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Abstract: In porous media, pore geometry and wettability are determinant factors for capillary
flow in drainage or imbibition. Pores are often considered as cylindrical tubes in analytical or
computational studies. Such simplification prevents the capture of phenomena occurring in pore
corners. Considering the corners of pores is crucial to realistically study capillary flow and to
accurately estimate liquid distribution, degree of saturation and dynamic liquid behavior in pores
and in porous media. In this study, capillary flow in polygonal tubes is studied with the Shan-Chen
pseudopotential multiphase lattice Boltzmann model (LBM). The LB model is first validated through
a contact angle test and a capillary intrusion test. Then capillary rise in square and triangular
tubes is simulated and the pore meniscus height is investigated as a function of contact angle θ.
Also, the occurrence of fluid in the tube corners, referred to as corner arc menisci, is studied in terms
of curvature versus degree of saturation. In polygonal capillary tubes, the number of sides leads to
a critical contact angle θc which is known as a key parameter for the existence of the two configurations.
LBM succeeds in simulating the formation of a pore meniscus at θ > θc or the occurrence of corner
arc menisci at θ < θc. The curvature of corner arc menisci is known to decrease with increasing
saturation and decreasing contact angle as described by the Mayer and Stoewe-Princen (MS-P)
theory. We obtain simulation results that are in good qualitative and quantitative agreement with the
analytical solutions in terms of height of pore meniscus versus contact angle and curvature of corner
arc menisci versus saturation degree. LBM is a suitable and promising tool for a better understanding
of the complicated phenomena of multiphase flow in porous media.

Keywords: menisci; polygonal tube; corner arc; capillary rise; wettability; saturation; curvature;
single component multiphase lattice Boltzmann method
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1. Introduction

Capillary flow is a common phenomenon of multiphase flow in porous media with various
applications, such as in the built environment, textile dyeing industry, oil recovery and ink printing.
Although capillary flow is ubiquitous and has been studied theoretically and experimentally for
a long time, the determination of vapor/liquid interface configurations in complex porous media
remains a challenging problem. Those configurations depend on the pore geometry and connectivity,
the liquid properties and the surface wettability. Previous work often assumed simple pore geometry,
modeling pores as cylindrical tubes or parallel plates. Such simplifications prevent capturing significant
unsaturated phenomena such as corner flow. Therefore, to estimate liquid distributions in porous
media accurately and more realistically, corner flow at the edges of pores also has to be taken into
account. A common method to experimentally study capillary flow in complex pores is the use of
n-sided regular polygonal tubes resulting in different cross-section geometries, such as triangle, square,
hexagon, etc. In a n-sided, partially filled polygonal tube, the liquid surface forms a hemisphere,
the configuration of which depends on the wetting or contact angle between the liquid and the solid
material, as shown in Figure 1. Concus and Finn [1] identified the existence of a critical contact angle,
θc = π/n, in n-sided polygonal tubes based on the Rayleigh-Taylor interface instability. When the
contact angle θ is between π/2 and the critical contact angle, i.e., θc (= π/n) ď θ <π/2, the liquid wets
the tube walls and the liquid meniscus spans the total tube, resulting in a configuration named the pore
meniscus. In contrast, if the contact angle is smaller than the critical contact angle, i.e., θ < θc (= π/n),
in addition to the pore meniscus, the liquid also invades the edges or corners of the polygonal tube,
forming corner arc menisci [1,2]. Corner arc menisci occur at each corner and move upward as a result
of a capillary pressure gradient [3,4].
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predicts the curvature radius of the arc meniscus as a function of the effective area and perimeter of 
the non-wetting phase (gas), resulting in a better estimation of the interfacial area as shown by [9] 
using experimental data. Ma et al. [10] investigated capillary flow in polygonal tubes during imbibition 

Figure 1. Schematic representation of the two liquid configurations in a square tube: (a) pore meniscus
when the contact angle is larger than the critical contact angle, θ ě θc; and (b) co-occurrence of pore
and corner arc menisci when the contact angle is smaller than the critical contact angle, θ < θc.

Princen proposed a model for capillary rise in triangular and square tubes for a zero contact
angle [5,6]. The Princen model predicts the total mass of liquid W in a square tube from the balance
between capillary force and gravity considering both the liquid column under the pore meniscus and
the liquid columns in the corner arc menisci of infinite height.

W “ ρghL2 ` 4ρg
ż 8

h
p1´ π{4q r2

arc pzq dz (1)
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where ρ is the fluid density, g is the gravitational acceleration, h is the height of the liquid column
under the pore meniscus, L is the size of the side of the rectangular polygon, z is the coordinate along
the height and rarc is the radius of curvature of the corner arc meniscus. In this equation, full wetting
conditions with contact angle θ = 0˝ are assumed. The Mayer and Stowe-Princen (MS-P) model [5–8]
predicts the curvature radius of the arc meniscus as a function of the effective area and perimeter of the
non-wetting phase (gas), resulting in a better estimation of the interfacial area as shown by [9] using
experimental data. Ma et al. [10] investigated capillary flow in polygonal tubes during imbibition and
drainage and suggested a relationship between liquid saturation and the curvature of arc menisci in
corners based on the MS-P model. In recent work, Feng and Rothstein [11] studied the pore meniscus
height as a function of the contact angle for polygonal capillary tubes for contact angles higher than
the critical contact angle. Furthermore, they considered different geometries with either sharped or
rounded corners, showing the effect of rounded corners and contact angle on meniscus height, and
compared their simulation results using Surface Evolver, which is an open-source code for surface
energy minimization.

In computational fluid dynamics (CFD) studies, multiphase flow has often been studied by either
the Volume of Fluid (VOF) [12] or level set [13] methods to capture or track the interface. When these
methods are applied on complex geometries or small-scale problems, significant mass conservation
problems arise near the interface and more complicated algorithms have been required [14,15].

