Figure 7. The average velocity throughout the Portland carbonate sample over the simulation. Points
are sampled every 1000 time-steps.

4. Conclusions

We have shown how the simple transformation of the LB distribution function proposed by
Skordos [5], does indeed lead to a considerable increase in computational precision when correctly
implemented. Furthermore, the accuracy of this approach is no longer dependent on the magnitude
of the velocity at the grid node. With application to flows in complex porous media, the modified
scheme was shown to accurately compute the velocity field inside a heterogeneous pore-space when
the average velocity became small. This means that it is no longer imperative to revert to using double
precision arithmetic to achieve numerical stability and accuracy in simulations involving small grid
velocities. Since the perturbation method incurs no extra computational burden, the computational
efficiency is dramatically improved for these applications.
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