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Abstract: The key objective of this paper is to construct exact traveling wave solutions of the
conformable time second integro-differential Kadomtsev–Petviashvili (KP) hierarchy equation using
the Exp-function method and the (2 + 1)-dimensional conformable time partial integro-differential
Jaulent–Miodek (JM) evolution equation utilizing the generalized Kudryashov method. These two
problems involve the conformable partial derivative with respect to time. Initially, the conformable
time partial integro-differential equations can be converted into nonlinear ordinary differential
equations via a fractional complex transformation. The resulting equations are then analytically
solved via the corresponding methods. As a result, the explicit exact solutions for these two equations
can be expressed in terms of exponential functions. Setting some specific parameter values and
varying values of the fractional order in the equations, their 3D, 2D, and contour solutions are
graphically shown and physically characterized as, for instance, a bell-shaped solitary wave solution,
a kink-type solution, and a singular multiple-soliton solution. To the best of the authors’ knowledge,
the results of the equations obtained using the proposed methods are novel and reported here for
the first time. The methods are simple, very powerful, and reliable for solving other nonlinear
conformable time partial integro-differential equations arising in many applications.

Keywords: generalized Kudryashov method; Exp-function method; conformable time second integro-
differential Kadomtsev–Petviashvili hierarchy equation; (2 + 1)-dimensional conformable time partial
integro-differential Jaulent–Miodek evolution equation

1. Introduction

The study of solutions of nonlinear partial differential equations (NPDEs) attracts the
attention of scientists because their solutions can be used to lucidly explain many physi-
cal phenomena in various scientific fields, such as fluid mechanics, quantum mechanics,
plasma physics, biology, chemistry, fiber optics, and many other branches of engineering.
Obtaining solutions for NPDEs is of great significance for analyzing and better under-
standing the behaviors of the considered problems. There are many robust, stable, and
effective methods that have been developed for constructing exact, approximate analytical
and numerical solutions for NPDEs. Particularly, the methods have been extensively used
to find exact solutions for NPDEs, such as the (G′/G, 1/G)-expansion method [1], the
modified

(
G′/G2)-expansion method [2], the Jacobi elliptic equation method [3], the sine-

Gordon expansion method [4,5], the extended direct algebraic method [6,7], the modified
Exp-function method [8,9], and the Kudryashov method [10,11]. However, the focus of
this work is to search for exact solutions of certain nonlinear partial integro-differential
equations (PIDEs) converted into NPDEs in some ways. Consequently, in the following,
we give a brief review of PIDEs and methods through which to find their exact solutions.
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A partial integro-differential equation (PIDE) is a mathematical equation involving
partial derivatives and integrals of an unknown function of two or more independent
variables. In the recent times, partial integro-differential equations (PIDEs) have been of
considerable importance because they are widely used to model real-world problems and
describe several physical phenomena in engineering, finance, and other fields of science.
The applications of PIDEs have been studied in many papers. Sachs and Strauss [12]
proposed a new method to efficiently solve Merton’s model written in terms of a PIDE
explaining the option price for general Lévy processes. The initial and boundary value
problem expressed by the nonlinear weakly singular partial integro-differential equation
arising from viscoelasticity was proposed and analyzed using a Legendre wavelet col-
location method (LWCM) by Singh et al. [13]. Khaled [14] employed the sinc-Galerkin
method to obtain numerical solutions for a parabolic Volterra integro-differential equation
presenting the heat transfer of heterogeneous materials. To further grasp other applications
of PIDEs, one can refer to [15–19]. As mentioned above, PIDEs are used to represent
various real-world problems. Therefore, the investigation of finding solutions to those
PIDEs plays an important role in describing mechanisms and physical behaviors of the
unknown variables in such problems. Some recent examples of the methods that have been
employed to obtain numerical solutions and approximate analytical solutions for PIDEs
can be found in [13,14,20,21]. However, the behaviors of the systems formulated using
PIDEs can be precisely described via their exact solutions. In consequence, researchers
have taken an interest in studying efficient and reliable techniques for constructing exact
solutions of PIDEs. Some recent reviews for finding exact solution of the interesting PIDEs
are as follows: In 2018, the three shallow water wave models formulated by PIDEs were
explored using the improved ansatz method [22]. As a result, their new exact solutions,
such as topological soliton solutions, were obtained. In 2019, Liu and Wen [23] constructed
N-soliton solutions for the (2 + 1)-dimensional asymmetrical Nizhnik–Novikov–Veselov
equation using Hirota’s bilinear method. In 2020, Seadawy et al. [24] used the generalized
direct algebraic extended simple equation and modified F-expansion methods to construct
some new traveling wave solutions including rational hyperbolic function and trigonomet-
ric function solutions for the (1 + 1)-dimensional Ito integro-differential equation. Thus far,
there have been large number of studies that focus on computing exact solutions for PIDEs
using various powerful techniques [25–31].

In 2014, Khalil et al. [32] introduced a new interesting derivative definition called
the conformable derivative that extends the classical derivative by inserting a fractional
order. The advantages of the conformable derivative, beyond classical fractional deriva-
tives such as the Riemann–Liouville fractional order derivative or the Caputo fractional
order derivative [33], are as follows: First, the conformable derivative definition satisfies
most of the properties that the classical integral derivative has, such as linearity, product
rule, quotient rule, power rule, chain rule, vanishing derivatives for constant functions,
Rolle’s theorem, the mean value theorem, and Taylor’s theorem. Furthermore, the contri-
bution of this derivative is applied to self-adjointness, the Sturm–Liouville system, and
integral transforms such as the Fourier and Laplace transforms. Second, solving differential
equations, which are used to model physical problems, with the conformable derivative
is easier, as their solutions are simpler than those associated with the classical fractional
derivatives. Finally, many researchers have applied the conformable derivative to various
real applications. For example, the conformable derivative is employed to develop the
Swartzendruber model for description of non-Darcian flow in porous media [34]. The
applications of the conformable derivative in quantum mechanics and perturbation theory
and their physical interpretation are discussed in [35]. Further details of its mathematical
properties and real applications can be found in [35–41] and the references cited therein.