The lattice Boltzmann method (LBM), which is based on microscopic models and mesoscopic
equations, is a powerful technique for simulating multiphase flow involving interfacial dynamics and
complex geometries, especially in porous media [16–18]. Several LB models have been developed for
multiphase flow simulation including the color gradient-based LB method by Gunstensen et al. [19],
the free-energy model by Swift et al. [20], the mean-field model by He et al. [21] and the pseudopotential
model by Shan and Chen [22,23]. The pseudopotential model is the most popular LB multiphase
model due to its simplicity and versatility. This model represents microscopic molecular interactions
at mesoscopic scale using a pseudopotential depending on the local density [22,23]. With such
interactions, a single component fluid spontaneously segregates into high and low density phases
(e.g., liquid and gas), when the interaction strength (or the temperature) is below the critical
point [22,23]. The automatic phase separation is an attractive characteristic of the pseudopotential
model, as the phase interface is no longer a mathematical boundary and no explicit interface tracking
or interface capturing technique is needed. The location of the phase interface is characterized through
monitoring of the shift (jump) of the fluid density from gas to liquid. The pseudopotential model
captures the essential elements of fluid behavior, namely it follows a non-ideal equation of state
(EOS) and incorporates a surface tension force. Due to its remarkable computational efficiency and
clear representation of the underlying microscopic physics, this model has been used as an efficient
technique for simulating and investigating multiphase flow problems, particularly for these flows with
complex topological changes of the interface, such as deformation, coalescence and breakup of the
fluid phase, or fluid flow in complex geometries [24]. Recently, Chen et al. [25] thoroughly reviewed the
theory and application of the pseudopential model and we refer to their publication for more details.

Capillary flow has been studied effectively using the Shan-Chen pseudopotential LB model. Sukop
and Thorne [26] performed a two-dimensional capillary rise simulation using the pseudopotential
LBM and compared their results with the theoretical capillary rise equation, i.e., the balance
between a pressure differential from the Young-Laplace equation and the gravitational force.
Raiskinmaki et al. [26,27] investigated capillary rise in a three-dimensional cylindrical tube using
multiphase LBM. The effects of contact angle, tube radius and capillary number were studied with or
without taking into account gravity. Their study provided a useful benchmark for other LBM studies
of capillary rise by comparing it with the Washburn solution. Although previous studies showed
interesting LBM works in capillary flow, such as [28,29], only the interface of the capillary column,
i.e., the meniscus in cylindrical tubes or between two parallel plates, has been investigated without
considering other phenomena such as corner flow.
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In the present study, capillary flow in three-dimensional polygonal tubes with varying contact
angle is investigated using the Shan-Chen pseudopotential LB model. The height of the pore meniscus
and the radius of the corner arc meniscus are studied for different contact angles, and the latter results
are compared with the theoretical values derived from the MS-P model. Given that the characteristic
length used here is below capillary length, surface tension effects are more dominant and gravitational
effects can be neglected. Also, contact angle hysteresis is not accounted for.

The paper is organized as follows: in Section 2, we briefly describe the pseudopotential multiphase
LB model with the Carnahan-Starling (C-S) EOS and forcing scheme; in Section 3, a validation test
is presented; the computational set-up and the boundary conditions used in the LB simulations are
presented in Section 4; the capillary rise simulation results are compared with analytical solutions in
Section 5; we draw conclusions in Section 6.

2. Numerical Model

A three-dimensional, single component, two-phase LB model is implemented for solving capillary
rise phenomena. The LBM considers flow as a collective behavior of pseudoparticles residing on a
mesoscopic level and solves the Boltzmann equation using a small number of velocities adapted to a
regular grid in space. Fluid motion is represented by a set of particle distribution functions. The LB
equation with the Bhantagar-Gross-Krock (BGK) collision operator is written as:

fi px` cei∆t, t` ∆tq ´ fi px, tq “ ´
1
τ

”

fi px, tq ´ f eq
i px, tq

ı

(2)

where fi(x,t) is the density distribution function and fieq(x,t) is the equilibrium distribution function in
the ith lattice velocity direction, where ˆ denotes the position and t is the time. A relaxation time τ is
introduced, which relates to the kinematic viscosity as v = cs

2(τ ´ 0.5)∆t. The lattice sound speed cs is
equal to c/

?
3, where the lattice speed c is equal to ∆x/∆t, with ∆x as the grid spacing and ∆t as the

time step. In this study, both grid spacing and time step are set equal to 1. The equilibrium distribution
function for the D3Q19 lattice model is of the form:

f eq
i “ wiρ

„

1`
3
c2 pei ¨ uq `

9
2c4 pei ¨ uq

2
´

3
2c2 u2



(3)

For the D3Q19 lattice model [30,31], the lattice weighing factors wi are:

wi “

$

’

’

&

’

’

%

12{36, i “ 0;

2{36, i “ 1, . . . , 6;

1{36, i “ 7, . . . , 18.

(4)

where the discrete velocity ei is given by:

ei “

$

’

’

&

’

’

%

p0, 0, 0q , i “ 0;

p˘1, 0, 0q , p0,˘1, 0q , p0, 0,˘1q , i “ 1, . . . , 6;

p˘1,˘1, 0q , p˘1, 0,˘1q , p0,˘1,˘1q , i “ 7, . . . , 18.

(5)

The macroscopic parameters, the fluid density ρ, and the fluid velocity u are calculated as:

ρ “
ÿ

i

fi (6)

ρu “
ÿ

i

fiei . (7)
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In the Shan-Chen pseudopotential LB model, the forcing scheme, incorporating the interactive
forces, greatly affects the numerical accuracy and stability of the simulation. The original Shan-Chen
LB model results in an inaccurate prediction of the surface tension, dependent on the chosen density
ratio and relaxation time. When combining this model with a proper forcing scheme, the model
can give an accurate surface tension prediction independent of the relaxation time and density ratio.
In recent studies, different forcing schemes for the Shan-Chen LB model are compared by Li et al. [32]
and Huang et al. [33]. Based on these studies, the exact-difference method (EDM) developed by
Kupershtokh et al. [34] is considered as the forcing scheme in our study. For a high density ratio with
a relaxation range of 0.5 < τ ď 1, this method shows better numerical stability [32]. In EDM, a source
term ∆fi is added into the right term of the equilibrium distribution function in Equation (2) and is
defined as:

