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Abstract: Gene regulation is orchestrated by a vast number of molecules, including transcription
factors and co-factors, chromatin regulators, as well as epigenetic mechanisms, and it has been
shown that transcriptional misregulation, e.g., caused by mutations in regulatory sequences, is
responsible for a plethora of diseases, including cancer, developmental or neurological disorders.
As a consequence, decoding the architecture of gene regulatory networks has become one of the
most important tasks in modern (computational) biology. However, to advance our understanding
of the mechanisms involved in the transcriptional apparatus, we need scalable approaches that can
deal with the increasing number of large-scale, high-resolution, biological datasets. In particular,
such approaches need to be capable of efficiently integrating and exploiting the biological and
technological heterogeneity of such datasets in order to best infer the underlying, highly dynamic
regulatory networks, often in the absence of sufficient ground truth data for model training or testing.
With respect to scalability, randomized approaches have proven to be a promising alternative to
deterministic methods in computational biology. As an example, one of the top performing algorithms
in a community challenge on gene regulatory network inference from transcriptomic data is based
on a random forest regression model. In this concise survey, we aim to highlight how randomized
methods may serve as a highly valuable tool, in particular, with increasing amounts of large-scale,
biological experiments and datasets being collected. Given the complexity and interdisciplinary
nature of the gene regulatory network inference problem, we hope our survey maybe helpful to both
computational and biological scientists. It is our aim to provide a starting point for a dialogue about
the concepts, benefits, and caveats of the toolbox of randomized methods, since unravelling the
intricate web of highly dynamic, regulatory events will be one fundamental step in understanding
the mechanisms of life and eventually developing efficient therapies to treat and cure diseases.

Keywords: scalable gene regulatory network inference; randomized algorithms; multi-omics data
integration

1. Introduction

“... So there are very complex different ways that genes are regulated. I kind of look at it
as playing music: You have chords on a guitar, or you play with a right and a left hand
on the piano. It depends what strings you push down and what strings you strum, or
what keys are up and what keys are down, that determine what the profile of the gene
expression will be or the sound that you hear.”

David M. Bodine [1]

Gene regulatory networks lie at the core of all biological processes of organisms and—in
their most basic form—describe the intricate orchestration of transcription factor proteins
binding to regulatory sequences of their respective target genes in order to affect their
temporal and spatial expression [2]. Gene regulation is the driver behind the emergence of
specific cell types with individual gene expression profiles, all derived from a differential
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utilization of the same underlying genomic sequences. It is also pivotal in enabling an
organism to cope with changes in its environment, especially for sessile organisms, such as
plants [3]. As a consequence, advancing our understanding of these regulatory systems
can directly impact (personalized) medicine as many traits and diseases are associated
with variation of regulatory sequences or dysfunctional regulators [2]. In agriculture,
targeted alteration of transcriptional regulation has been essential to improve modern crop
yields [4], and its elucidation may further help increase metabolite production rates as well
as resilience against environmental stresses [5,6].

As a consequence, computational reverse engineering of gene regulatory networks
has gained a lot of attention over the last decades, not least driven by the emergence of
large-scale gene expression datasets [7–9]. However, gene regulatory network inference
remains challenging. While inference methods for in silico or prokaryotic data perform
well, inferring regulatory networks from eukaryotic datasets is more difficult [8]. This
may in part be due to experimental noise in the data itself. To a larger extent, however,
eukaryotic regulation of gene function is further affected by chromatin remodeling, post-
transcriptional and/or post-translational processes [10]. Fortunately, heterogeneous data
integration methods have emerged to construct more reliable models of eukaryotic gene
regulation [11–13] or gene function prediction [14,16,110].

