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Abstract: This paper presents a new depth-integrated non-hydrostatic finite element model for simu-
lating wave propagation, breaking and runup using a combination of discontinuous and continuous
Galerkin methods. The formulation decomposes the depth-integrated non-hydrostatic equations into
hydrostatic and non-hydrostatic parts. The hydrostatic part is solved with a discontinuous Galerkin
finite element method to allow the simulation of discontinuous flows, wave breaking and runup. The
non-hydrostatic part led to a Poisson type equation, where the non-hydrostatic pressure is solved
using a continuous Galerkin method to allow the modeling of wave propagation and transformation.
The model uses linear quadrilateral finite elements for horizontal velocities, water surface elevations
and non-hydrostatic pressures approximations. A new slope limiter for quadrilateral elements is
developed. The model is verified and validated by a series of analytical solutions and laboratory
experiments.

Keywords: depth-integrated; discontinuous galerkin finite element method; non-hydrostatic; wave
breaking; wave propagation; wave runup

1. Introduction

In recent decades, due to the occurrence of a high number of coastal catastrophes,
partly increased by the rise in sea level, the importance of research on wave propagation
mechanisms in coastal areas has increased.

Traditionally, depth-integrated models based on the Boussinesq-type equations (BTEs)
have been used to model wave propagation, but the presence of the high order partial
derivative terms contained in BTEs makes discretization difficult, tends to provoke numeri-
cal instabilities, and has a non-negligible computational cost. Additionally, the BTEs arise
from the supposition of no rotation and no viscosity.

Nonlinear shallow water equations with non-hydrostatic pressure distribution have
demonstrated their ability for precise modeling of nonlinear and dispersive waves. Ca-
sulli & Stelling [1] and Stansby & Zhou [2] initiated the expansion of these now popular
non-hydrostatic models for simulating water waves. These models consider the vertical
momentum of flows by means of a non-hydrostatic pressure term into the Reynolds-
averaged Navier–Stokes equations. Depending on the number of layers in the vertical
discretization, the non-hydrostatic models for water waves are catalogued as either multi-
layer models (three-dimensional non-hydrostatic) or single-layer models (two-dimensional
depth-integrated non-hydrostatic). The capabilities of the non-hydrostatic models for water
waves with a single layer or multiple layers in the vertical direction has been investigated
by Stelling and Zijlema [3] (finite differences, multiple layers, wave propagation); Zijlema
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et al. [4] (finite volumes, multiple layers, wave propagation); Zijlema and Stelling [5] (finite
differences, two layers, wave propagation, breaking and runup); Zijlema et al. [6] (finite
differences, multiple layers, wave propagation, breaking and runup), among others.

Numerous depth-integrated non-hydrostatic models are continually being developed,
mainly using finite differences or finite volume methods. Very recently, Zijlema [7] pre-
sented an extension of his non-hydrostatic wave model SWASH (Simulating WAves till
SHore), using the co-volume method to construct a discretization on unstructured triangu-
lar grids. Additionally, recently, Wu et al. [8] developed a two-dimensional non-hydrostatic
wave model based on a finite volume central-upwind scheme. Other researchers have fo-
cused on increasing the order of the non-hydrostatic pressure interpolation from a linear to
a quadratic vertical pressure profile, showing significant improvements for dispersion [9].

Relatively few depth-integrated non-hydrostatic models based on finite element meth-
ods have appeared on the literature. A combined finite volume and finite element method
was used by Walters [10] in a non-hydrostatic model. Wei & Jia [11] developed on an exist-
ing model, the CCHE2D (Center for Computational Hydroscience and Engineering 2D), a
non-hydrostatic version for wave propagation simulation using partially staggered grids
of finite elements for spatial derivatives determination. Wei & Jia [12] further developed
their non-hydrostatic model by adding a momentum conservation advection scheme to
resolve discontinuous flows, involving breaking waves and hydraulic jumps. Calvo &
Rosman [13] presented a depth-integrated non-hydrostatic finite element model for wave
propagation based in a continuous Galerkin finite element method.

The fractional step method is commonly used in developing non-hydrostatic mod-
els [3,14,15]. The hydrostatic part of the equation is solved first in the numerical imple-
mentation, whereas the non-hydrostatic component is computed in a subsequent step.
The governing equations containing the hydrostatic part appear as the depth-integrated
shallow water equations, while the non-hydrostatic part of the pressure is usually obtained
by solving a Poisson type equation. Depth-integrated shallow water equations are hyper-
bolic laws and several discontinuous Galerkin discretizations of these equations have been
proposed. The non-hydrostatic part of the pressure in a wave propagation simulation can
be estimated using a continuous Galerkin method, as in Calvo & Rosman [13]. Continuous
and discontinuous Galerkin methods have been used together to solve the depth-integrated
shallow water equations [16]. A discontinuous Galerkin method for one-dimensional non-
hydrostatic depth-integrated flows was presented by Jeschke et al. [17]. Their model needs
a quadratic vertical pressure profile and a carefully chosen scalar parameter in case of
non-constant bathymetry.

In this work, a new two-dimensional depth-integrated non-hydrostatic model capable
of simulating wave propagation, breaking and runup in a finite element framework is
constructed using a combination of continuous and discontinuous Galerkin methods. The
model uses linear quadrilateral finite elements for horizontal velocities, water surface eleva-
tions and non-hydrostatic pressures approximations. A new slope limiter for quadrilateral
elements is developed based on the explicit dissipative interface of Rosman [18].