∆ fi “ f eq
i pρ, u` ∆uq ´ f eq

i pρ, uq (8)

The increment of the velocity ∆u is defined as:

∆u “
Ftotal∆t

ρ
(9)

where Ftotal equals the sum of the total forces. By averaging the moment force before and after
a collision step, the real fluid velocity is calculated as:

ur “ u`
Ftotal∆t

2ρ
(10)

In the single component multiphase LB model, a cohesive force Fm between liquid particles is
needed and this force causes phase separation [26]. The force is defined as:

Fm “ ´Gψ pxq
N
ÿ

i

ω
´

|ei|
2
¯

ψ px` eiq ei (11)

According to the interaction values, the discrete velocity is |ei|
2
“ 1 at the four nearest neighbors

or |ei|
2
“ 2 at the next-nearest neighbors. The weight factors ω(|ei|

2) have the following values:
ω(1) = 1/3 and ω(2) = 1/12. The parameter G reflects the interaction strength and controls the surface
tension [22,23,27]. For G < 0, the attraction between particles increases and the force is strong. Thus,
the cohesive force of the liquid phase is stronger than the force of the gas phase, leading to surface
tension phenomena [26]. The adhesive force Fa between fluid and solid particles is obtained as
follows [30]:

Fa “ ´wψ pxq
N
ÿ

i

ω
´

|ei|
2
¯

s px` eiq ei (12)

where w is an indicator of the wetting behavior and reflects the interactive force between fluid and
solid phases, called the solid-fluid interaction parameter. The LB model does not explicitly include
the contact angle [29]. By adjusting w, we can obtain different contact angles. The wall density s has
a value equal to 0 and 1 for fluid nodes and solid nodes, respectively. In Equations (11) and (12),
the effective mass ψ(x) is obtained by choosing an equation of state (EOS) [35]. The EOS describes the
relation between the density of the gas and liquid phases for a given pressure and temperature [35,36].
The choice of a suitable EOS is based on different criteria [35,37]. The first criterion is the choice
of the maximum density ratio between liquid and gas phases. The second criterion is to avoid the
appearance of spurious currents at the interface of different phases. Spurious currents are present in
most multiphase models and higher density ratios promote larger spurious currents. The appearance
of large spurious currents makes a numerical simulation unstable and leads to divergence. It is
important in a LBM with a high density ratio to reduce the appearance of these spurious currents as
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much as possible. The third criterion relates to the choice of the temperature ratio Tmin/Tc, where
Tc is the critical temperature. According to the Maxwell equal area construction rule, T < Tc leads
to the coexistence of two phases. At a lower temperature ratio, spurious currents appear and the
simulation becomes less stable. The last criterion relates to the agreement between a mechanical
stability solution and thermodynamic theory. Choosing a proper EOS model reduces the appearance
of spurious currents and leads to a thermodynamically consistent behavior [35]. Recently, Yuan and
Schaefer [35] investigated the incorporation of various EOS models in a single component multiphase
LB model and, based on their study, we apply the Carnahan-Starling (C-S) EOS. The C-S EOS generates
lower spurious currents and applies to wider temperature ratio ranges. The EOS is given below:

p “ ρRT
1` bρ{4` pbρ{4q2 ´ pbρ{4q3

p1´ bρ{4q3
´ aρ2 (13)

where P is the pressure, T is the temperature and R is the ideal gas constant equal to 1 in the LB
model. The attraction parameter a = 0.4963(RTc)2/pc is chosen equal to 1 and the repulsion parameter
b = 0.1873RTc/pc is chosen equal to 4, with Tc = 0.094 and pc = 0.13044. The effective mass ψ is
calculated by:

ψ pρq “

d

2
`

p´ c2
s ρ
˘

Gco
(14)

Substituting Equation (13) into Equation (14), we get:

ψ “

g

f

f

f

f

e

2

˜

ρRT
1` bρ{4` pbρ{4q2 ´ pbρ{4q3

p1´ bρ{4q3
´ aρ2 ´

ρ

3

¸

Gc0
(15)

where c0 equals 1 and G equals –1 to obtain a positive value inside the square root of Equations (14)
and (15).

3. Validation and Parametrization

As validation, dynamic capillary rise is studied and compared with the analytical solution. Since
the multiphase LB model does not provide an explicit relation for surface tension and contact angle [29],
the contact angle as a function of the solid-fluid interaction parameter w is determined.

3.1. Dynamic Capillary Intrusion

A capillary intrusion test is chosen to assess the capacity of the pseudopotential model to simulate
a moving contact line problem governed by capillary forces [38]. The velocity of a liquid intruding
two-dimensional parallel plates, shown in Figure 2b, results from the balance between the pressure
difference across the phase interface and the viscous force experienced by the intruding liquid.
Neglecting the influence of the viscosity of gas, gravity and inertial forces, the force balance results
in [39,40]:

σcos pθq “
6
D

µLx
dx
dt

(16)

where θ is the equilibrium contact angle between liquid and solid, D is the width between plates, µL is
the dynamic viscosity of the liquid and ˆ is the position of the interface. The surface tension σ in
Equation (16) is determined from the Laplace law describing the pressure difference across the interface
of a spherical droplet [41]. The dynamic viscosity is defined as the product of the kinematic viscosity ν

and the liquid density, µL = ν ˆ ρ, with ν = 1/6 lattice units. Figure 2a illustrates the two-dimensional
computational domain of 1600 ˆ 80 lattices used for the capillary intrusion test. Periodic boundary
conditions are imposed on all boundaries of the computational domain. The parallel plates of the
capillary are positioned between lattices 400 to 1200 of the domain. The boundaries of the plates
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are treated as walls and are represented by thick black lines in Figure 2a. They have an equilibrium
contact angle of 50˝, equivalent to a solid-fluid interaction parameter w = ´0.06. The density ratio
equals ρ/ρc = 9.4 at T/Tc = 0.85. The time evolution of the interface position as obtained from the LBM
shows a good agreement with Equation (16), as shown in Figure 2b. Based on this dynamic capillary
intrusion test, we conclude that the Shan-Chen pseudopotential LB model is adequate to simulate
capillary-driven flow.Computation 2016, 4, 12 7 of 17 
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Figure 2. LBM validation of dynamic capillary intrusion test for T/Tc= 0.85: (a) computational domain;
and (b) comparison between the LB simulation results and analytical solution of the position of phase
interface as a function of time (iteration step).