To advance our understanding of the mechanisms involved in the transcriptional
apparatus, we need scalable approaches that can deal with the increasing number of large-
scale, high-resolution, biological datasets. Such approaches need to be capable of efficiently
integrating and exploiting the biological heterogeneity captured by these datasets in order
to best infer the context-specific underlying network architectures. Such heterogeneity
includes different datatypes, experimental treatments, developmental stages, cell types,
and even organisms. Often, the analysis is further challenged by the absence of sufficient
ground truth data for systematic model training or testing. With respect to scalability,
randomized approaches have proven to be a promising alternative to deterministic methods
in computational biology (and beyond). As an example, one of the top performers in a
community challenge [8] on gene regulatory network inference from gene expression data
was based on a random forest regression model [17].

In this survey, we aim to: (i) introduce some fundamental molecular biology as it
relates to gene regulation as well as the technologies that drive its discovery; (ii) present the
basic concepts behind randomness and randomized algorithms; and (iii) discuss three types
of randomized methodologies that are among the most frequently used in computational
biology and gene regulatory network inference research in particular. Given the complexity
and interdisciplinary nature of the gene regulatory network inference problem, we hope
our survey may be helpful to both computational and biological scientists, as well as
provide a starting point for a dialogue about the concepts, benefits, and caveats of the
toolbox of randomized methods.

2. The Molecular Biology of Gene Regulation and the Technologies Used to Study It

Although Barbara McClintock discovered the interaction of two genetic loci already
in 1951 by showing that differentially pigmented sectors of the maize kernel’s pericarp
were due to mobile elements, now known as transposons [18], the first discovery of a
gene regulation system is widely considered to be that of the lac operon in Escherichia
coli in 1961 by Francois Jacob and Jacques Monod [19]. It involves a negative feedback
loop, in which the enzymes of the lactose metabolism are expressed only in the presence
of lactose and simultaneous absence of glucose [19]. Generally speaking, transcriptional
regulation requires numerous key players, such as the polymerase complex, transcrip-
tion factors, co-factors, and chromatin modulators to be at the right place at the right
time (see Figure 1). Transcription factors thereby bind specific sequence motifs either in
promoter regions, i.e., genomic regions proximal to their target gene, or further distant
within so-called distal enhancer regions. While activating transcription factors recruit the
transcription machinery, which then initiates a gene’s transcription to messenger RNAs
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(mRNA), repressing transcription factors recruit transcriptional co-repressors such as top-
less [20]. Functional genomic assays such as chromatin immuno-precipitation followed by
sequencing (ChIP-Seq) [21–23]) and poly-A mRNA sequencing (RNA-seq) [24] have been
instrumental in allowing for the mapping of transcription factor binding sites and steady
state gene transcript measurements, respectively.

Figure 1. Transcriptional regulation involves a variety of key players, including the polymerase
complex, transcription factors and co-factors, activators, chromatin regulators. Transcription factors
proteins thereby bind sequence motifs in promoter regions of a target gene, or distal enhancers and
enable the recruitment of the transcription machinery, which then initiates a gene’s transcription
(Figure adapted from [25]).

Virtually all steps of gene expression regulation can be modulated, beginning with
the initiation of transcription, RNA processing, up to post-translational modifications of
the protein. For example, aforementioned enhancer regions represent important regulator
sequence elements bound by transcription factors thereafter directing them to the promoters
of target genes [26]. As recent evidence indicates that mutations in enhancers may cause
genetic diseases and cancer [26–28], there is a great need for their genome-wide analysis.
However, their low predictability and distant location relative to their corresponding
target genes have been challenging obstacles for the genome-wide discovery of functional
enhancers. It had long been known that the genome’s heavily condense structure, organized
with protein-complexes together referred to as chromatin, was essential for the spatial
compression into nuclei. Until the last decade, however, there was a lack of tools to appreciate
the importance of the genome’s dynamic accessibility in fine control of gene expression, or
to study the chromatin structure at sites accessible for transcription, including the three-
dimensional co-localization of enhancer and promoter elements. To this end, Chromosome
Conformation Capture assays [29], such as Hi-C [30], HiChIP [31] or ChIA-PET [32], have
been developed to identify spatial proximities across an entire genome. That said, the
computational tools for pairing enhancers and target genes are still evolving [33,34].