In this article, we are interested in using the Exp-function method [42–45] and the
generalized Kudryashov method [46,47] to solve the conformable time second integro-
differential Kadomtsev–Petviashvili hierarchy equation and the (2 + 1)-dimensional con-
formable time partial integro-differential Jaulent–Miodek evolution equation, respectively,
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finding their exact solutions. These equations are the PIDEs in the sense of the conformable
partial derivative with respect to time. To the best of the authors’ knowledge, no researchers
have found exact solutions for such PIDEs. The mentioned problems are explicitly ex-
pressed as follows:

1. The conformable time second integro-differential Kadomtsev–Petviashvili (KP)
hierarchy equation of order 0 < α ≤ 1 is expressed as

∂α
t u =

1
16

uxxxxx +
5
4

∂−1
x (uuyy) +

5
4

∂−1
x

(
u2

y

)
+

5
16

∂−3
x (uyyyy) +

5
4

ux∂−2
x (uyy)

+
5
2

u∂−1
x (uyy) +

5
2

uy∂−1
x (uy) +

15
2

u2ux +
5
2

uxuxx +
5
4

uuxxx +
5
8

uxyy, (1)

where ∂α
t (·) = ∂α

∂tα (·) is the conformable partial derivative with respect to t of order α and
∂−n

x (·) =
∫ x
−∞

∫ x1
−∞ · · ·

∫ xn−1
−∞ (·) dxn · · · dx2 dx1 for some positive integer n. When α = 1,

Equation (1) reduces into the second integro-differential Kadomtsev–Petviashvili hierarchy
equation [48,49] which is a PIDE in two spatial coordinates and one temporal coordi-
nate and describes the evolution of nonlinear long waves of small amplitude with slow
dependence on the transverse coordinate [49].

2. The (2 + 1)-dimensional conformable time partial integro-differential Jaulent–
Miodek (JM) evolution equation of order 0 < α ≤ 1 is given as

p1∂α
t u + p2u2ux − uxxx − p3ux∂−1

x
(
uy
)
− p4uuy + p5∂−1

x
(
uyy
)
= 0, (2)

where the symbols ∂α
t (·) and ∂−1

x (·) can be defined using the notations described above and
where p1, p2, p3, p4, p5 are arbitrary constants. If α = 1, then Equation (2) turns out to be
the (2 + 1)-dimensional JM equation [50,51], elucidating many branches of physics such as
condensed matter physics, fluid dynamics, and optics [16]. In particular, the (2 + 1)-dimensional
JM equation associates with energy-dependent Schrödinger potential [18,52–54].

The remaining parts of this article are organized as follows: In Section 2, a definition
of the conformable derivative and its properties are presented. In Section 3, we provide
the main steps of the Exp-function method and the generalized Kudryashov method. The
application of each of the methods for the proposed equations is exhibited in Section 4.
Graphs and physical explanations of some selected exact solutions to the problems are
demonstrated in Section 5. A discussion and conclusions of the results are given in the
last section.

2. Conformable Derivative and Its Properties

In this section, we provide a definition of the conformable derivative and its important
properties as established by Khalil et al. [32].

Definition 1. Given a function f : [0, ∞)→ R. Then, the conformable derivative of f of order α
is defined as [32,37,39,41,55–58]

Dα
t f (t) = lim

ε→0

f (t + εt1−α)− f (t)
ε

, (3)

for all t > 0 and 0 < α ≤ 1. If the limit in Equation (3) exists, then we can say that f is α-
conformable differentiable at a point t > 0. Furthermore, if f is α-conformable differentiable in some
(0, a), a > 0 and limt→0+ Dα

t f (t) exists, then one defines Dα
t f (0) = limt→0+ Dα

t f (t).

Let α ∈ (0, 1], and f (t), g(t) be α-conformable differentiable functions at a point t > 0.
Then, the properties of the conformable derivative are as follows [32,43,55–58]:

(1) Dα
t (λ) = 0, where λ = constant;

(2) Dα
t (t

µ) = µtµ−α, for all µ ∈ R;
(3) Dα

t (a f (t) + bg(t)) = aDα
t f (t) + bDα

t g(t), for all a, b ∈ R;
(4) Dα

t ( f (t)g(t)) = f (t)Dα
t g(t) + g(t)Dα

t f (t);
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(5) Dα
t

(
f (t)
g(t)

)
=

g(t)Dα
t f (t)− f (t)Dα

t g(t)
g(t)2 ;

(6) If, in addition, f is differentiable, then Dα
t ( f (t)) = t1−α d f (t)

dt
.

Remark 1. Using the definition in (3) and the above properties, the conformable derivatives of
some interesting functions are defined as follows [32,55–58]:

(1) Dα
t (e

ct) = ct1−αect, c ∈ R;
(2) Dα

t (sin bt) = bt1−α cos bt, b ∈ R;
(3) Dα

t (cos bt) = −bt1−α sin bt, b ∈ R;
(4) Dα

t (
1
α tα) = 1.

Theorem 1 ([32,43,55–58]). Let f : R+ → R be a function such that f is differentiable and
α-conformable differentiable. In addition, we assume that g is a differentiable function defined in the
range of f . Then, we have

Dα
t ( f ◦ g)(t) = t1−α f ′(g(t))g′(t),

where the prime symbol (′) denotes the classical derivative.