3.2. Contact Angle

The equilibrium contact angle of a liquid droplet on a flat solid surface is studied by changing
the solid-fluid interaction parameter w. At negative value, w < 0, the surface is hydrophilic with
a contact angle θ < 90˝ and the droplet spreads on the surface. On the contrary, at w > 0, the solid
surface is hydrophobic and a liquid droplet forms a contact angle θ > 90˝. A series of simulations
are carried out in which an initially three-dimensional hemisphere droplet is placed on a horizontal
solid surface. The simulations are performed in a 200 ˆ 200 ˆ 200 lattice domain with the top and
bottom boundaries modeled as solid walls and the left, right, front and back boundaries as periodic
boundaries. The radius of the liquid droplet is chosen to be 30 lattices at T/Tc = 0.85. After reaching
steady state, the contact angle is measured using the method LB-ADSA in Image J [42].
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The equilibrium contact angle in the function of w is illustrated by the inserted snapshots of
three-dimensional iso-surfaces and cross-sections in Figure 3. With increasing values of the solid-fluid
interaction parameter w, the adhesive force decreases and the surface become more and more
hydrophobic. Inversely, when w is negative, the surface is hydrophilic and the droplet spreads
on the surface. This relation between the solid-fluid interaction parameter and contact angle will be
used in the study of pore and corner arc menisci in polygonal tubes.Computation 2016, 4, 12 8 of 17 
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4. Setup and Boundary Conditions

Two different polygonal tubes are simulated: square (n = 4) and triangular (n = 3). The
cross-sections are circumscribed by a circle with a radius of r = 100 lattices for the square tube
and a radius of r = 200 lattices for the triangular tube, as shown in Figure 4a,b.

Two cases are considered. The first case is when the contact angle is between π/2 and the critical
contact angle θc = π/n (45˝ for square, 60˝ for triangular tube) and only a pore meniscus is built. The
second case is when the contact angle is smaller than the critical contact angle and both pore and
corner arc menisci are formed.

For the square tube, the domain size is 142 ˆ 142 ˆ 300 lattices for the pore meniscus case and
142 ˆ 142 ˆ 500 lattices for the corner arc menisci case. The spatial resolution ∆x is 1 µm per lattice.
This resolution has been chosen based on a mesh grid sensitivity for the corner arc menisci case,
which is presented below in the result section.

For the triangular tube, the regular lattice grid results in a zigzag boundary, at least for
two boundaries when the mesh is aligned to one side. This zigzag boundary introduces an artificial
roughness, which in combination with the full bounce-back boundary condition produces some
mesh-dependent results, as will be shown below. The bounce-back boundary condition represents
a no-slip boundary condition with zero velocity at the wall. To improve the quality of the results,
two measures are taken in this study. First the spatial resolution is increased: ∆x equals 0.5 µm per
lattice. As a result, the domain consists of 292 ˆ 290 ˆ 600 lattices for the pore meniscus case and
292 ˆ 290 ˆ 1000 lattices for the corner arc meniscus case. Second, the mesh is turned with an angle
of 15˝ to decrease the side roughness (see Figure 4c). However, even when applying these measures,
the corners show some roughness, especially corner 1.
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An alternative would be to apply different boundary conditions, such as the curved, the half
bounce-back or the moving boundary conditions, as these three methods allow tracking the interface
independently from the mesh [43,44], but such investigation was considered out of the scope of
this study.

The polygonal tube is initially filled by liquid to a height of 100 lattices from the bottom, as shown
in Figure 4a,b. The redistribution of the liquid is then calculated by the LB method. Liquid and gas
densities are 0.28 and 0.0299 lattice units, respectively corresponding to a density ratio ρ/ρc = 9.4
at T/Tc = 0.85. Different contact angle ranges are applied. For the square tube, the contact angle
ranges from 42.6˝ to 136.5˝ as related to a solid-fluid interaction parameter w ranging from ´0.08 to
0.06. For the triangular tube, the contact angle ranges from 59.8˝ to 125.6˝ as related to a solid-fluid
interaction parameter w ranging from ´0.05 to 0.05. As shown in Figure 4a,b, bounce-back boundary
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conditions are imposed on all sides, except for the top 100 lattices on the three or four vertical sides
where periodic boundary conditions are imposed to simulate an open capillary tube.

As mentioned above, gravity is neglected given the capillary length, Lcap, defined at standard
temperature and pressure to be [11,45]

Lcap “

c

σ

ρg
(17)

and equal to 2 mm for water. The characteristic length of our system equals the radius of the
circumscribed circle shown in Figure 4a,b, thus 100 and 200 µm, which is smaller than the capillary
length. Therefore, surface tension effects are dominant and the gravitational effect can be neglected.

All numerical simulations are run by parallel computing based on MPI (Message Passing Interface)
at Los Alamos National Laboratory (LANL) high performance computing cluster. The cluster aggregate
performance is 352 TF/s with 102.4 TB of memory for 38,400 cores. Each simulation is run on 120 or
200 processor cores for pore meniscus or corner arc meniscus simulations in square tubes and on 400
or 800 processor cores for pore meniscus or corner arc meniscus simulations in the triangular tubes,
and requires 16 h to run 20,000 or 40,000 time steps, respectively.