An example of post-transcriptional gene regulation are microRNAs (miRNA), i.e.,
endogenous, short (e.g., 24 bp), non-coding RNAs that negatively regulate mRNA abun-
dance by binding to the complementary sequences throughout the target mRNAs, thereby
targeting it for RNA silencing [35]. The important role of miRNAs in cancer development
has long been established [36,37]. For example, in breast cancer, transcriptional repression
of BRCA1 (BReast CAncer gene 1) is caused by over-expressed microRNA-182 [38].

In general, the binding of transcription factors to sequence motifs depends on chro-
matin accessibility [39–41]. Most of the chromatin exists as tightly packed condense DNA
(heterochromatin), although two forms, constitutive heterochromatin and facultative hete-
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rochromatin, are distinguished based on its accessibility, or lack thereof, to most proteins
including transcription factors [42]. This structure is achieved by winding the genomic
sequences around protein octamers, called histones, which affects the physical accessibility
of the DNA [39]. Hence, through post-translational modifications to the tails of these
histone proteins, significant portions of the genome can (dynamically) be silenced, and thus
become inaccessible to transcription factors or polymerases [43,44]. Such modifications are
facilitated by specialized enzymes, such as histone methyltransferases, acetyltransferases
and deacetylases. These specialized enzymes remove or add a diverse range of covalent
modifications including ubiquitin, phosphates, methyl or acetyl groups to histone side
chains. Together these modifications, referred to as the histone code, serve to recruit other
proteins to change chromatin accessibility. For example, pioneer transcription factors play
an important role in opening chromatin, which allows transcription factor and polymerase
access, whereas histone methylation is often associated with reduced accessibility and
sequestering of transcription factors binding elements [45]. Techniques such as MNase-
Seq, FAIRE-Seq, DNase-Seq, and ATAC-Seq [39,41,46,47] are used to assess chromatin
accessibility, or very recently, MOA-Seq to identify all transcription factor binding sites
genome-wide [48].

Aside from chromatin inaccessibility, methylation of the DNA itself is also often
associated with the silencing of gene expression [49], although the effect is dependent upon
the type of methylation as well as its genomic context [50]. DNA methylation is facilitated
by methyltransferase enzymes on cytosine nucleotides. While in animal systems cytosine
methylation is predominantly found in CG dinucleotide sequences, also called CpG islands,
in plants, methylation occurs in symmetric (i.e., CG and CHG, where H can be A, C, or T)
as well as asymmetric (i.e., CHH) genomic contexts [51]. Patches of methylated CG and
CHG in promoter and enhancer regions are predominantly associated with a reduction of
a gene’s expression [49]. However, they are also found in promotors of microRNAs, which
can indirectly increase a gene’s mRNA translation [52]. In addition, the interplay between
histone modifications and genome methylation has been characterized to cooperatively
control gene regulation [49]. The classical way to measure DNA methylation is bisulfite
sequencing [53]. The sodium bisulfite treatment converts unmethylated cytosines into
thymines, which allows the quantification of genome-wide methylation levels at single
nucleotide resolution [51].

Finally, mutations or natural variation within gene promoters or enhancers are of
particular interest for gene regulation analysis [54]. Single nucleotide polymorphisms
(SNPs) may cause the loss or creation of promoter binding elements and enhancers. While
this is an essential element of evolution, it is also associated with transcriptional miss-
regulation, cancer, and genetic diseases [33,34]. Given the plethora of biological layers
affecting gene regulation and the heterogeneity of the technologies used to capture them,
there has been a considerable amount of work focusing on the computational integration
of these diverse functional genomic assays [50,55–68].