The first novelty presented in this work is the combined use of continuous and
discontinuous Galerkin methods in a two-dimensional depth-integrated non-hydrostatic
wave model. The separate calculation of non-hydrostatic pressures employing a continuous
Galerkin method allows it to achieve similar results to other non-hydrostatic models using
a linear vertical non-hydrostatic pressure profile, with the advantage of using unstructured
meshes that easily allow local refinement and complex boundaries. Additionally, the
utilization of linear quadrilateral finite elements presents the advantage of requiring less
nodal variables for a given area than linear triangular finite elements in a discontinuous
Galerkin context (e.g., four nodal variables instead of six) and with a higher order of
interpolation than their triangular counterparts (e.g., bilinear interpolation). To the authors
knowledge, this is the first non-hydrostatic finite element model for wave propagation,
breaking and runup using quadrilateral finite elements.
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The second important novelty of this work is the development of a new slope limiter
for quadrilateral elements based on the dissipative interface of Rosman [18], previously
used in a continuous Galerkin depth-integrated shallow water model. Originally, Rosman
dissipative interface was utilized to smooth nodal oscillations by modifying the computed
nodal values of the variables using computed nodal values from adjacent nodes while
preserving the amplitude of the phenomenon of interest. In this work, the dissipative
interface of Rosman is used to smooth the averaged nodal value in the center of the element
and later utilize this smoothed averaged value to reconstruct the values at the four nodes
of the element. In the literature there are very few utilizable slope limiters for quadrilateral
elements, and they often need to solve a 4 × 4 linear system in each element to obtain the
values at the corners of the element, as in Hoteit et al. [19].

The model developed is verified and validated by an analytical solution and a series
of laboratory experiments.

2. Description of the Model
2.1. Governing Equations

The governing equations in the conservation form for depth-integrated, non-hydrostatic
flow in the Cartesian coordinates system (x, y and z) are:

∂(HU)

∂t
+

∂(HUU)

∂x
+

∂(HUV)

∂y
= −gH

∂ξ

∂x
− gn2U

√
U2 + V2

H1/3 − H
2ρ

∂qb
∂x
− qb

2ρ

∂(ξ − h)
∂x

(1)

∂(HV)

∂t
+

∂(HUV)

∂x
+

∂(HVV)

∂y
= −gH

∂ξ

∂y
− gn2V

√
U2 + V2

H1/3 − H
2ρ

∂qb
∂y
− qb

2ρ

∂(ξ − h)
∂y

(2)

∂H
∂t

+
∂(UH)

∂x
+

∂(VH)

∂y
= 0 (3)

∂W
∂t

=
qb
ρH

(4)

where U, V and W are the depth-averaged velocity components in the x, y and z directions;
ρ is the water density; n is Manning’s roughness coefficient; and g is the gravitational
acceleration. The flow depth is defined as H = ξ + h, where ξ is the surface elevation
measured from the still water level and h is the water depth measured from this same level.
In these equations, a linear distribution is assumed in the vertical direction for both the
non-hydrostatic pressures and for the vertical velocities. The non-hydrostatic pressure
on the free surface is taken as zero and, in the bottom, as qb. The effects of the baroclinic
pressure gradient, atmospheric pressure, Coriolis force and turbulence, are traditionally
neglected in the study of non-hydrostatic wave propagation. Still, simulation with these
effects is possible; see, e.g., Reference [20].

The average vertical velocity, W, is (wξ + wb)/2, where wξ is the vertical velocity at
the surface and wb is the vertical velocity at the bottom. The kinematic boundary conditions
of the free surface and the bottom are:

wξ =
∂ξ

∂t
+ uξ

∂ξ

∂x
+ vξ

∂ξ

∂y
(5)

wb = −ub
∂h
∂x
− vb

∂h
∂y

(6)

with uξ , vξ , ub and vb being the components in x and y of the velocities next to the free
surface and the bottom, respectively. Due to the linearization of the vertical momentum
equation, it is well known that the depth-integrated, non-hydrostatic models are only
applicable to the intermediate water depth and for weakly nonlinear cases [21].
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2.2. Numerical Formulation

Like most existing non-hydrostatic models, we use the fractional step method to
solve the governing equations. A second order discontinuous Garlerkin scheme in both
space and time is used to solve the hydrostatic part whilst the non-hydrostatic pressure is
obtained via solving a Poisson equation by using a continuous Garlerkin scheme.

2.2.1. First Step: Discontinuous Galerkin Solution

The solution procedure begins by solving the horizontal momentum Equations (1)
and (2), without the non-hydrostatic pressure terms, by a discontinuous Galerkin method:

∂(HU)

∂t
+

∂(HUU)

∂x
+

∂(HUV)

∂y
= −gH

∂ξ

∂x
− gn2U

√
U2 + V2

H1/3 (7)

∂(HV)

∂t
+

∂(HUV)

∂x
+

∂(HVV)

∂y
= −gH

∂ξ

∂y
− gn2V

√
U2 + V2

H1/3 (8)

These horizontal momentum equations, together with the mass conservation Equation
(3), can be written in an alternate form as given by Equations (9) to (11). In these equations,
qx and qy are discharges per unit width in the x and y directions and are equal to HU and
HV, respectively.

∂qx

∂t
+

∂
(
q2

x/H
)

∂x
+

∂
(
qxqy/H

)
∂y

= −gH
∂ξ

∂x
− gn2U

√
U2 + V2

H1/3 (9)

∂qy

∂t
+

∂
(
qxqy/H

)
∂x

+
∂
(

q2
y/H

)
∂y

= −gH
∂ξ

∂y
− gn2V

√
U2 + V2

H1/3 (10)

∂H
∂t

+
∂qx

∂x
+

∂qy

∂y
= 0 (11)

The above equations are the traditional depth-integrated hydrostatic shallow water
flow equations, and can be written in the conservative form by:

∂U
∂t

+∇.F(U) =
∂U
∂t

+
∂E(U)

∂x
+

∂G(U)

∂y
= S(U) (12)

The corresponding vectors of conserved variables, U, source vector, S, and flux vectors,
F(U), are given in Equations (13) to (16).