5. Results and Discussion

5.1. Pore Meniscus

When the contact angle is larger than the critical contact angle, θ ě θc, the liquid wets the tube
walls and a pore meniscus is formed in the tube. Figure 5 shows, as an example, snapshots of pore
menisci for square and triangular tubes with hydrophilic and hydrophobic surfaces after reaching
steady state. For the square configuration, the meniscus is regular (Figure 5a–d), while for the triangular
configuration (Figure 5e,f) the pore menisci show different heights at each corner, especially at a small
contact angle (hydrophilic case). This observation is explained by the artificially introduced wall
roughness for the triangular tube, as also observed by other authors such as Dos Santos et al. [28].
We found that corner 1 in Figure 4c, which has the highest roughness, shows the lowest height,
while corners 2 and 3 show the same height.
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Results are presented in terms of height of pore meniscus versus cosine of the contact angle after
reaching equilibrium. The height is defined as the difference between the bottom and the top of the
meniscus (see insets of Figure 6a,c). Since the height for the triangular tube is not equal in all corners,
the average of the heights in the different corners of the tube is used. Figure 6b shows, for the square
tube, diagonal profiles of the pore meniscus as a function of the solid-fluid interaction parameter
w. With increasing cos θ (more hydrophilic), the height increases. This can be explained by the fact
that with increasing cos θ or decreasing contact angle, the adhesive force Fa between solid and fluid
in Equation (12) increases and the pressure difference to maintain hydrostatic equilibrium increases,
resulting in an increase of the height. At very high (low) contact angles, the height increases (decreases)
even more, resulting in an S-shape curve.Computation 2016, 4, 12 11 of 17 
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Figure 6. Height of the pore meniscus h as a function of cosine of contact angle θ. Comparison between
simulation results and analytical solution: (a) square tube; (b) diagonal profiles for square tube, for
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as a function of cosine of effective contact angle θe f f for square and triangular tubes and comparison
with analytical solutions.

An analytical solution for the height h for a n-sided polygonal tube in the hydrophilic case (θ < π/2)
is given by [11]:

h “ rsinα

„

1´
b

1´ pcosθ{sinαq2


{cosθ (18)
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where α is the half of the corner angle:

α “ pn´ 2qπ{ p2nq (19)

For the square tube, the LBM heights are in good agreement with the analytical solution. For the
triangular tube, the simulated average height is lower than the analytical solution for higher values
of cosθ (more hydrophilic). This difference is explained by the zigzag boundary and the artificially
introduced roughness. Since the height is under-predicted in one corner, the average value is also
too low. This is in agreement with the observations of Quéré [46], showing that hydrophilicity of the
surface increases with roughness.

Equation (18) can be rewritten in a normalized form as:

h
r
“

1
cos θe f f

«

1´

c

1´
´

cos θe f f

¯2
ff

(20)

with cosθe f f = cosθ/sinα and θe f f as the equivalent contact angle. Figure 6d shows the normalized
height h/r versus cosine of the equivalent contact angle. We observe that the analytical solutions and
LB results for square and triangular tubes collapse onto a single curve. This shows that the LB results
for the triangular tube, although suffering from the artificial roughness introduced, agree well over the
total hydrophobic and hydrophilic range with the results of the square tube, which does not suffer
from an artificial roughness.

5.2. Corner Arc Menisci

When the contact angle is smaller than the critical contact angle, θ < θc, the liquid invades the
corners, forming corner arc menisci. We consider two contact angles of 22˝ and 32˝ (w = ´0.12 and
´0.10), both lower than the critical contact angle for the square and triangular tubes, in order to study
the influence of the hydrophilic character of the surface in more detail. Figure 7a,b show snapshots
of the pore and corner arc menisci as a function of time (iteration step) for the square and triangular
tubes. Figure 7c shows diagonal profiles of the menisci over the height and cross-sections of the
meniscus at one corner as a function of time for the square tube. For both tubes, at the early stage,
the liquid invades the corners at a small thickness and reaches the top of the tube in a short time.
With increasing time, the corner arc menisci thicken while their curvature decreases. At the same
time, the pore menisci at the bottom evolve from a more flat shape to a concave shape. This process
continues until equilibrium is reached. For the triangular tube, corner arc menisci develop only at two
corners, while one corner does not show the presence of a corner arc meniscus, or it does so only at
a late time. As mentioned before, this observation is attributed to the artificial roughness introduced
by the zigzag surfaces, which is higher in corner 1 than in corners 2 and 3 (see Figure 4c), where the
former corner is not invaded. The profiles in Figure 7c show that the thickness of the corner arc menisci
is not constant over the height, since at the bottom its thickness is influenced by the pore meniscus,
and at the top by the edge of the tube. We remark that the thickness of the corner arc meniscus at
equilibrium depends on the initial liquid volume present in the tube. In the case of an infinite reservoir,
the corner arc menisci of two adjacent corners join. The cross-sections show that the thickness and
curvature for the more hydrophilic surface (θ = 22˝) are higher compared to the less hydrophilic case
(θ = 32˝) at the same time step.

Figure 8a,b show the time evolution of the degree of saturation for the square and triangular
tubes for the contact angles of 22˝ and 32˝ in a log-log plot. The degree of saturation is defined as the
ratio of the cross-area occupied by liquid at corners to the area of the full cross-section of the tube and
is calculated at the mid-height of the corner arc menisci. The curves for the two geometries and two
contact angles show a similar shape. The results show that the corner filling process is faster at an early
time and then slows down somewhat. As expected, the degree of saturation at a lower contact angle
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(more hydrophilic) is higher compared to the degree of saturation at a higher contact angle. However,
this influence of contact angle is smaller when the corner angle is smaller (triangular tube).
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Figure 7. Liquid configuration versus time (iteration count) for θ = 22˝: (a) square tube; (b) triangular
tube; and (c) diagonal profiles and cross-sections of a corner arc menisci for square tube at different
iteration steps for θ = 22˝ and 32˝.

Further, we determined the curvature of the corner arc menisci. The normalized curvature Cn is
given by [10]:

Cn “
pL{2q cos pα` θq

Lcontactsinα
(21)

where L is the side length of the tube, α is the half corner angle dependent on the side parameter n, θ

is the contact angle and Lcontact is the side length of the corner arc meniscus wetting the side of the
tube. The contact length Lcontact is determined from the LBM results at mid-height of the corner arc
menisci. We note that the phase interface in LBM is not sharp but gradually decreases from liquid to
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gas density over three to five lattices. The position of a phase interface is evaluated at the average
density between liquid and gas. Therefore, there is an uncertainty on the contact length Lcontact of
around two lattices [26].
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Figure 8. Log-log plot of degree of saturation Sw versus time for contact angles θ = 22˝ and 32˝ for
square and triangular tubes.