3. A Primer on Randomness and Randomized Algorithms

Randomness is a fascinating and powerful concept. Historically, two main world-
views have been postulated regarding its nature. The first one thinks of the world as
being basically deterministic, and therefore argues that what we perceive as (apparent)
randomness is a mere lack of knowledge of the exact state or description of a system
of interest. Throughout history, following this kind of reasoning, randomness has been
defined as a sort of antipode of absolute (observational) power. Probably the most famous
characterization of this kind of deterministic worldview may be the one given by Laplace
in 1814: “... intelligence which could comprehend all the forces that set nature in motion, and all
positions of all items of which nature is composed—an intelligence sufficiently vast to submit these
data to analysis—it would embrace in the same formula the movements of the greatest bodies in the
universe and those of the lightest atom; for it, nothing would be uncertain and the future, as well as
the past, would be present to its eyes.” [69]. Paradigmatic examples include, e.g., many-body
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systems in classical mechanics too complex to be considered in all detail and leading to
the development of statistical mechanics and thermodynamics, or deterministic chaos [70]
where varying initial conditions, even for dynamical systems involving few degrees of
freedom, lead to an exponential separation of trajectories, making longtime predictions
impossible. In contrast, the second view sees the world as inherently non-deterministic,
hence, randomness is an intrinsic property, independent of our knowledge about the sys-
tem. Intrinsic here means that this kind of randomness cannot be understood in terms of
a deterministic, hidden variable model [71]. A prime example of such worldview would
be quantum mechanics, where, contrary to Einsteins famous statement: “God does not play
dice!” [72], Born’s interpretation of the wave function implies that one may count only
on an intrinsically probabilistic description of reality [73], and, as a consequence, has to
acknowledge that quantum mechanics could be inherently random [74,75].

Another area in which randomness plays an essential, inherent role is game theory,
here in the form of mixed strategy games. A mixed strategy describes the randomization
over multiple strategies as opposed to playing merely a single (pure) strategy [76], that
is, one randomly chooses among several options to avoid developing a pattern that other
players might exploit. It has been proven that if mixed strategies are allowed, every (finite)
game has a Nash equilibrium [76], i.e., none of the players has an incentive to change her
or his strategy given the opponent’s strategy. However, this is not the case for pure, i.e.,
deterministic, strategies. As a consequence, randomness guarantees the existence of a
Nash equilibrium that would not exist otherwise. Note that playing with a mixed strategy
leads to unpredictable outcomes in each play, yet the strategy is rational, i.e., it is meant to
maximize a given objective’s expected value. Hence, as long as not humanly predictable,
in practice, it makes no difference as to whether an outcome is genuinely unpredictable as
in quantum mechanics, or predictable by an outside, more powerful observer [77].

As a final example, in genetics, randomness plays another fundamental role, e.g., in the
form of random variations in heritable traits as introduced in Darwin’s theory of evolution
by natural selection [78]. Here, one might refer to the definition given by geneticist
Theodosius Dobzhansky: “Mutations are random changes because they occur independently of
whether they are beneficial or harmful.” [79]. Similarly, the Hardy–Weinberg equilibrium law
in population genetics [80], which gives the relative frequencies of genotypes and alleles in
a given (infinite) population, is based on the assumption of random mating, i.e., mating
irrespective of genetic traits as a selection criterion.

Just these few examples should suffice to convey the important role of randomness, be
it apparent or inherent, in nature as well as in numerous scientific and practical applications.
Given its importance, in particular within the field of computation theory, we will give a
brief account of the mathematical theory of randomness, as well as how it translates into
randomized algorithms.