3. Description of the Methods

The Exp-function method and the generalized Kudryashov method described in
this section are applied to the proposed PIDEs in the next section. Now, we consider the
following general nonlinear conformable partial differential equation:

F(u, ∂α
t u, ∂

β
x u, ∂

η
y u, ∂2α

t u, ∂α
t ∂

β
xu, ∂α

t ∂
η
y u, ∂

2β
x u, ∂

β
x∂

η
y u, ...) = 0, (4)

where ∂
γ
v u = ∂γ

∂vγ u is the generic term for the conformable partial derivative of a dependent
variable u with respect to an independent variable v of order γ. Thus, the symbols, for
instance, ∂α

t u = ∂α

∂tα u, ∂
β
x u = ∂β

∂xβ u and ∂
η
y u = ∂η

∂yη u, that appear in Equation (4) denote the
conformable partial derivatives of the dependent variable u = u(x, y, t) with respect to
t of order α, to x of order β, and to y of order η, respectively, with 0 < α, β, η ≤ 1. The
remaining partial derivatives including the mixed partial derivatives in Equation (4) can
be defined in a similar manner to the previous ones. The function F in the equation is a
polynomial of the unknown function u and its various conformable partial derivatives.
Using the definition in (3), we can define the conformable partial derivative ∂α

t u(x, y, t) as

∂α
t u(x, y, t) = lim

ε→0

u(x, y, t + εt1−α)− u(x, y, t)
ε

, t > 0. (5)

The symbols ∂
β
x u, ∂

η
y u and the other partial derivatives in (4) can be defined in a

manner analogous to Equation (5).
The common step of the two methods is to transform the conformable PDE in (4) into

an ordinary differential equation (ODE) using the following transformation [59–61]:

U(ξ) = u(x, y, t), ξ = x + y− ktα

α
, (6)

where ξ is a traveling wave variable with a nonzero arbitrary constant k. Applying the
above transformation to Equation (4) and then integrating the resulting equation with
respect to ξ (if possible), Equation (4) can be converted into the ODE in the variable
U = U(ξ) as

P(U, U′, U′′, U′′′, ...) = 0, (7)

where P is a polynomial of U(ξ) and its various integer-order derivatives. The prime
notation (′) represents an ordinary derivative with respect to ξ. Next, the remaining steps of
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the the Exp-function method [62–64] and the generalized Kudryashov method [46,54,57,65]
are separately and compactly explained as follows.

3.1. Description of the Exp-Function Method

Step 1: We assume that the traveling wave solution for Equation (7) can be written in
the following form:

U(ξ) =
∑d

n=−c an exp(nξ)

∑
q
m=−p bm exp(mξ)

, (8)

where p, q, c, and d are positive integers which are further determined using the ho-
mogeneous balance principle. The coefficients an (n = −c,−c + 1,−c + 2, . . . , d) and
bm (m = −p,−p + 1,−p + 2, . . . , q) are unknown constants to be found at a later step. The
equivalent form of solution form (8) is

U(ξ) =
a−c exp(−cξ) + ... + ad exp(dξ)

b−p exp(−pξ) + . . . + bq exp(qξ)
. (9)

Step 2: Using the homogeneous balancing principle [66], we get the values of c and p
via balancing the linear term of lowest order of Equation (7) with the lowest order nonlinear
term. Analogously, the values of d and q can be obtained by balancing the linear term of
highest order in (7) with the highest order nonlinear term.

Step 3: After obtaining the values of c, p, d, and q in Step 2, we substitute the solu-
tion (8) into Equation (7) and collect all of the terms exp(jξ) (j = −i,−i+ 1, . . . ,−1, 0, 1, . . . ,
i− 1, i for some positive integer i) together. Equating each resulting coefficient to be zero,
we then obtain a system of algebraic equations. Assume that such a system can be solved
with the aid of symbolic software packages for the unknown values an, bm, and k. As
a consequence, one can obtain the exact solutions of the nonlinear conformable partial
differential equation in (4).

3.2. Description of the Generalized Kudryashov Method

Step 1: Suppose that the traveling wave solution of Equation (7) has the following form

U(ξ) =
∑N

i=0 aiQi(ξ)

∑M
j=0 bjQj(ξ)

, (10)

where ai (i = 0, 1, 2 . . . , N), bj (j = 0, 1, 2 . . . , M) are constants to be computed afterward
such that aN 6= 0 and bM 6= 0 simultaneously. The function Q = Q(ξ) is a solution of

Q′(ξ) = Q2(ξ)−Q(ξ). (11)

It is not difficult to ascertain that

Q(ξ) =
1

1 + κeξ
(12)

is the solution for Equation (11) when κ is a constant of integration.
Step 2: The positive integers N and M occurring in Equation (10) can be determined

by employing the homogeneous balancing principle. In other words, we balance between
the highest order derivatives and nonlinear terms emerging in Equation (7). The formulas
for computing the degree of some specific terms for this step can be found in Equation (10)
of [57]. The relation between N and M is eventually established.

Step 3: Substituting Equation (10) into Equation (7) along with Equation (11), we
arrive at a polynomial in Qi−j, (i, j = 0, 1, 2, . . .). Equating all of the coefficients of
this polynomial to be zero, we then have a system of algebraic equations for which the
unknown parameters ai (i = 0, 1, 2, . . . , N), bj (j = 0, 1, 2, . . . , M), and k are symbolically
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solved using various software packages such as Maple. Consequently, this leads to the
exact solutions for Equation (4).

4. Application of the Proposed Methods

In this section, we use the Exp-function method and the generalized Kudryashov
method to obtain explicit exact solutions for Equations (1) and (2), respectively. Before
utilizing the methods as described above, we must convert the conformable PIDEs in (1)
and (2) to conformable PDEs and then apply the methods to the resulting equations. These
are demonstrated in the following.