Figure 9a shows the curvature versus degree of saturation for the two contact angles 32˝and 22˝ for
the square tube. The results for the triangular tube are not represented, since the contact length could
not be determined unambiguously due to the artificial roughness problem of the wall, as mentioned
above. An analytical solution for the degree of saturation Sw in the function of the curvature is given
by [10]:

Sw “
tanα

C2
n

„

cosθ

sinα
cos pα` θq ´

π

2

ˆ

1´
α` θ

90

˙

(22)
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In Figure 9a, the LB simulation results are compared with the analytical solution in a log-log plot
and an overall good agreement is observed. At a low degree of saturation, the LB results over-predict
the curvature slightly, which is attributed to the uncertainty (error) in determining the contact length
Lcontact. At a small contact length, an error of two lattices can have a non-negligible effect, as the length
Lcontact appears in Equation (21) in the denominator. Based on these, we suspect that the contact length
is slightly underestimated.

Finally, we report our mesh sensitivity study. Three meshes were selected for the square tube
with a contact angle θ = 22˝ below the critical angle to study the most critical case of corner arc
meniscus formation. The meshes each differ in resolution with a factor of 2: a coarser mesh of
72ˆ 72ˆ 250 lattices (∆x = 2 µm/lattice), a reference mesh of 142ˆ 142ˆ 500 lattices (∆x = 1 µm/lattice)
and a finer mesh of 284 ˆ 284 ˆ 1000 lattices (∆x = 0.5 µm/lattice). Figure 9b gives the curvature
versus degree of saturation for the three meshes and compares these LBM results with the analytical
solution. An overall good agreement is obtained, which convinced us that the reference mesh is fine
enough to produce mesh-insensitive results for the square case. For the triangular tube, the results are
more mesh-sensitive since the resolution also determines the artificial roughness introduced. This is
the reason why, for the triangular tube, we chose the finest mesh, which is a compromise between
calculation time and accuracy.

6. Conclusions

In this study, capillary rise in polygonal tubes is investigated, taking into account the appearance
of a pore meniscus and corner arc menisci, the presence of which depends on the contact angle. Lattice
Boltzmann (LB) simulations are performed using the Shan-Chen pseudopotential multiphase LB model.
This multiphase LB model is validated by a dynamic capillary intrusion test. A contact angle test is
performed to obtain the relation between the contact angle and the solid-fluid interaction parameter
used in the LBM. The multiphase LB model is used to study capillary rise in square and triangular
tubes with different contact angles and the LB results are compared with analytical solutions and an
overall good agreement is obtained. This validated LB model for corner flow will be further used to
analyze the effect of corner flow in more complex porous configurations.

The main conclusions of the present study are as follows:

1. When the contact angle is larger than the critical contact angle, θ ě θc, only a pore meniscus
develops and its height increases with the decreasing contact angle for both square and triangular
tubes. The LB simulation results show good agreement with the analytical solution. At a very low
contact angle in the triangular tube, the height is under-predicted due to the artificial roughness
introduced. The LB heights normalized with the circumscribed radius for hydrophobic and
hydrophilic surfaces as a function of the effective contact angle collapse into a single S-shaped
curve for square and triangular tubes.

2. When the contact angle is smaller than the critical contact angle, θ < θc, LB simulations predict
that the liquid invades the corners, forming corner arc menisci. The relation between the degree
of saturation and the curvature of the corner arc menisci follows the Mayer and Stoewe-Princen
(MS-P) model. The study of the time-dependence of the degree of saturation shows corners filling
faster at an early stage and corner arc menisci thickening at a later stage.

In this study, the characteristic length is below the capillary length of water and, thus, the surface
tension force is more dominant than the gravitational force. Therefore, the gravitational effect is
not taken into account in our LB simulation. However, at a larger scale, gravity effects become
dominant and should be considered. Furthermore, a full bounce-back boundary condition is applied,
demonstrating its limitations when modeling polygonal tubes where the regular meshing is not aligned
with the tube sides, leading to zigzag surfaces and the introduction of an artificial surface roughness.
To describe the capillary rise in angled or curved geometries, alternative boundary conditions should
be considered, such as the curved boundary condition, the half bounce-back boundary condition or
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the moving boundary, allowing the interface between solid and fluid to be independent of the mesh.
This work illustrates that the LBM is a suitable and promising tool for further studies for a better
understanding of capillary flow phenomena in angled pore geometry in porous media.

Acknowledgments: This work has been supported by Swiss National Science Foundation project
no. 200021-143651. Li Chen and Qinjun Kang acknowledge the support from LANL’s LDRD Program and
Institutional Computing Program.

Author Contributions: Soyoun Son, Dominique Derome and Jan Carmeliet conceived and designed the research
plan; Soyoun Son, Li Chen and Qinjun Kang implemented the model, Soyoun Son performed the simulations;
Soyoun Son, Dominique Derome and Jan Carmeliet analyzed the data; all authors participated in writing the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Concus, P.; Finn, R. On capillary free surfaces in the absence of gravity. Acta Math. 1974, 132, 177–198.
[CrossRef]

2. Concus, P.; Finn, R. Dichotomous behavior of capillary surfaces in zero gravity. Microgravity Sci. Technol.
1990, 3, 87–92.