3.1. A Mathematical Theory of Randomness

Gregory Chaitin stated that “randomness is the true foundation of mathematics” [81]. The
mathematical theory of randomness, may be seen as an extension of classical probability
theory in order to introduce individual random objects [82]. As an example, let’s say a fair
coin is flipped ten times and the resulting sequence contains five tails in succession, e.g.,
0000011111. The experiment is then repeated, yielding the same number of heads and tails
as in the previous one, yet in a more unordered fashion, such as 0010100111. One may have
an immediate intuition about the first outcome to appear more special than the second one.
However, is such an intuition justified, given that, according to classical probability theory,
the probability for both outcomes is exactly the same? Classical probability theory may
not be as helpful to transform such intuitions into meaningful mathematical notions given
that it is a theory about sets of objects, not of individual objects. The theory of randomness,
however, often referred to as algorithmic randomness, was founded based on the theory
of computation, in order to give meaning to these individual random objects, specifically
random individual sequences.
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Early attempts to define randomness in terms of individual random objects date
back to Von Mises [83] who formalized already in 1919 the notion that random sequences
should be unpredictable. This definition was later extended by Wald [84] and Church [85]
giving rise to the notion of what is known as Mises–Wald–Church randomness. It already
contains several key ingredients of the modern theory of randomness, including: (i) an
insight that randomness is a relative concept, rather than an absolute one, i.e., it depends
on choosing a set of selection rules; and (ii) its definition is founded on the theory of
computation, thereby restricting to computable selection functions. Other approaches such
as Kolmogorov complexity [86] define the intuition that random sequences, given their
lack of any inherent, observable structure, are hard to describe by an algorithm, while
the approach to define randomness as proposed by Martin-Löf [87] formalizes intuitions
underlying measure theory and classical probability. Here, we describe the definition
proposed by Kolmogorov and refer the reader to [82] and [88] for excellent overviews of
the variety of approaches to define algorithmic randomness.

Kolmogorov theory [86] measures the complexity of random objects in terms of the
length of the shortest program needed to generate or describe it. In contrast to information
theory, where the entropy measures the randomness for a distribution [89], Kolmogorov’s
ideas allow for the evaluation of the randomness of an individual sequence and the theory
of computation can be effectively used for its definition.

The Theory of Computation and Kolmogorov’s Definition of Randomness

The theory of computation emerged out of concerns about provability in mathematics
in the early 1930s. Gödel’s famous incompleteness theorem states that in any formal system
powerful enough to perform arithmetic reasoning, there are always true statements that
cannot be proved within the system [90]. Although being a statement about mathematical
provability, the proof of the incompleteness theorem is in its core a statement about com-
putability, as the recursive functions utilized by Gödel, were later shown by Turing [91] to
define the same class of functions computable by a Turing machine, i.e., there exists a finite
step-by-step process, that is able to computes them. Therefore, having a precise mathemat-
ical definition of the notion of computability facilitates proving that certain functions or
problems cannot be computed, with its prime example being Turing’s Halting Problem.
The Halting Problem describes the possibility to decide, given a Turing machine and an
input, whether the machine will produces an output in a finite number of steps, as opposed
to continuing indefinitely. Turing [91] showed that the Halting Problem is undecidable,
that is, that there is no algorithm deciding it.

In order to derive a definition of randomness of sequences in the sense of Kolmogorov,
i.e., the length of the shortest program needed to generate it, in a more formal way the
notion of a Turing machine is well suited. Note that for illustrative purposes, we only
discuss algorithmic randomness in the context of finite binary sequences, which is not a
severe restriction, given that many objects, including numbers or graphs, may be naturally
represented as such sequences. Further, our example constitutes more than just a toy
problem given that, e.g., the verification of binary sequences with respect to the degree
of their randomness lies at the heart of applications in cryptography [88]. Following
Kolmogorov’s reasoning with respect to the two sequences example given in the beginning
of the section, one might be tempted to say that the first one, consisting of consecutive
heads followed by the same number of tails, is simpler than the second, because it has a
shorter description. More formally, given a Turing machine M, one may define a sequence
y to be a description of another sequence x if M(y) = x, i.e., M produces x when given
y as input, i.e., the length of the sequence y becomes a measure of the complexity of x.
However, this definition still depends on the choice of M. Kolmogorov recognized that
a canonical choice for M would be a universal Turing machine, that is, a machine that is
able to simulate all other Turing machines. Hence, Kolmogorov complexity of sequence
x is denoted as C(x), i.e., C(x) = n means that there is a sequence y of length n such
that M(y) = x, and that there is no other description sequence y smaller than n. Hence,
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a sequence x is considered to be (Kolmogorov) random if it has no description y that is
shorter than the sequence itself, that is, if there is no way to describe the sequence more
efficiently than by listing it completely. In contrast, a sequence of 500 tails would not be
considered to be random, since its shortest description is much shorter than the sequence
itself. Note that the practical application of Kolmogorov complexity is generally hindered
by the fact that the complexity function C is not computable, which is intuitively plausible,
since to estimate the complexity of y one would have to evaluate for which inputs x the
universal Turing machine M produces y as an output, which itself is impossible due to
the undecidability of the Halting Problem. As a consequence, aside a beautiful theoretical
advancement of a definition of algorithmic randomness, one might not expect such a
definition to be of much practical relevance. It turns out, however, that it does have
genuine applications nonetheless, many of which are described in [92]. Leaning more
towards the practical application side, we will, however, now discuss how randomness is
actually used to define algorithms giving rise to the field of randomized algorithms, and
how it can be implemented using stochastic simulations and probabilistic modeling.