U =


qx
qy
H

 (13)

S =


−gH ∂ξ

∂x −
gn2U

√
U2+V2

H1/3

−gH ∂ξ
∂y −

gn2V
√

U2+V2

H1/3

0

 (14)

F = (E(U), G(U)) (15)

E(U) =


q2

x/H
qxqy/H

qx

, G(U) =


qxqy/H
q2

y/H
qy

 (16)

The discontinuous Galerkin formulation of the governing Equation (12) is obtained by
multiplying it with a shape function ϕ and integrate over an element Ωe. The flux term F is
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integrated using Gauss theorem, resulting in Equation (17). In this equation n =
(
nx, ny

)
is

the outward unit normal vector at an element boundary Γe.∫
Ωe

ϕ
∂U
∂t

dΩ +
∫

Γe
ϕF.n dΓ−

∫
Ωe

F.∇ϕ dΩ =
∫

Ωe
ϕ S dΩ (17)

In the discontinuous Galerkin method, the variable vector U can be approximated
over a quadrilateral element by:

U(x, y) ≈
4

∑
j=1

Uj ϕj(x, y) (18)

where Uj are nodal values of the variables and ϕj(x, y) are the bilinear (four nodes)
approximation functions of the solution variables, or shape functions, whose components
are differentiable over an element but allow discontinuities at inter-element boundaries.
Since the discontinuities of variables at the element edges are allowed in the discontinuous
Galerkin framework, the intercell flux is assumed to depend on the values U in each of the
two contiguous elements. Thus, the normal flux F.n is not uniquely defined and is replaced
by a numerical flux F̃(UL,UR), where UL and UR are the variables at the left (internal)
and right (external) sides of the element boundary in the counterclockwise direction,
respectively. Therefore, the second integral in Equation (17) is written as:∫

Γe
ϕF.n dΓ =

∫
Γe

ϕF̃dΓ (19)

In this study we use the common Harten-Lax-van Leer (HLL) numerical flux [22]:

~
F = FHLL =


FL.n i f SL ≥ 0

(SRFL−SLFR).n+SLSR(UR−UL)
SR−SL

i f SL < 0 < SR

FR.n i f SR ≤ 0
(20)

where the wave speeds SL and SR are defined by:

SL = min(unL −
√

gHL, u∗n −
√

gH∗)

SR = max(unR +
√

gHR, u∗n +
√

gH∗) (21)

with:
u∗n =

1
2
(unL + unR) +

√
gHL −

√
gHR√

gH∗ =
1
2

(√
gHL +

√
gHR

)
+

1
4
(unL − unR) (22)

In the above equations unL and unR are the normal velocities at the left and right sides
of the element boundary, respectively. Similarly, HL and HR are the flow depths at the left
and right sides of the element boundary, respectively. These values at the boundary are
calculated based on the averaged values of U = qx/H, V= qy/H and H of the corresponding
boundary.

Substituting the approximation of U, the normal flux term F.n by the numerical flux
F̃, and integrating by a Gaussian quadrature rule, the Equation (17) can be written as
Equation (23) or Equation (24). In these equations M is the mass matrix and L is a spatial
discretization operator.

M
∂U
∂t

= R (23)

∂U
∂t

= M−1R = L (24)
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The time integration is achieved by the second order two-step TVD (total variation
diminishing) Runge–Kutta scheme, given by Equation (25).

U(1) = Un + ∆tL(Un)

Un+1 =
1
2

Un +
1
2

U(1) +
∆t
2

L
(

U(1)
)

(25)

The time step is limited by the Courant–Friedrichs–Lewy criterion as:

∆t = Cr min

(
min

(
∆x

|U|+
√

gH

)
, min

(
∆y

|V|+
√

gH

))
(26)

where Cr is the Courant number, which is taken to be 0.25 for all the test cases considered
in this work. The first step of the solution process ends with the intermediate evaluation of
the conserved variables qx and qy from Equation (25): q̃n+1

x and q̃n+1
y .

2.2.2. New Slope Limiter

Slope limiters are required in discontinuous Galerkin methods to remove high-
frequency spurious oscillations around shock waves, and to maintain high order accuracy
in smooth regions. In this study, we developed a new slope limiter for discontinuous
quadrilateral elements based on the explicit dissipative interface of Rosman [18]. The
Rosman dissipative interface is part of the SisBahia® (Sistema Base de Hidrodinámica
Ambiental) hydrodynamic model, which is a continuous Galerkin depth-integrated shal-
low water model. The SisBahia® interface smooths the nodal oscillations by modifying
the computed nodal values of the variables using computed nodal values from adjacent
nodes while preserving the amplitude of the phenomenon of interest. Here, the SisBahia®

interface is used to smooth the averaged nodal value in the center of the element and
subsequently use this smoothed averaged value to reconstruct the values at the four nodes
of the element.

The application of the new slope limiter begins by computing the element average
solution of the conserved variable, Ue, for all elements e, as given by Equation (27); where
Ue,j are the nodal values of the conserved variable on element e.

Ue =
1
4

4

∑
j=1

Ue,j, Ue,j ∈ U (27)

Although the slope limiter can be applied to general linear quadrilateral elements, a
discretization using linear rectangular elements is shown in Figure 1. The element average
solution Ue is situated at the arithmetic average of the vertices (arithmetic center), as seen
in Figure 1. The squares in the figure are the element nodal values located at the vertex of a
rectangular element. The smoothing of Ue is achieved by the application of a dissipative
interface. A usual dissipative interface, like the one presented by Abbot & Basco [23] in a
finite difference context, applied to the center value U3 in Figure 1, would be:

Ul
3 = (1−ω)U3 + ω

(
∆23U4 + ∆34U2

∆23 + ∆34

)
(28)

where ω = [0, 1] is a ponderation weight, and ∆23, ∆34 are the distances from U2 to U3,
and from U3 to U4, respectively. An anti-dissipative interface was created by Rosman [18]
to maintain the local declivity of the variables:

Ul
3 =

(
1− ω

2

)
U3 + ω

(
∆23U4 + ∆34U2

∆23 + ∆34

)
− ω

2

(
∆13U5 + ∆35U1

∆13 + ∆35

)
(29)
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The final form of the dissipative interface proposed by Rosman [18] is the average
between (28) and (29):

Ul∗
3 =

(
1− 3

4
ω

)
U3 + ω

(
∆23U4 + ∆34U2

∆23 + ∆34

)
− ω

4

(
∆13U5 + ∆35U1

∆13 + ∆35

)
(30)

The value of ω = 0.5 is commonly used in the applications. To maintain symmetry, in
our study we further apply the interface also in the orthogonal direction:

Ul
3 =

(
1− 3

4
ω

)
Ul∗

3 + ω

(
∆I I3U IV + ∆3IVU I I

∆I I3 + ∆3IV

)
− ω

4

(
∆I3UV + ∆3VU I

∆I3 + ∆3V

)
(31)

Figure 1. Discretization using discontinuous linear rectangular elements.