3. Wong, H.; Morris, S.; Radke, C. Three-dimensional menisci in polygonal capillaries. J. Colloid Interface Sci.
1992, 148, 317–336. [CrossRef]

4. Dong, M.; Chatzis, I. The imbibition and flow of a wetting liquid along the corners of a square capillary tube.
J. Colloid Interface Sci. 1995, 172, 278–288. [CrossRef]

5. Princen, H. Capillary phenomena in assemblies of parallel cylinders: I. Capillary rise between two cylinders.
J. Colloid Interface Sci. 1969, 30, 69–75. [CrossRef]

6. Princen, H. Capillary phenomena in assemblies of parallel cylinders: II. Capillary rise in systems with more
than two cylinders. J. Colloid Interface Sci. 1969, 30, 359–371. [CrossRef]

7. Mayer, R.P.; Stowe, R.A. Mercury porosimetry—Breakthrough pressure for penetration between packed
spheres. J. Colloid Sci. 1965, 20, 893–911. [CrossRef]

8. Princen, H. Capillary phenomena in assemblies of parallel cylinders: III. Liquid columns between horizontal
parallel cylinders. J. Colloid Interface Sci. 1970, 34, 171–184. [CrossRef]

9. Bico, J.; Quéré, D. Rise of liquids and bubbles in angular capillary tubes. J. Colloid Interface Sci. 2002,
247, 162–166. [CrossRef] [PubMed]

10. Ma, S.; Mason, G.; Morrow, N.R. Effect of contact angle on drainage and imbibition in regular polygonal
tubes. Colloids Surf. A Physicochem. Eng. Asp. 1996, 117, 273–291. [CrossRef]

11. Feng, J.; Rothstein, J.P. Simulations of novel nanostructures formed by capillary effects in lithography.
J. Colloid Interface Sci. 2011, 354, 386–395. [CrossRef] [PubMed]

12. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.
1981, 39, 201–225. [CrossRef]

13. Sussman, M.; Fatemi, E.; Smereka, P.; Osher, S. An improved level set method for incompressible two-phase
flows. Comput. Fluids 1998, 27, 663–680. [CrossRef]

14. Tryggvason, G.; Esmaeeli, A.; Lu, J.; Biswas, S. Direct numerical simulations of gas/liquid multiphase flows.
Fluid Dyn. Res. 2006, 38, 660–681. [CrossRef]

15. Owkes, M.; Desjardins, O. A computational framework for conservative, three-dimensional, unsplit,
geometric transport with application to the volume-of-fluid (VOF) method. J. Comput. Phys. 2014,
270, 587–612. [CrossRef]

16. Chen, S.Y.; Doolen, G.D. Lattice Boltzmann methode for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364.
17. Aidun, C.K.; Clausen, J.R. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 2010,

42, 439–472. [CrossRef]
18. Chen, L.; Kang, Q.; Carey, B.; Tao, W.Q. Pore-scale study of diffusion-reaction processes involving dissolution

and precipitation using the lattice Boltzmann method. Int. J. Heat Mass Transf. 2014, 75, 483–496. [CrossRef]
19. Gunstensen, A.K.; Rothman, D.H.; Zaleski, S.; Zanetti, G. Lattice Boltzmann model of immiscible fluids.

Phys. Rev. A 1991, 43, 4320. [CrossRef] [PubMed]
20. Swift, M.R.; Orlandini, E.; Osborn, W.; Yeomans, J. Lattice Boltzmann simulations of liquid-gas and binary

fluid systems. Phys. Rev. E 1996, 54, 5041. [CrossRef]

http://dx.doi.org/10.1007/BF02392113
http://dx.doi.org/10.1016/0021-9797(92)90171-H
http://dx.doi.org/10.1006/jcis.1995.1253
http://dx.doi.org/10.1016/0021-9797(69)90379-8
http://dx.doi.org/10.1016/0021-9797(69)90403-2
http://dx.doi.org/10.1016/0095-8522(65)90061-9
http://dx.doi.org/10.1016/0021-9797(70)90167-0
http://dx.doi.org/10.1006/jcis.2001.8106
http://www.ncbi.nlm.nih.gov/pubmed/16290452
http://dx.doi.org/10.1016/0927-7757(96)03702-8
http://dx.doi.org/10.1016/j.jcis.2010.10.030
http://www.ncbi.nlm.nih.gov/pubmed/21144535
http://dx.doi.org/10.1016/0021-9991(81)90145-5
http://dx.doi.org/10.1016/S0045-7930(97)00053-4
http://dx.doi.org/10.1016/j.fluiddyn.2005.08.006
http://dx.doi.org/10.1016/j.jcp.2014.04.022
http://dx.doi.org/10.1146/annurev-fluid-121108-145519
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.03.074
http://dx.doi.org/10.1103/PhysRevA.43.4320
http://www.ncbi.nlm.nih.gov/pubmed/9905534
http://dx.doi.org/10.1103/PhysRevE.54.5041


Computation 2016, 4, 12 17 of 18

21. He, X.; Chen, S.; Zhang, R. A lattice Boltzmann scheme for incompressible multiphase flow and its application
in simulation of Rayleigh-Taylor instability. J. Comput. Phys. 1999, 152, 642–663. [CrossRef]

22. Shan, X.; Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components.
Phys. Rev. E 1993, 47, 1815–1819. [CrossRef]

23. Shan, X.; Chen, H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann
equation. Phys. Rev. E 1994, 49, 2941. [CrossRef]

24. Chen, L.; Luan, H.B.; He, Y.L.; Tao, W.Q. Pore-scale flow and mass transport in gas diffusion layer of proton
exchange membrane fuel cell with interdigitated flow fields. Int. J. Thermal Sci. 2012, 51, 132–144. [CrossRef]

25. Chen, L.; Kang, Q.; Mu, Y.; He, Y.-L.; Tao, W.-Q. A critical review of the pseudopotential multiphase lattice
Boltzmann model: Methods and applications. Int. J. Heat Mass Transfer 2014, 76, 210–236. [CrossRef]

26. Thorne, D.T.; Michael, C. Lattice Boltzmann Modeling An Introduction for Geoscientists and Engineers; Springer:
Miami, FL, USA, 2006.