3.2. Randomized Algorithms

Besides its fascinating, fundamental role in nature and the attempts to its rigorous,
conceptional definition, it is equally intriguing that randomness can be used as an effective
strategy for designing algorithms. By the deliberate introduction of randomness into
computations [93], randomized algorithms have shown to outperform some of the best
deterministic approaches and, furthermore, even allowed for the computation of previously
infeasible problems. Monte Carlo methods, introduced by Stan Ulam, Nick Metropolis and
John von Neumann [94], rank among the most prominent randomized approaches and have
been listed among the best algorithms of the 20th century [95]. Randomized algorithms
typically exploit a certain amount of randomness as auxiliary input to their core logic,
expecting to achieve reasonable performance on average, that is over all possible choices
of randomization. For example, the randomized variant of the Quick Sort algorithm [96]
uses random numbers to pick the next pivot. Similarly, Karger’s algorithm for minimum
cut detection on graphs randomly selects individual edges for contraction [97]. For a more
comprehensive introduction to randomized methods, we refer the reader to [98] or [93].

The two aforementioned examples, that is randomized sorting or the mininum cut
algorithm, also exemplify two general design patterns of randomized algorithms. The
sorting algorithm refers to a class of randomized algorithms known as Las Vegas algorithms,
which are designed to guarantee to always produce a correct or optimum result; however,
their time complexity is dependent on a random variable itself. The minimum cut algorithm,
on the other hand, belongs to the aforementioned class of algorithms, known as Monte
Carlo methods, which are designed to exhibit deterministic time complexity, but a non-zero
probability for the output to be incorrect. Hence, Monte Carlo algorithms are typically
easier to analyze with respect to their worst case time complexity, as opposed to Las Vegas
algorithms, where time complexity is evaluated as the expected value over all possible
values of the input random variables. Due to the potential erroneous outputs of Monte
Carlo algorithms, the success probability can be amplified by running the algorithm several
times with different random sub-samples of the input, and comparing their results, thereby
sacrificing runtime, a technique known as amplification. Due to these design patterns,
randomized algorithms are of particular interest when certain time or memory constraints
exist, and an average case solution is acceptable. In addition, as already hinted at in the
elucidation of amplification, an underlying assumption that is pervasive throughout the
field of randomized methods is that small random samples taken from a population can
be seen to be representative of the entire population. This is of particular interest, since
computations involving small samples are less expensive, but may still help to determine
characteristic features or latent factors of the whole population [99].

As a side note, in computational complexity theory, randomized algorithms are
typically modeled as probabilistic Turing machines, i.e., non-deterministic Turing machines
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that make random selections between a set of available transitions at each step according
to some probability distribution. As a consequence, a probabilistic Turing machine—unlike
a deterministic one—may have statistical outcomes; that is, on some given input and
instruction state machine, the run times may differ, or the algorithm may even not halt
at all [100]. However, there is a large body of work on studying the class of problems
solvable in polynomial time by randomized approaches, and given the probabilistic nature
of guarantees on performances of randomized algorithms, a variety of class definitions
have been proposed [98].