Following the limiter application procedure, the limited gradients for all elements
are calculated next using Green’s theorem. An example of the evaluation of the limited
gradient for the element 3 in Figure 2 is given by Equation (32).

Figure 2. Discontinuous elements used in the assessment of the limited gradient for element 3.



∂Ul

∂x

∣∣∣
3
= 1

Ω3

∮
Γ0

Uldy = 1
Ω3

4
∑

e=1
Ul

3e∆ye

∂Ul

∂x

∣∣∣
3
= 1

Ω3

{
Ul

3IV(yn2 − yn1) + Ul
34(yn3 − yn2) + Ul

3II(yn4 − yn3) + Ul
32(yn1 − yn4)

}
∂Ul

∂y

∣∣∣
3
= −1

Ω3

∮
Γ0

Uldx = −1
Ω3

4
∑

e=1
Ul

3e∆xe

∂Ul

∂y

∣∣∣
3
= 1
−Ω3

{
Ul

3IV(xn2 − xn1) + Ul
34(xn3 − xn2) + Ul

3II(xn4 − xn3) + Ul
32(xn1 − xn4)

}
(32)

In Equation (32), Ul
3IV is the limited value at the boundary between elements 3 and

IV. The inverse distance weighting with Ul
3 and Ul

IV is used to find Ul
3IV at the boundary.

A similar process is adopted to calculate Ul
34, Ul

3I I and Ul
32. Finally, the nodal values of

the limited conservative variables Ul
e can be reconstructed over a quadrilateral element e
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by evaluating Equation (33) at the four nodes. In Equation (33) r is a vector with origin
at the arithmetic center of the element extending to any point within the element. The
vector r for the node 1 at Figure 2 will be xn1 − x, yn1 − y, where x and y are the values at
the arithmetic center of the element. This reconstruction implies that the reconstructed
variables will have a constant gradient over the element. The limiter is applied after every
step of the Runge–Kutta integration in Equation (25).

Ul
3(x, y) = Ul

3 +∇Ul
3·r (33)

2.2.3. Second Step: Continuous Galerkin Solution

In the second step of the solution, a Poisson equation is constructed that is then solved
by a continuous Galerkin method to obtain the non-hydrostatic pressures qn+1

b . A time
approximation of the vertical moment Equation in (4) is:

wn+1
ξ = wn

ξ − wn+1
b + wn

b +
2∆tqn+1

b
ρHn (34)

The vertical velocity at the bottom is valued from the kinematic boundary condition
(6), estimated as:

wn+1
b = −Un ∂h

∂x
−Vn ∂h

∂y

wn
b = −Un−1 ∂h

∂x
−Vn−1 ∂h

∂y
(35)

From the remaining part of the horizontal momentum Equations (1) and (2) including
the non-hydrostatic pressure terms:

∂(HU)

∂t
= − H

2ρ

∂qb
∂x
− qb

2ρ

∂(ξ − h)
∂x

∂(HV)

∂t
= − H

2ρ

∂qb
∂y
− qb

2ρ

∂(ξ − h)
∂y

(36)

the final horizontal velocities, influenced by the non-hydrostatic pressure, can be time
approximated as:

Un+1
c = Ũ

n+1 − ∆t
2ρ

∂qn+1
b

∂x
− ∆t

2ρ

qn+1
b
Hn

c

∂

∂x
(ξn

c − h)

Vn+1
c = Ṽn+1 − ∆t

2ρ

∂qn+1
b

∂y
− ∆t

2ρ

qn+1
b
Hn

c

∂

∂y
(ξn

c − h) (37)

In the continuous Galerkin solution of the non-hydrostatic pressures, the continu-
ous horizontal velocities Un+1

c and Vn+1
c , continuous water level ξn

c and flow depth Hn
c ,

vertical velocities wξ and wb, and non-hydrostatic pressures qn+1
b are approximated with

nodal variables which have the same value in all the adjoining elements. The continuous
intermediate velocities Ũ n+1 and Ṽ n+1 are obtained from the intermediate evaluation of
the discontinuous discharges q̃n+1

x and q̃n+1
y integrating over the entire domain Ω, as in

Dawson et al. [16]: ∫
Ω

ϕŨ
n+1

dΩ =
∫

Ω
ϕŨ

n+1
dc dΩ∫

Ω
ϕṼ

n+1
dΩ =

∫
Ω

ϕṼ
n+1
dc dΩ (38)
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where the discontinuous intermediate velocities Ũn+1
dc and Ṽn+1

dc are approximated in an

element using the values of q̃n+1
x
Hn and

q̃n+1
y
Hn , respectively, evaluated at the nodes. Similarly,

the continuous water level elevations ξn
c are obtained from:∫

Ω
ϕξn

c dΩ =
∫

Ω
ϕξndΩ (39)

where ξn = Hn − h. Finally, the continuous flow depth, Hn
c , is Hn

c = ξn
c + h. To obtain a

correct solution between the velocity field and the non-hydrostatic pressures, the continuity
equation is applied directly to the water column:

(
∂Un+1

c
∂x

+
∂Vn+1

c
∂y

)
+

(
wn+1

ξ − wn+1
b

Hn
c

)
= 0 (40)

Substituting Equations (34), (35) and (37) in Equation (40), applying Green’s theorem
in some terms, and neglecting others, a Poisson equation is established from which the
hydrostatic pressure in the bottom, qn+1

b , is obtained. A continuous Galerkin finite element
model to solve the Poisson equation on an element Ωe is:

∫
Ωe

ϕ
2∆tqn+1

b
ρ(Hn

c )
2 dΩ +

∫
Ωe

∂ϕ
∂x

∆t
2ρ

∂qn+1
b
∂x dΩ +

∫
Ωe

∂ϕ
∂y

∆t
2ρ

∂qn+1
b
∂y dΩ

−
∫

Ωe
ϕ ∆t

2ρHn
c

∂qn+1
b
∂x

∂
∂x (ξ

n
c − h)dΩ −

∫
Ωe

ϕ ∆t
2ρHn

c

∂qn+1
b
∂y

∂
∂y (ξ

n
c − h)dΩ

= −
∫

Ωe
ϕ
(

∂Ũ n+1

∂x + ∂Ṽ n+1

∂x +

(
wn

ξ +wn
b−2wn+1

b

)
Hn

c

)
dΩ

(41)

After all the variables in Equation (41) have been approximated as in Equation (18),
and all the elements of the domain have been assembled, the resulting linear system is
solved to obtain the non-hydrostatic pressures qn+1

b .

2.2.4. Third Step

Once the non-hydrostatic pressures qn+1
b are known, the Equations (36) are solved on

an element to obtain the final solutions for the discharges qn+1
x and qn+1

y . A Galerkin finite
element model to solve the Equations (36) on an element Ωe is:

∫
Ωe

ϕqn+1
x dΩ =

∫
Ωe

ϕ q n+1
x dΩ−

∫
Ωe

ϕ
∆tHn

2ρ

∂qn+1
b
∂x

dΩ−
∫

Ωe
ϕ

∆tqn+1
b

2ρ

∂(ξn − h)
∂x

dΩ

∫
Ωe

ϕqn+1
y dΩ =

∫
Ωe

ϕ q n+1
y dΩ−

∫
Ωe

ϕ
∆tHn

2ρ

∂qn+1
b
∂y

dΩ−
∫

Ωe
ϕ

∆tqn+1
b

2ρ

∂(ξn − h)
∂y

dΩ (42)

The slope limiter is applied to the values of qn+1
x , qn+1

y found from the expressions
above. Finally, with the discharges qn

x , qn
y , qn+1

x , qn+1
y and the flow depth Hn known, the

unknown flow depth Hn+1 is calculated from the continuity Equation (3) using the second
order Runge–Kutta solution (Equation (25)) of the discontinuous Galerkin formulation
(Equation (17)).

2.2.5. Boundary Conditions

At wall boundaries, the condition imposed is that the gradients of water elevations
and the velocities normal to the boundary are set to zero. At open boundaries, the water
elevations are determined by a Sommerfeld radiation condition. At wave inflow bound-
aries, the water elevations and velocities are established with the corresponding inflow
wave analytical formula, e.g., the formula of airy waves. For an incompressible flow, no
boundary conditions for the non-hydrostatic pressure are required [1,4].
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2.2.6. Dry Bed Treatment

To handle the dry bed condition, a small depth Hdry = 0.001 m and zero velocity are
defined at the dry nodes. If the water depth at a node is less than Hdry, then the water
depth is set to H = Hdry and the velocity is set to zero. At the element boundary, if the
water depth at one side is greater than Hdry and the other side is equal to Hdry, then the
numerical flux is calculated according to the dry bed location. The wave speed for dry
bed located at the right or left side of the boundaries are given, respectively, by Equations
(43) and (44). If the water depth on both sides of the boundary is equal to Hdry then the
numerical flux is set to zero. {

SL = unL −
√

gHL
SR = unL + 2

√
gHL

(43)

{
SL = unR − 2

√
gHR

SR = unR +
√

gHR
(44)

2.2.7. Wave Breaking

Depth-averaged models are unable to reproduce both the overturning of waves, and
the small-scale phenomena associated with wave breaking, therefore some kind of closure is
necessary. Generally, this closure consists of two steps. The first one is a trigger mechanism
to localize in space and time the start and end of breaking. The second one is a mechanism
that produces a dissipation of total energy in the model.

The dissipation of energy is achieved by switching locally to the depth-integrated
hydrostatic shallow water equations, representing breaking wave fronts as shocks. Based
on the analogy between a hydraulic jump and a turbulent bore, energy dissipation is
accounted for by ensuring conservation of mass and momentum. This approach was firstly
introduced by Smit et al. [24] as the hydraulic front approximation (HFA) method for the
treatment of wave breaking.

For the trigger mechanism of wave breaking, we use two different criteria. The first
criterion is used for solitary waves and is the simplest to set up. Wave breaking in a node is
established when ξn

c
h > 0.8 [25–27]. This criterion is referred to as the local criterion in [28].

All the elements containing a node with the wave breaking condition ξn
c
h > 0.8 are switched

to the hydrostatic mode by making qn+1
b = 0, ∂qn+1

b
∂x = 0, ∂qn+1

b
∂y = 0 and wξ = wb = 0 in the

element. The breaking closure is kept active on the wave until ξn
c
h < 0.4.

The second criterion is used for regular waves and is based on the hybrid criterion,
first introduced by Kazolea et al. [29]. The idea is to introduce a flagging strategy based on
the occurrence of one of the following conditions:

• The surface variation criterion: a node is flagged if
∂ξc
∂t√
g|h|

>
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∈ [0.3, 0.65]

depending on the type of breaker.
• The local slope angle criterion: a node is flagged if

∣∣∣ ∂ξc
∂x , ∂ξc

∂y

∣∣∣ ≥ tan φ, with φ ∈ [14◦,
33◦] depending on the flow configuration.

The first condition is usually active in correspondence of moving waves. The second
condition acts in a complementary manner and allows to detect stationary or slow-moving
hydraulic jumps [30]. Flagged nodes are grouped to form a breaking region. This region
is either enlarged to account for the typical roller length, as suggested in Tissier et al. [31]
and Kazolea et al. [29], or deactivated, depending on the value of the Froude number at

breaking, Frb =

√ (
2 Hmax

Hmin
+1
)2
−1

8 , defined starting from the minimum and maximum wave
height in the flagged zone (Hmin, Hmax). All the elements containing a flagged node are

switched in the element to hydrostatic mode by making qn+1
b = 0, ∂qn+1

b
∂x = 0, ∂qn+1

b
∂y = 0
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and wξ = wb = 0. The interested reader can refer to Bacigaluppi et al. [28] and references
therein for more detail regarding the implementation of these detection criteria.