4.1. Exact Solutions for the Conformable Time Second Integro-Differential KP Hierarchy Equation
Using the Exp-Function Method

Equation (1), which contains at most threefold integral operators, can be converted
into a PDE with the conformable time partial derivative of a new variable by differentiating
both sides of (1) with respect to x and applying the transformation u(x, y, t) = vxx(x, y, t)
to the resulting equation. We consequently obtain

∂α

∂tα
vxxx =

1
16

v8x +
15
4

vxxvxxyy +
15
4

v2
xxy +

5
16

v4y +
15
4

vxxxvxyy +
5
4

vxxxxvyy (13)

+
5
2

vxxxyvxy +
15
2

(
v2

xxvxxx

)
x
+

5
2
(vxxxvxxxx)x +

5
4
(vxxvxxxxx)x +

5
8

v4xyy.

Applying the following transformation:

V(ξ) = v(x, y, t), ξ = x + y− ktα

α
, (14)

where k 6= 0 is a constant to (13), one can subsequently obtain an ordinary differential
equation in the new variable V = V(ξ). Then, we integrate the resulting equation with
respect to ξ by setting a constant of integration to zero. Hence, we have

1
16

V(7) +
5
8

V(5) +

(
k +

5
16

)
V′′′ +

15
2

V′′V′′′ +
15
2
(
V′′
)2V′′′ +

5
2

V′′′V(4)

+
5
4

V′′V(5) = 0, (15)

where the prime notation (′) represents the classical derivative with respect to ξ. Letting
W(ξ) = V′′(ξ) in Equation (15) and then integrating the resulting outcome with respect to
ξ, we now obtain

1
16

W(4) +

(
k +

5
16

)
W +

15
4

W2 +
5
2

W3 +
5
8
(
W ′
)2

+
5
4

WW ′′ +
5
8

W ′′ + C = 0, (16)

where C is a constant of integration.
Applying the Exp-function method to Equation (16), we assume that the solution for

Equation (16) can be expressed in the following form:

W(ξ) =
a−c exp(−cξ) + . . . + ad exp(dξ)

b−p exp(−pξ) + . . . + bq exp(qξ)
, (17)

where the positive integers c, p, d, q can be determined using the homogeneous balancing
principle as follows: In order to determine the values of d and q in (17), we balance the
linear term of the highest order derivative in Equation (16) with the highest order nonlinear
term. In particular, the terms W(4) and W3 in (16) are balanced. From (17), we obtain

W(4) =
c1 exp[(15q + d)ξ] + . . .

c2 exp(16qξ) + . . .
, (18)
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and

W3 =
c3 exp(3dξ) + . . .
c4 exp(3qξ) + . . .

=
c3 exp[(3d + 13q)ξ] + . . .

c4 exp(16qξ) + . . .
, (19)

where ci, i = 1, 2, 3, 4 are constant coefficients, which are not necessarily computed for their
exact values because they are not required in the further steps. On balancing the highest
order of the exponential functions in Equations (18) and (19), we get

15q + d = 13q + 3d⇒ q = d. (20)

Proceeding in a similar manner as illustrated above, we can determine the values of c
and p. Using (17) and after manipulating certain calculations, we can write

W(4) =
. . . + d1 exp[−(15p + c)ξ]

. . . + d2 exp(−16qξ)
, (21)

and

W3 =
. . . + d3 exp(−3cξ)

. . . + d4 exp(−3pξ)
=

. . . + d3 exp[−(13p + 3c)ξ]
. . . + d4 exp(−16pξ)

, (22)

where di, i = 1, 2, 3, 4 are constant coefficients, the exact values of which again are not required.
Balancing the lowest order of the exponential functions in Equations (21) and (22), we have

− (15p + c) = −(13p + 3c)⇒ c = p. (23)

For simplicity, we choose p = c = d = q = 1. Hence, the solution form (17) becomes

W(ξ) =
a1 exp(ξ) + a0 + a−1 exp(−ξ)

b1 exp(ξ) + b0 + b−1 exp(−ξ)
, (24)

where a−1, a0, a1, b−1, b0,, and b1 are unknown constants that are determined in a later
step.

Substituting Equation (24) into Equation (16) and simplifying the resulting equation
with the aid of Maple, we have

1
A
[C5 exp(5ξ) + C4 exp(4ξ) + C3 exp(3ξ) + C2 exp(2ξ) + C1 exp(ξ) + C0 + C−1 exp(−ξ)

+C−2 exp(−2ξ) + C−3 exp(−3ξ) + C−4 exp(−4ξ) + C−5 exp(−5ξ)] = 0, (25)

where A = (b1 exp(ξ) + b0 + b−1 exp(−ξ))5. Since each of the coefficients Ci (i = −5,−4,
. . . , 4, 5) has a very long expression, all of them are transferred to Appendix A. Equating
all of the coefficients Ci (i = −5,−4, . . . , 4, 5) to be zero, we obtain a system of algebraic
equations as follows:

C−5 = 0, C−4 = 0, C−3 = 0, C−2 = 0, C−1 = 0,
C0 = 0,
C1 = 0, C2 = 0, C3 = 0, C4 = 0, C5 = 0.