27. Raiskinmäki, P.; Shakib-Manesh, A.; Jäsberg, A.; Koponen, A.; Merikoski, J.; Timonen, J. Lattice-Boltzmann
simulation of capillary rise dynamics. J. Stat. Phys. 2002, 107, 143–158. [CrossRef]

28. Dos Santos, L.O.; Wolf, F.G.; Philippi, P.C. Dynamics of interface displacement in capillary flow. J. Stat. Phys.
2005, 121, 197–207. [CrossRef]

29. Lu, G.; Wang, X.-D.; Duan, Y.-Y. Study on initial stage of capillary rise dynamics. Colloids Surf. A Physicochem.
Eng. Asp. 2013, 433, 95–103. [CrossRef]

30. Martys, N.S.; Chen, H. Simulation of multicomponent fluids in complex three-dimensional geometries by
the lattice Boltzmann method. Phys. Rev. E 1996, 53, 743–750. [CrossRef]

31. Hecht, M.; Harting, J. Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann
simulations. J. Stat. Mech.: Theory Exp. 2010, 2010, P01018. [CrossRef]

32. Li, Q.; Luo, K.H.; Li, X.J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.
Phys. Rev. E 2012, 86, 016709. [CrossRef] [PubMed]

33. Huang, H.; Krafczyk, M.; Lu, X. Forcing term in single-phase and Shan-Chen-type multiphase lattice
Boltzmann models. Phys. Re. E 2011, 84, 046710. [CrossRef] [PubMed]

34. Kupershtokh, A.; Medvedev, D.; Karpov, D. On equations of state in a lattice Boltzmann method.
Comput. Math. Appl. 2009, 58, 965–974. [CrossRef]

35. Yuan, P.; Schaefer, L. Equations of state in a lattice Boltzmann model. Phys. Fluids 2006, 18, 042101. [CrossRef]
36. Azwadi, C.N.; Witrib, M.A. Simulation of multicomponent multiphase flow using lattice Boltzmann method.

In Proceedings of the 4th International Meeting of Advances in Thermofluids (IMAT 2011); AIP Publishing:
Melaka, Malaysia, 2012.

37. Chen, L.; Kang, Q.; Robinson, B.A.; He, Y.-L.; Tao, W.-Q. Pore-scale modeling of multiphase reactive transport
with phase transitions and dissolution-precipitation processes in closed systems. Phys. Rev. E 2013, 87, 043306.
[CrossRef] [PubMed]

38. Liu, H.; Valocchi, A.; Kang, Q.; Werth, C. Pore-Scale Simulations of Gas Displacing Liquid in a Homogeneous
Pore Network Using the Lattice Boltzmann Method. Transport Porous Media 2013, 99, 555–580. [CrossRef]

39. Diotallevi, F.; Biferale, L.; Chibbaro, S.; Lamura, A.; Pontrelli, G.; Sbragaglia, M.; Succi, S.; Toschi, F. Capillary
filling using lattice Boltzmann equations: The case of multi-phase flows. Eur. Phys. J. Spec. Top. 2009,
166, 111–116. [CrossRef]

40. Pooley, C.; Kusumaatmaja, H.; Yeomans, J. Modelling capillary filling dynamics using lattice Boltzmann
simulations. Eur. Phys. J.-Spec. Top. 2009, 171, 63–71. [CrossRef]

41. Son, S.; Chen, L.; Derome, D.; Carmeliet, J. Numerical study of gravity-driven droplet displacement
on a surface using the pseudopotential multiphase lattice Boltzmann model with high density ratio.
Comput. Fluids 2015, 117, 42–53. [CrossRef]

42. Stalder, A.F.; Melchior, T.; Müller, M.; Sage, D.; Blu, T.; Unser, M. Low-bond axisymmetric drop shape
analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem.
Eng. Asp. 2010, 364, 72–81. [CrossRef]

43. Mei, R.; Luo, L.-S.; Shyy, W. An accurate curved boundary treatment in the lattice Boltzmann method.
J. Comput. Phys. 1999, 155, 307–330. [CrossRef]

http://dx.doi.org/10.1006/jcph.1999.6257
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.49.2941
http://dx.doi.org/10.1016/j.ijthermalsci.2011.08.003
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.04.032
http://dx.doi.org/10.1023/A:1014506503793
http://dx.doi.org/10.1007/s10955-005-7001-6
http://dx.doi.org/10.1016/j.colsurfa.2013.05.004
http://dx.doi.org/10.1103/PhysRevE.53.743
http://dx.doi.org/10.1088/1742-5468/2010/01/P01018
http://dx.doi.org/10.1103/PhysRevE.86.016709
http://www.ncbi.nlm.nih.gov/pubmed/23005565
http://dx.doi.org/10.1103/PhysRevE.84.046710
http://www.ncbi.nlm.nih.gov/pubmed/22181310
http://dx.doi.org/10.1016/j.camwa.2009.02.024
http://dx.doi.org/10.1063/1.2187070
http://dx.doi.org/10.1103/PhysRevE.87.043306
http://www.ncbi.nlm.nih.gov/pubmed/23679547
http://dx.doi.org/10.1007/s11242-013-0200-8
http://dx.doi.org/10.1140/epjst/e2009-00889-7
http://dx.doi.org/10.1140/epjst/e2009-01012-0
http://dx.doi.org/10.1016/j.compfluid.2015.04.022
http://dx.doi.org/10.1016/j.colsurfa.2010.04.040
http://dx.doi.org/10.1006/jcph.1999.6334


Computation 2016, 4, 12 18 of 18

44. Mei, R.; Shyy, W.; Yu, D.; Luo, L.-S. Lattice Boltzmann method for 3-D flows with curved boundary.
J. Comput. Phys. 2000, 161, 680–699. [CrossRef]

45. De Gennes, P.G. Wetting: Statics and dynamics. Rev. Modern Phys. 1985, 57, 827. [CrossRef]
46. Quéré, D. Rough ideas on wetting. Phys. A: Stat. Mech. Appl. 2002, 313, 32–46. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1006/jcph.2000.6522
http://dx.doi.org/10.1103/RevModPhys.57.827
http://dx.doi.org/10.1016/S0378-4371(02)01033-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Numerical Model 
	Validation and Parametrization 
	Dynamic Capillary Intrusion 
	Contact Angle 

	Setup and Boundary Conditions 
	Results and Discussion 
	Pore Meniscus 
	Corner Arc Menisci 

	Conclusions 