2.2.8. Computational Aspects

Typically, execution times for a non-hydrostatic model are about a factor of two
to five times slower than their associated standard shallow water model, depending
on the problem size [10]. The discontinuous Galerkin solutions are calculated using a
direct method. In solving the assembled Poisson equation, and in the determination of
the continuous variables from the discontinuous variables (Equations (38) and (39)), an
iterative solver, the restarted GMRS with incomplete LU preconditioning is used. Equations
(38) and (39) are solved usually with just one or two iterations of the restarted GMRS solver.

3. Model Verification and Validation

In this section, the model described above is verified and validated using several
benchmark cases. The first case, with an analytical solution, verifies the correctness of the
non-hydrostatic pressure implementation in the model. The next five sets of laboratory
experiments have wave and flow features (e.g., wave propagation, breaking and runup)
that are expected to be encountered in the nearshore zone, and thus are used to validate the
model’s capability for nearshore wave modelling. The last case verifies the implementation
of the model using general linear quadrilateral elements.

3.1. Solitary Wave Propagation Along a Constant Depth Channel

This standard case has been used to verify the dispersion characteristic of many
Boussinesq-type and non-hydrostatic models. The solitary wave is a non-linear wave with
finite amplitude. If the fluid is non-viscous, and the horizontal bottom is frictionless, the
wave must maintain its shape and velocity throughout the propagation process.

In this study, we considered a frictionless channel 800 m long and water depth h of
10 m. A Sommerfeld boundary condition based on the elevation of the water surface ξ is
specified at the entrance and exit of the channel. The solitary wave is initially at x0 = 150 m,
with a wave height A = 2 m. The mesh is made by square elements of sizes ∆x = ∆y = 1 m.
Analytical solutions of free water surface elevation and velocity are given by:

ξ(x, t) =
A

cos h2(k(x− x0 − ct))
(45)

U(x, t) =
ξc

ξ + h
(46)

where the celerity of the wave is c =
√

g(A + h) and the wave number k =
√

3A
4h3 .

In Figure 3, the initial solitary wave and the analytical and simulated waveforms along
the channel at 10, 20, 30 and 40 s are presented. It is seen that wave shape and amplitude
are well preserved during simulation, verifying that the non-hydrostatic property has been
well simulated by the model.
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Figure 3. Comparison of numerical results and analytical solutions of free surface elevations at t = 0,
10, 20, 30 and 40 s. Analytical solutions (circles), numerical results (solid lines).

To assess the accuracy of the model, four different meshes of square elements with
sizes ∆x = ∆y = 0.5 m, 1.0 m, 2.0 m and 4.0 m are considered. In Figure 4, the L2 error
norms are shown for ξ evaluated at t = 40 s as a function of grid size ∆x, ∆y, defined as:

L2 =
1
N

√√√√ N

∑
i=1

(ξa − ξi)
2 (47)

where N is the total number of nodes in the direction of the flow, ξi is the numerical solution
and ξa is the analytical solution. The numerical errors are found to be decreased when the
sizes of the elements are decreased.

Figure 4. L2 error norms for ξ as function of ∆x, ∆y for solitary wave propagation in constant depth.

3.2. Solitary Wave Runup on a Plane Beach

Titov & Synolakis [32] conducted experiments where a solitary wave with wave height
A/h = 0.3 (where A is the solitary wave height and h is the still water depth) ran up a beach
with a slope of 1:19.85. In the numerical simulation, square elements with sizes ∆x/h =
∆y/h = 0.125 are considered, and a Manning coefficient n = 0.01 is used to define the bed
surface roughness. A Sommerfeld radiation condition is imposed at the left-side boundary.
The solitary wave is initially at half of the wavelength (L) from the toe of the beach, with L
defined by:

L =
2
k

arccosh

(√
1

0.05

)
(48)
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Figure 5 shows the comparison of simulated and measured profiles. As the wave
propagates over the inclined beach, the front of the wave begins to incline. Laboratory data
show that the breaking of waves occurs between t(g/h)1/2 = 20 and 25. The broken waves
run up to the beach until the maximum height of around t(g/h)1/2 = 45. It is seen that the
wave breaking and runup processes are simulated very well. When the wave retreats from
the beach, a hydraulic jump is formed and major discrepancy between simulated results
and measured data is observed at t(g/h)1/2 = 55. This phenomenon may be attributed
to the complex vertical flow structure that cannot be captured by the depth-integrated
formulation [30,33]. After this point, good agreements are reached until the end of the
retreat process.

Figure 5. Comparison of simulated and measured surface profiles of a solitary wave runup on a 1:19.85 plane beach.
Experimental data (circles), numerical results (solid lines).

3.3. Solitary Wave Propagation over Fringing Reef

Fringing reefs are coral reefs quite common in tropical and subtropical areas. Labo-
ratory experiments of solitary wave transformation over fringing reefs were conducted
by Roeber [34] and Roeber et al. [30]. In this work, we analyze their test case consisting
of a solitary wave with a height of A = 0.5 m and a water depth of h = 1 m. The solitary
wave is transformed over a fringing reef with a 1:5 slope onto a dry reef flat. Square finite
elements with ∆x = ∆y = 0.05 m were used, and a Manning coefficient of n = 0.01 was
established to represent the finished concrete surface of the reef model. A Sommerfield
boundary condition is imposed at the left side of the domain.

The simulated surface elevations are compared with the measured surface elevations
in Figure 6. The principal processes involved are reproduced by the model. The wave
evolves from subcritical flow to supercritical flow over the reef edge at x = 22 m, collapses
at x = 23 m, and subsequently rush over the initially dry reef flat. The reef edge is exposed
due to the seaward movement of the reflected wave coming from the reef edge and
the shoreward movement of the wave front over the reef around t(g/h)1/2= 67.8. The
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computed results establish the ability of the model to simulate wave transformation over a
fringing reef, wave breaking and wetting-drying over a dry surface.