(26)

With the help of Maple, we can simultaneously solve system (26) for a−1, a0, a1, b−1, b0,
b1, k, and C. The only result obtained from the above process is as follows:

a0 =
8a−1b1 + b2

0
2b0

, a1 =
8a−1b1 + b2

0
2b0

, b−1 =
b2

0
4b1

, (27)

C =
a−1b1

(
1280a2

−1b2
1 + 320a−1b2

0b1 + 11b4
0
)

4b6
0

, k = −120a2
−1b2

1 + 35a−1b2
0b1 + b4

0

b4
0

,

where a−1, b0 and b1 are free parameters. Substituting the above result into (24), we get
the solution for Equation (16) as
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W(ξ) =
b1
(
16a−1b2

1e2ξ +
(
16a−1b0b1 + 2b3

0
)
eξ + 4a−1b2

0
)

b2
0
(
4b2

1e2ξ + 4b0b1eξ + b2
0
) . (28)

Since W = V′′, we then have

V(ξ) =
∫ ∫

W(ξ) dξ dξ =
2b1a−1ξ2 + b2

0 ln
(
b0 + 2b1eξ

)
− b2

0ξ

b2
0

. (29)

Inserting ξ = x + y− ktα

α into the above result to obtain v(x, y, t) and then taking the
partial derivative of v with respect to x twice, we obtain the exact solution u(x, y, t) of (1) as

u(x, y, t) =
2b1

(
8a−1b2

1e2θ(x,y,t) +
(
8a−1b0b1 + b3

0
)
eθ(x,y,t) + 2a−1b2

0

)
b2

0
(
2b1eθ(x,y,t) + b0

)2 , (30)

where θ(x, y, t) = (120a2
−1b2

1+35a−1b2
0b1+b4

0)tα+αb4
0(x+y)

αb4
0

.

4.2. Exact Solutions for the (2 + 1)-Dimensional Conformable Time Partial Integro-Differential JM
Evolution Equation Using the Generalized Kudryashov Method

Using the transformation u(x, y, t) = vx(x, y, t), Equation (2) can be converted into
the following conformable PDE:

p1

(
∂α

∂tα
vx

)
+ p2v2

xvxx − vxxxx − p3vxxvy − p4vxvxy + p5vyy = 0. (31)

Applying the traveling wave transform (14) to the above equation and integrating the
resulting equation once, we then obtain the following ODE in V(ξ) as

V′′′ − (p5 − kp1)V′ +
(p3 + p4)

2
(
V′
)2 − p2

3
(
V′
)3

+ C = 0, (32)

where k is a constant of the traveling wave transform and C is a constant of integration. These
constants are determined in a further step. Letting W = V′, Equation (32) becomes

W ′′ − (p5 + kp1)W +
(p3 + p4)

2
W2 − p2

3
W3 + C = 0. (33)

On the basis of Equation (10) of the generalized Kudryashov method, we assume

that the solution form for Equation (33) is W(ξ) = ∑N
i=0 aiQi(ξ)

∑M
j=0 bjQj(ξ)

. Then, Deg[W] = N −M.

Balancing the highest order derivative W ′′ in Equation (33) with the nonlinear term W3 via
formulas (10) of [57], we get

N −M + 2 = 3(N −M)⇒ N = M + 1. (34)

Choosing M = 1, we obtain N = 2. Hence, the solution for (33) takes the following
particular form:

W(ξ) =
a0 + a1Q + a2Q2

b0 + b1Q
, (35)

where a0, a1, a2, b0, and b1 are constants to be determined at a later step and where
Q = Q(ξ) expressed in (12) satisfies Equation (11). Inserting solution (35) along with Equa-
tion (11) into Equation (33), we obtain a polynomial in Q(ξ). Equating all the coefficients
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of like power of Q in the polynomial to be zero, the system of the algebraic equations
expressed in terms of a0, a1, a2, b0, b1, C and k is obtained, as shown below:

Q0 :a0b2
0 p1 − Cb0

3 − a0b2
0 p5 +

a2
0b0 p3

2
+

a2
0b0 p4

2
− p2a3

0
3

= 0,

Q1 :− a2
0 p2a1 +

a2
0b1 p3

2
+

a2
0b1 p4

2
− 3Cb0

2b1 − a0b0b1 − a1b2
0 p5 + 2ka0b0b1 p1 + b2

0a1

+ a0a1b0 p3 + a0a1b0 p4 − 2a0b0b1 p5 + ka1b2
0 p1 = 0,

Q2 :2b2
1a2 −

p2a3
2

3
= 0,

Q3 :
a2
2

2
b1 p4 − p2a1a2

2 + 6a2b0b1 +
a2

2b1 p3

2
− 3b2

1a2 = 0,

Q4 :
a2

2b0 p4

2
− p2a0a2

2 − p2a1
2a2 − 9 a2b0b1 − a2b1

2 p5 +
a2

2b0 p3
2

+ 6b0
2a2 + a1a2b1 p3

+ a1a2b1 p4 + ka2b1
2 p1 + b1

2a2 = 0,

Q5 :− 2a0b0b1 + a1b0b1 + 3a2b0b1 − a1b2
1 p5 +

b1a2
1 p3

2
+

b1a2
1 p4

2
+ 2ka2b0b1 p1 + 2b2

0a1

− 10b2
0a2 − Cb3

1 + b1a0a2 p3 + a1a2b0 p3 + b1a0a2 p4 + a1a2b0 p4 − 2a2b0b1 p5 + ka1b2
1 p1

− p2a3
1

3
− a0b2

1 − 2p2a0a1a2 = 0,

Q6 :
a2

1b0 p4

2
− a2

0a2 p2 − a0a2
1 p2 − a0b2

1 p5 − a1b0b1 − 3Cb0b2
1 + 3a0b0b1 − a2b2

0 p5 +
a2

1b0 p3

2
+ 2ka1b0b1 p1 − 3b2

0a1 + 4b2
0a2 + a0a1b1 p3 + a0a2b0 p3 + a0a1b1 p4 + a0a2b0 p4 + ka0b2

1 p1

− 2a1b0b1 p5 + ka2b2
0 p1 + a0b2

1 = 0.