4. On the History and Current Applications of Randomness and Randomized
Methods in Computational Biology and Gene Regulation Inference

Randomness has become a key ingredient in several areas of designing algorithms
for computational biology and beyond, for example, parameter inference and model selec-
tion [101–104] (see Section 4.1), in data sampling [105] and model building [105,106] (see
Sections 4.2 and 4.3) or data dimensionality reduction and manifold learning [107] (see
Section 4.4). Despite aforementioned, theoretical definitions of (algorithmic) randomness
as individual random objects, thus separating it from classical probability theory, the ac-
tual representation and implementation within individual algorithms as stochastic events
is typically based on probabilistic modeling. For example, Bayesian statistical learning
provides a coherent probabilistic framework for modeling uncertainty in systems [108].
In particular, sophisticated sampling methodologies, such as Markov Chain Monte Carlo
based sampling algorithms [108,109], are typically integrated with probabilistic frame-
works [101,102,104,111–113].

One of the earlier examples of applying randomized algorithms in computational
biology, in particular the inference of gene regulation, is the identification of conserved,
transcription factor binding or consensus sequence motifs [114,115]. In their paper Wang
et al. adopt a model of consensus pattern detection, showing that with high probability,
their randomized algorithm is able to find such a pattern in polynomial time, a problem
previously proven to be NP-hard [115]. The aforementioned concepts of random sampling
and Monte Carlo based approaches have also been heavily applied in gene network
inference, e.g., to predict the effect of single-nucleotide polymorphisms on transcription
factor binding affinity [34]. Similarly a plethora of Bayesian modeling approaches based on
using Markov Chain Monte Carlo (MCMC) [116] exist for parameter inference or selecting
between multiple plausible gene regulatory network architectures given the data, such as
(perturbed) gene expression datasets [102,109,111–113,117,118].

Other sophisticated methods include randomized tree-based approaches, which rank
among the best performing ensemble-based machine learning methodologies for classifica-
tion or regression tasks [119,120]. As an example, a random forest regression based gene
regulatory network inference model [17] was one of the top performers in the DREAM5
network inference challenge [8], as well as on a benchmark on network inference from
single-cell transcriptomic data [121]. Other applications of random forest based regression
include, e.g., the mapping of genetic variants accounting for confounding factors, such as
population structure, and nonlinear interactions between individual causal variants [122].
An example for the design of a random forest-based classification approach for the predic-
tion of high impact cis-regulatory mutations on transcription factor binding is given in [123].
Randomized methods have also been shown to be highly effective for graph clustering and
module detection problems. In a recent community challenge that performed a comprehen-
sive assessment of module identification methods across diverse gene networks [124] one
of the top performers has been a random walk based approach [125] originally proposed
to cluster protein–protein interaction networks [126]. In particular, with the emergence of
ever increasing large-scale, high-dimensional datasets, the field of randomized numerical
linear algebra [127,128], and in particular randomized matrix decomposition [107] has
gained significant attention. Applications include, e.g., single cell RNA-Seq clustering
based on Random Projection [129] or large-scale gene regulatory network inference using
randomized Singular Value Decomposition [130]. Here, we want to present some of these
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major areas in randomized algorithms, i.e.: (i) Markov Chain Monte Carlo based sampling
(Section 4.1); (ii) random forest regression (Section 4.2); (iii) random walks (Section 4.3); and
(iv) randomized matrix decomposition (Section 4.4), alongside some of their applications
in computational biology in general, and gene regulatory network inference in particular.