3.4. Series of Regular Waves on a Plane Beach

In this test, we demonstrate the ability of the model to simulate the propagation,
breaking and runup of a series of regular waves. The experimental investigations were
carried out at the laboratory of the Department of Civil, Environmental, Land, Building
Engineering and Chemistry of the Polytechnic University of Bari, Italy. The used wave
channel is 45 m long and 1 m wide, with glass walls supported by iron frames, numbered
from the shoreline up to the wavemaker. Starting from the wave paddle, the flume has a
flat bottom extending for 12 m, while the remaining bottom onshore is made by a wooden
panel with 1/20 slope. The wave generating system is a piston-type one, with paddles
producing the desired wave by providing a translation of the water mass, according to the
proper input signal. Further details about the experimental tests can be found in [35–37].

Table 1 shows the main parameters of the examined waves listed for each experiment,
such as the offshore wave height, H0, the wave period T and the deepwater wavelength,
L0, estimated in section 76 (Figure 7), where the bottom is flat and the mean water depth, h,
is equal to 0.70 m. Moreover, to evaluate the type of breaking, the Irribarren number, ξ0,
was computed for the two tests, as:

ξ0 =
tan β√

H0
L0

(49)

in which β is the bottom slope angle. Based on this parameter, the two regular tested waves
were characterized by a spilling and plunging breaking respectively [35]. Water surface
elevations and velocities were measured at six different locations along the longitudinal
axis of symmetry of the wave channel. The sketch of Figure 7 shows the six sections named
76, 55, 49, 48, 47, and 45, used in the present work for comparisons between the simulated
and measured free surface elevations. Both in cases T1 and T2, the breaking occurred
between sections 48 and 47.

Table 1. Experimental parameters of the analyzed regular waves.

H0 (cm) T (sec) L0 (m) h (m) ξ0 Breaking Type

T1 11 2 4.62 0.70 0.37 Spilling
T2 6.5 4 10.12 0.70 0.74 Plunging
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Figure 6. Comparison of simulated and measured surface profiles of a solitary wave over a fringing reef. Experimental data
(circles), numerical results (solid lines).

Figure 7. Diagram of the channel with the location of the six investigated sections (From: De Padova et al. [37]).

In the numerical simulation, square elements with sizes ∆x = ∆y = 0.04 m were
considered. The time of the wave break in the numerical model is determined using the
surface variation and local slope angle criteria (Section 2.2.7). Figures 8 and 9 show the
comparisons between the simulated and measured free surface elevations for cases T1 and
T2. The surface variation criterion was utilized as the main trigger mechanism of wave
breaking, and the parameter
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breaking zone (thus trying to match the total energy dissipation of wave breaking using
the HFA method). In both case T1 (
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= 0.3, φ = 30◦), similarities
were obtained between the elevations of the simulated and measured waves before and
after the breaking zone, except in section 48, and in section 49 for case T1 (spilling wave),
where the simulated wave appears diminished. The reason for the underestimation of
the breaking waves lies in the fact that the HFA method requires high vertical resolution
for capturing the hydrostatic shock of the series of regular breaking waves; high vertical
resolution that is obviously not present in depth-averaged models. Smit et al. [24] shows
that a 3D version of a non-hydrostatic shallow water model would need as much as
20 layers to get accurate solution of wave heigh using the HFA treatment. A similar
underestimation is observed in other studies using the HFA method in depth averaged
models for the simulation of breaking waves series [5,28,31,38]. Attempts to improve
the energy dissipation characteristics of breaking waves in depth-averaged models often
involve the use of special terms in the momentum equation to account for turbulent
momentum dispersion [39], or in the use of additional equations for modeling turbulent
kinetic energy [38].

Figure 8. Cont.
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Figure 8. Comparison of simulated and measured free surface elevations for case T1 (spilling wave)
(
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= 0.2, φ = 30◦). Experimental data (circles), numerical results (solid lines).
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Figure 9. Comparison of simulated and measured free surface elevations for case T2 (plunging wave)
(
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= 0.3, φ = 30◦). Experimental data (circles), numerical results (solid lines).

3.5. Solitary Wave Runup on a Conical Island

A large-scale laboratory experiment to study solitary wave runup on a conical island
was conducted by Briggs et al. [40]. The experiment was conducted in a 30 m wide and 25
m long basin (Figure 10). The center of the island is located at x = 13 m and y = 15 m, and
the shape of the island is a truncated circular cone with diameters of 7.2 m at the toe and
2.2 m at the crest. The vertical height of the island is about 62.5 cm, with a 1:4 beach face.
A 27.4 m long directional spectral wave maker, which consisted of 61 paddles, generated
solitary waves for the experiment. Wave absorbers at the three sidewalls reduced reflection.
Different still water depths and relative wave heights were tested in the experiment. In this
study we consider the still water depth h = 32 cm and three cases denoted as I, II, and III
with relative wave heights A/h = 0.045, 0.096, and 0.181, respectively.

In the numerical simulation, the solitary wave propagates from the western boundary
toward the island. Sommerfield radiation boundary conditions are applied at the western
and eastern boundaries and the lateral walls are treated as solid walls. The basin is
discretized using a total of 146,640 elements: square elements with sizes ∆x = ∆y = 0.1 m
(A-1), rectangular elements with sizes ∆x = 0.05 m and ∆y = 0.1 (A-2), rectangular elements
with sizes ∆x = 0.1 m and ∆y = 0.05 (A-3), and square elements with sizes ∆x = 0.05 m
and ∆y = 0.05 m (A-4) near the conical island, as shown in Figure 11. The combination of
rectangular and square elements reduced the number of elements/cells by 50% compared
to the application of other models to the same problem, e.g., Wu et al. [8]. A Manning
coefficient n = 0.01 is used for the bed surface roughness.