Solving the above system with the help of Maple, we obtain two different results for
the exact solutions for Equation (2) as follows:

Result 1:

a0 =
b0
(
∓
√

6p2 + p3 + p4
)

2p2
, a1 =

±
√

6p2(2b0 − b1) + b1(p3 + p4)

2p2
,

a2 = ±b1

√
6
p2

, C =

(
−p2

3 − 2p3 p4 − p2
4 + 6p2

)
(p3 + p4)

24p2
2

,

k =
4p2 p5 − p2

3 − 2p3 p4 − p2
4 + 2p2

4p1 p2
, (36)

where b0 and b1 are arbitrary constants. As a result of substituting the above results
into solution (35) with the replacement of Q(ξ) in (12) and then simplifying the resulting
outcome, the solution for Equation (33) is obtained:

W1(ξ) =

(√
6p2
(
κeξ − 1

)
±√p2(p3 + p4)

(
1 + κeξ

))
2p3/2

2
(
κeξ + 1

) . (37)

As a result of W1 = V′1, we then obtain

V1(ξ) =
∫

W1(ξ) dξ,

=

(√
p2(p3 + p4)±

√
6p2

)
ξ ∓ 2

√
6p2 ln

(
1 + κeξ

)
2p3/2

2

. (38)
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By replacing ξ = x + y− ktα

α
in the above result to get v1(x, y, t) and then taking the

partial derivative of v1 with respect to x, the exact solution of (2) is obtained:

u1(x, y, t) =

√
p2(p3 + p4)

(
κeω(x,y,t) + 1

)
∓
√

6p2

(
κeω(x,y,t) − 1

)
p3/2

2

(
2κeω(x,y,t) + 2

) , (39)

where ω(x, y, t) = ((p3+p4)
2−(4p5+2)p2)tα+4αp1 p2(x+y)

4αp1 p2
.

Result 2:

a0 =
±b0

(
2b0
√

6p2 + b1
(√

6p2 + p3 + p4
))

2p2b1
,

a1 = ±2b0
√

6p2 + b1
(

p3 + p4 −
√

6p2
)

2p2
,

a2 = ±b1

√
6
p2

, C =
1

24p2
2b3

1

(
± 96
√

6b0 p3/2
2

(
b0 +

b1

2

)
(b0 + b1)

+72b1(p3 + p4)

(
b2

1

(
− p2

3
72
− p4 p3

36
− p2

4
72

+
p2

12

)
+ b0b1 p2 + b2

0 p2

))
,

k =
b2

1

(
p2(4p5 + 2)− (p3 + p4)

2
)
+ 24p2b0(b1 + b0)

4b2
1 p1 p2

, (40)

where b0 and b1 are arbitrary constants. Substituting these values into solution (35), using
the function Q(ξ) in (12), and then simplifying the resulting equation, the solution of
Equation (33) is expressed as

W2(ξ) =
±1

12p3/2
2 b1

(
b0κeξ + b0 + b1

)(
1 + κeξ

)[6b0κ2e2ξ(b1
√

p2(p3 + p4)

+
√

6p2(2b0 + b1)
)
+ b1
√

p2

(
κeξ(12b0 + 6b1) + 6b0 + 6b1

)
(p3 + p4)

+24
√

6p2

(
κeξ

(
b2

0 + b0b1 −
b2

1
4

)
+

1
2

(
b0 +

b1

2

)
(b0 + b1)

)]
. (41)

Since W2 = V′2, we have

V2(ξ) =
∫

W2(ξ) dξ,

=
±1

2p3/2
2 b1

[
2
√

6b1 p2 ln
(

b0κeξ + b0 + b1

)
− 2
√

6b1 p2 ln
(

1 + κeξ
)

+ξ

(
b1
√

p2(p3 + p4) + 2
√

6p2

(
b0 +

b1

2

))]
. (42)

Inserting ξ = x + y − ktα

α
into Equation (42) to get v2(x, y, t) and then the taking

partial derivative of v2 with respect to x, the other exact solution for (2) can be written as

u2(x, y, t) =
±1

8αp5/2
2 p1b3

1

[
8
√

6ακb0b3
1 p1 p2

2eδ(x,y,t)

κb0eδ(x,y,t) + b0 + b1
− 8
√

6ακb3
1 p1 p2

2eδ(x,y,t)

κeδ(x,y,t) + 1

+4αb1
3 p1 p3/2

2 (p3 + p4) + 8
√

6αb2
1 p1 p2

2

(
b0 +

b1
2

)]
, (43)
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where δ(x, y, t) = (((p3+p4)
2−(4p5+2)p2)b2

1−24b0b1 p2−24b2
0 p2)tα+4αb2

1 p1 p2(x+y)
4αb2

1 p1 p2
.

5. Some Graphical Representations

In this section, we provide interesting graphical representations of the exact solutions
of the conformable time second integro-differential KP hierarchy Equation (1) obtained
using the Exp-function method and of the (2 + 1)-dimensional conformable time partial
integro-differential Jaulent–Miodek evolution Equation (2) obtained utilizing the general-
ized Kudryashov method. The time-fractional order α for the equations is varied in order
to explore graphical behaviors of the exact solutions reported in the previous section. In
particular, the values of the time-fractional order used for all simulations are α = 1, 0.8
and 0.2. The exact solution (30) for Equation (1) and the exact solutions (39) and (43) for
Equation (2) are graphically portrayed as 3D, 2D, and contour plots according to the used
values of α. All of the 3D plots are drawn on the domain 0 ≤ x, t ≤ 10 with the fixed value
y = 1. The 2D graphs, showing a relation of u(x) and x, are depicted on 0 ≤ x ≤ 10 with
y = t = 1. Here, the contour plots, presenting a 3D surface by plotting constant u slices on
a 2D plane, are plotted to connect the (x, t) coordinates, where the given values of u occur
and y is fixed at y = 1. Furthermore, the physical explanations of the displayed graphs are
discussed in this section.

In Figure 1, the graphs of the exact solution u(x, y, t) in (30), constructed using the
Exp-function method, for problem (1) are unfolded in different aspects. Using the values
of α as shown above and setting the free parameters a−1 = −1, b0 = 5 and b1 = 0.001, the
solution (30) is evaluated and plotted on the domains for the 3D, 2D, and contour plots in
Figure 1. In particular, Figure 1a–c shows the 3D, 2D, and contour plots for solution (30),
respectively, when α = 1. Figure 1d–i are portrayed in the same manner as before except
using α = 0.8 and α = 0.2, respectively. By classifying the shapes of the 3D and 2D graphs
in Figure 1, one can identify that solution (30) is a bell-shaped solitary wave solution.
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(a) (b) (c)
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Figure 1. Associated plots of u(x, y, t) in Equation (30) obtained using the Exp-function method: (a–c)
3-D plot, 2-D plot, and contour plot, respectively when α = 1; (d–f) 3-D plot, 2-D plot, and contour
plot, respectively when α = 0.8; (g–i) 3-D plot, 2-D plot, and contour plot, respectively when α = 0.2.

Figure 1. Associated plots of u(x, y, t) in Equation (30) obtained using the Exp-function method: (a–c)
3D plot, 2D plot, and contour plot when α = 1; (d–f) 3D plot, 2D plot, and contour plot when α = 0.8;
(g–i) 3D plot, 2D plot, and contour plot when α = 0.2.



Computation 2021, 9, 52 12 of 19

Figures 2 and 3 show the solution graphs for problem (2), which are generated using
the generalized Kudryashov method. Specifically, the solution u1(x, y, t) in (39), in which
the top sign of ∓ is chosen, is graphically plotted in Figure 2, and the solution u2(x, y, t)
in (43), in which the top sign of ± is taken, is drawn in Figure 3. Apart from using
α = 1, 0.8, 0.2 and the domains mentioned above, the following two sets of the parameter
values {κ = 1, p1 = −3, p2 = 3, p3 = 3, p4 = 5, p5 = 1} and {κ = 1, p1 = 3, p2 = 1,
p3 = −1, p4 = −0.1, p5 = 3, b0 = −0.05, b1 = 0.6} are inserted into solution (39) and
solution (43), respectively, in order to depict their 3D, 2D, and contour plots. Figure 2a–c
demonstrates the 3D, 2D, and contour graphs of the solution u1(x, y, t) when α = 1 is
used. However, the 3D, 2D, and contour plots of the solution u1(x, y, t) when α = 0.8 and
α = 0.2 are shown in Figure 2d–i. The physical behavior of these graphs is characterized as
a kink-type solution.
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Figure 2. Associated plots of u1(x, y, t) in Equation (39) obtained using the the generalized Kudryashov
method: ( a–c) 3-D plot, 2-D plot, and contour plot, respectively when α = 1; (d–f) 3-D plot, 2-D plot,
and contour plot, respectively when α = 0.8; (g–i) 3-D plot, 2-D plot, and contour plot, respectively
when α = 0.2.

Furthermore, Figure 3a–c displays the 3-D, 2-D and contour plots of the solution u2(x, y, t)
in (43), respectively, when α = 1. Proceeding in like manner to the above plots, except utilizing
α = 0.8 and α = 0.2, the corresponding graphs are portrayed in Figure 3d–i, respectively. By
observing the graph structures as shown in Figure 3, their physical behavior is considered
as a singular multiple-soliton solution.

We can observe some effects of the variation of the time-fractional order α on the 3D
and 2D graphs in Figures 1–3. It can be possibly concluded that when the value of α is
varied for depicting the 3D and 2D solutions in each figure, their graphical structures are
remained the same but their magnitude change and translation are detected. In addition,
how the magnitude and translation of the 3D and 2D graphs alter depending upon the
change of α.

Figure 2. Associated plots of u1(x, y, t) in Equation (39) obtained using the generalized Kudryashov
method: (a–c) 3D plot, 2D plot, and contour plot when α = 1; (d–f) 3D plot, 2D plot, and contour plot
when α = 0.8; (g–i) 3D plot, 2D plot, and contour plot when α = 0.2.

Furthermore, Figure 3a–c displays the 3D, 2D, and contour plots of the solution u2(x, y, t)
in (43) when α = 1. Proceeding in a similar manner to the above plots, except utilizing α = 0.8
and α = 0.2,, the corresponding graphs are portrayed in Figure 3d–i,. As can be seen in the
graph structures shown in Figure 3, their physical behavior is considered as a singular
multiple-soliton solution.

We can observe some effects of the variation of the time-fractional order α on the 3D
and 2D graphs in Figures 1–3. It can be possibly concluded that when the value of α is
varied to depict the 3D and 2D solutions in each figure, their graphical structures remain
the same, but their magnitudes change and translations are detected. In addition, how the
magnitude and translation of the 3D and 2D graphs alter depends on the change in α.
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Figure 3. Associated plots of u2(x, y, t) in Equation (43) obtained using the the generalized
Kudryashov method: (a–c) 3-D plot, 2-D plot, and contour plot, respectively when α = 1;
(d–f) 3-D plot, 2-D plot, and contour plot, respectively when α = 0.8; (g–i) 3-D plot, 2-D plot,
and contour plot, respectively when α = 0.2.