Figure 12 shows the comparison of simulated and measured free surface elevations at
selected wave gauges for all three cases. For all cases, good agreements between numerical
results and measurements are obtained in gauges 6, 9 and 16, whereas in gauge 22 overall
agreements are acceptable, although the numerical model slightly overpredicts the wave
depression in cases I and II.

The maximum vertical runup heights are shown in Figure 13. Good agreements of the
maximum inundation positions for all cases have been obtained.
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Figure 10. Schematic sketch of the conical island experiment. (a) Plane view, (b) side view, o gauge
locations (from: Yamazaki et al. [33]).

Figure 11. Discretization of the conic island domain using rectangular elements.
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Figure 12. Comparison of simulated and measured free surface elevations for a solitary wave runup on a conical island: A/h
= 0.045 (left panel), A/h = 0.096 (middle panel), A/h = 0.181 (right panel). Experimental data (circles), numerical results (solid
lines).

Figure 13. Comparison of simulated and measured maximum vertical runup heights for a solitary wave runup on a
conical island: A/h = 0.045 (left panel), A/h = 0.096 (middle panel), A/h = 0.181 (right panel). Experimental data (circles),
numerical results (solid lines).

3.6. Solitary Wave Transformation, Breaking and Runup over a Three-Dimensional Complex
Bathymetry.

This case aims to test the model’s capacity to simulate a solitary wave transformation,
breaking and runup over a 3D complex bathymetry using general quadrilateral elements.
Compared to previous tests, this test is much more demanding because the wave transfor-
mation, breaking and wet-drying mechanism are implicated over a complex 3D bathymetry.
Laboratory experiments were carried in a 48.8 m long and 26.5 m wide basin [41]. Figure
14 shows the basin sketch consisting of a 1:30 slope and a triangular reef flat with a conical
island positioned at the offshore corner of the reef. The vertical datum for the bathymetry
contours is located 0.02 m below the basin bottom. Nine wave gauges (G1-G9) were utilized
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to measure free surface elevation and three acoustic Doppler Velocimeters (ADV1-ADV3)
were used to measure velocity, as shown in Figure 14.

The finite element mesh consisted of 142,753 quadrilateral elements with elements
areas ranging from approximately 0.01 m2 to 0.0025 m2 and the mesh was refined over
the 3D reef around x = 16 m to x = 32 m in Figure 14. A Sommerfield radiation boundary
condition is applied at the western boundary. The Manning coefficient was set to n = 0.01.
The incident solitary wave has a wave height A = 0.39 m, and the water depth in the basin
is h = 0.78 m. The dimensionless wave height A/h = 0.39/0.78 = 0.5 indicates a strongly
nonlinear wave. The initial setup of the simulation is displayed in Figure 15.

Figure 14. Bathymetry contours and locations of measuring points. Circles (water surface measure-
ment gauges), triangles (acoustic Doppler velocimeters) (from: Wu et al. [8]).

Figure 15. Snapshot of the initial setup of the simulation of a solitary wave transformation, breaking and runup over a
three-dimensional reef.

The time series of the simulated and measured free surface elevations at the nine
gauge locations are presented in Figure 16. For gauges G1 and G4, located in the offshore
zone, the model results and measured data agree very well, pointing that the shoreward
propagation and reflection from the shore are simulated effectively. The steepening of
the solitary wave over the reef tip is captured by the model at gauge G2. For gauges
G3 and G6, deviations between the simulated and measured free surface elevations are
registered, this was also noted in other studies [12,42]. For gauges G7, G8 and G9, the
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simulations are satisfactorily close to the measurements. The comparison between the
computed and measured velocities in the x direction at the acoustic Doppler velocimeters
locations (ADV1-ADV3) are presented in Figure 17, showing that the model is able to
simulate most of the velocities’ characteristics at ADV1-ADV3. In general, the developed
model succeeded in simulating a solitary wave transformation, breaking and runup over a
3D complex bathymetry. The model code, which runs on a single CPU core, was compiled
using Visual Studio 2010 and the C++ language. For this test, which is the most challenging
test, the CPU time was about 6.05 h on a desktop computer with an Intel® i7-9750H CPU, at
2.6 GHz and 8 GB of memory. This performance could be improved in future developments
if a CUDA®-GPU version of the model is achieved.

Figure 16. Comparison of simulated and measured free surface elevations at gauge locations. Measured data (circles),
numerical results (solid lines).

Figure 17. Comparison of simulated and measured velocities in the x direction at the acoustic Doppler velocimeters
locations. Experimental data (circles), numerical results (solid lines).
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4. Conclusions

A new depth-integrated non-hydrostatic, combined discontinuous/continuous, Galerkin
finite element model for wave propagation, transformation, breaking and runup has been
described in this paper. The formulation decomposes the depth-integrated non-hydrostatic
equations into hydrostatic and non-hydrostatic parts. The hydrostatic part is equivalent
to the depth-integrated shallow-water equations and was solved with a discontinuous
Galerkin finite element method to allow the simulation of discontinuous flows, wave
breaking and runup. The non-hydrostatic part led to a Poisson type equation, where the
non-hydrostatic pressure was solved using a continuous Galerkin method to allow for the
modeling of wave propagation and transformation.

The model uses linear quadrilateral finite elements for horizontal velocities, water
surface elevations and non-hydrostatic pressures approximations. A new slope limiter
for quadrilateral elements was developed with success based on the explicit dissipative
interface of Rosman [18].

A series of numerical tests have been carried out to verify and validate the developed
model. The first case, which has an analytical solution, verifies the non-hydrostatic pressure
implementation in the model. The following five sets of laboratory experiments, which
present several nearshore waves phenomena (e.g., nonlinear dispersive wave propagation,
breaking, and runup), have been used to validate the model’s capability for nearshore
wave process simulation. The last case verified the implementation of the model using
general linear quadrilateral elements. Good agreements between numerical results and ex-
perimental data proved that the new depth-integrated non-hydrostatic model is applicable
to simulate real-life wave motions.

In the future, the model will be extended with more layers, or a quadratic approxima-
tion of the dynamic pressure, so that highly dispersive waves can be better simulated.
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