6. Discussion and Conclusions

In summary, the Exp-function method and the generalized Kudryashov method along
with the use of transformation (6) and symbolic software packages such as Maple have
been successfully employed to obtain exact traveling wave solutions of the conformable
time second integro-differential KP hierarchy Equation (1) and the (2 + 1)-dimensional
conformable time partial integro-differential JM evolution Equation (2), respectively. Uti-
lizing the Exp-function method to analytically solve Equation (1) and after removing its
trivial and disqualified solutions, only one exact solution (30) has been obtained. As a
result, solution (30) is expressed in terms of the exponential functions, or equivalently, the
hyperbolic functions and it behaves as a bell-shaped solitary wave solution under a certain
set of the parameter values. In order to compare our solution (30) with some solutions from
relevant literature, one can consider the mathematical expressions between our solution
(when α = 1) and the solutions in [28,30]. In [28], the generalized Kudryashov method
was utilized to solve the second integro-differential KP hierarchy equation for which the
exponential function solutions were generated. Their solutions displayed the behavior
of a bell-shaped solution. In [30], one of the solutions of the second integro-differential
KP hierarchy equation, established by the (G′/G, 1/G)-expansion method, was expressed
in terms of the hyperbolic functions and characterized as an anti-bell soliton solution.
Roughly speaking, solution (30) when α = 1 has the mathematical structure similar to that
of the solutions in the mentioned literature.

Applying the generalized Kudryashov method to obtain exact solutions of Equation (2)
and after eliminating its trivial solutions, we have achieved two different explicit exact
solutions as shown in Equations (39) and (43). The solutions are written in terms of the

Figure 3. Associated plots of u2(x, y, t) in Equation (43) obtained using the generalized Kudryashov
method: (a–c) 3D plot, 2D plot, and contour plot when α = 1; (d–f) 3D plot, 2D plot, and contour
plot when α = 0.8; (g–i) 3D plot, 2D plot, and contour plot when α = 0.2.

6. Discussion and Conclusions

In summary, the Exp-function method, the generalized Kudryashov method, the use
of transformation (6), and symbolic software packages such as Maple were successfully
employed to obtain exact traveling wave solutions for the conformable time second integro-
differential KP hierarchy Equation (1) and the (2 + 1)-dimensional conformable time partial
integro-differential JM evolution Equation (2), respectively. Utilizing the Exp-function
method to analytically solve Equation (1) and removing the trivial and disqualified so-
lutions, only one exact solution (30) was obtained. As a result, solution (30) is expressed
in terms of the exponential functions, or equivalently, the hyperbolic functions, and it
behaves as a bell-shaped solitary wave solution under a certain set of parameter values.
In order to compare our solution (30) with certain solutions from the relevant literature,
one can consider the mathematical expressions between our solution (when α = 1) and
the solutions in [28,30]. In [28], the generalized Kudryashov method was utilized to solve
the second integro-differential KP hierarchy equation for which the exponential function
solutions were generated. Their solutions displayed the behavior of a bell-shaped solu-
tion. In [30], one of the solutions of the second integro-differential KP hierarchy equation,
established by the (G′/G, 1/G)-expansion method, was expressed in terms of the hy-
perbolic functions and characterized as an anti-bell soliton solution. Generally speaking,
solution (30) when α = 1 has a mathematical structure similar to that of the solutions in
the aforementioned literature.

Applying the generalized Kudryashov method to obtain exact solutions for Equa-
tion (2) and after eliminating the trivial solutions, we obtained two different explicit exact
solutions, as shown in Equations (39) and (43). The solutions are written in terms of the
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exponential functions. By plotting these solutions computed using the specific sets of pa-
rameter values, a kink-type solution and a singular multiple-soliton solution were obtained.
A comparison between our solutions for (2) when α = 1 and the exact solutions of the
(2 + 1)-dimensional Jaulent–Miodek equation obtained in [51] is as follows: In [51], the
complex method was used to solve the (2 + 1)-dimensional JM equation for which the
hyperbolic cotangent function solutions were established. The solutions were characterized
as a solitary wave solution of singular kink-type. It can be seen that the structures of
their solution and our solution are found in many physical phenomena, such optics and
nonlinear waves.

All of the obtained exact solutions discussed in this paper were verified by substituting
them back into their corresponding equations with the help of the Maple package program.
The Exp-function method and the generalized Kudryashov method are straightforward,
reliable, efficient, and pragmatic mathematical tools for solving the proposed equations
because they produce uncomplicated exact solution forms. These two methods could be
effectively applied to solve a wide range of nonlinear partial integro-differential equations
arising in natural phenomena, giving their analytically extracted exact solutions.
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Appendix A

This part demonstrates the expression of each coefficient Ci of exp(iξ), i = −5,−4,
. . . , 4, 5 in Equation (25) as follows:
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C−5 = ka−1b4
−1 +

5a3
−1b2
−1

2
+

5a−1b4
−1

16
+ Cb5

−1 +
15a2
−1b3
−1

4
,

C−4 = ka0b4
−1 +

35a0a−1b3
−1

4
+

15a0a2
−1b2
−1

2
+ 10a2

−1b2
−1b0 + 5Cb0b4

−1 + 5a3
−1b0b−1

+
9a−1b3

−1b0

16
+ a0b4

−1 + 4ka−1b0b3
−1,

C−3 = 10Cb2
0b3
−1 + 5a3

−1b1b−1 +
25a1a−1b3

−1
2

+ ka1b4
−1 −

94a−1b1b3
−1

4
+

31a−1b2
−1b2

0
16

+
19a0b3

−1b0

16
+

15a1a2
−1b2
−1

2
+

15a2
0a−1b2

−1
2

+
25a2
−1b1b2

−1
4

+
95a2
−1b−1b2

0
8

+ 5Cb1b4
−1

+
5a3
−1b2

0
2

+
45a2

0b3
−1

8
+

61a1b4
−1

16
+ 4ka0b0b3

−1 + 15a0a2
−1b0b−1 + 4ka−1b1b3

−1

+6ka−1b2
0b2
−1 + 20a0a−1b0b2
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