4.1. Markov Chain Monte Carlo Based Sampling for Gene Regulatory Network Structure Selection

Given a set of competing hypotheses regarding different models, one needs to find the
one best explaining the observed data. In a Bayesian framework, models are compared via
Bayes factors, i.e., the ratio of evidences, with the model’s evidence being the likelihood
of the model given the data. Of equal interest is the inference of parameters that define
a model. Bayesian modeling may be seen as a coherent system for such a probability-
based belief updating. One may already possess some prior knowledge about a model,
collect additional data and subsequently integrate the data with the priors to derive some
posterior beliefs, that is what to believe about the model, i.e., model parameters, after
having observed new data. Given such model parameters to be a hidden quantity, Bayesian
inference describes the lack of certainty with regards to their specific value via probability
distributions. As a consequence, any implementation centers on the estimation of the
marginal likelihood of the data, given the model. This quantity is essential to compute
the posterior probability of the model parameters, given the data as well as the model.
It, however, requires a multidimensional integral over all parameters associated with the
statistical model, making any direct computation typically intractable. It is a challenge
analogous to estimating partition functions in statistical mechanics and techniques inspired
by statistical mechanics, such as Markov Chain Monte Carlo (MCMC)-based sampling
approaches [108,110,116], have been utilized to overcome this obstacle in Bayesian compu-
tation, and this is where randomness comes into play. In brief, MCMC simulations [131]
generate sequences of random numbers, i.e., Markov chains, in order for their long-term
statistical properties to converge towards the posterior distribution.

For instance, the target density π may happen to be expressed in terms of multiple
integrals that cannot be solved analytically. A Markov Chain Monte Carlo algorithm allows
for an alternative resolution of this computational challenge by simulating a Markov chain
that explores the space of interest without requiring any apriori knowledge on π, besides
the ability to compute π(θ0) for a given parameter value θ0. Here, a Markov chain describes
a stochastic process, in which the next state is solely dependent upon the current state based
on some probability. More formally, a sequence of random variables {X1, X2, ..., Xt} on a
discrete state space is called a (first order) Markov chain if p(Xt = xt|Xt−1 = xt−1, ..., X1 =
x1) = p(Xt = xt|Xt−1 = xt−1). The validation of this approach comes from the Markov
chain being ergodic, i.e., it converges to a distribution with density π, no matter where the
Markov chain begins at time t0. The Metropolis–Hastings algorithm [132,133] implements
this principle by choosing a proposal, that is, a conditional density K(θ′|θ), also denoted as
Markov kernel, and deriving a Markov chain by successive simulations of the transition:

θt+1 =

θ′ ∼ K(θ′|θ) if r < α := min
(

1, π(θ′)K(θt |θ′)
π(θt)K(θ′ |θt)

)
θt otherwise.

Here, r denotes a random sample drawn from a uniform distribution, and α is the
acceptance probability of the new proposal θ′ (see Figure 2). This acceptance-rejection
feature of the algorithm allows for targeting the density π as its stationary distribution
if the resulting Markov chain is irreducible, i.e., it has a greater than zero probability of
visiting any region of the support of density π in a finite number of iterations. Given
the primary goal of simulating samples from a target distribution π, the performances of
MCMC methods, including Metropolis–Hastings, vary, depending on the correspondence
between the proposal K and the target π. For instance, if K(θ′|θ) = π(θ), the Metropo-
lis–Hastings algorithm reduces to i.i.d. sampling from π, which proves impossible to
implement. It should be noted once again that the application of MCMC based sampling is
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not constrained to a Bayesian modeling of a posterior distribution, but may be used in any
situation where a probability distribution is defined up to its normalization factor.

Figure 2. MCMC algorithms implement Markov chains to explore the geometry of the posterior
density. Prior beliefs are expressed as a probability distribution over parameters θ, e.g., θ = (θ1, θ2),
which are updated when data is collected via the likelihood function to give a posterior distribution
over θ (left, figure adapted from [108]). The acceptance-rejection feature of the algorithm allows
for targeting the posterior as its stationary distribution, if the resulting Markov chain is irreducible
(right, figure adapted from [110]) .

A variety of modern MCMC variants now exist such as generalized Hamiltonian
Monte Carlo methods [134], which exploit geometric information to increase the sampling
efficiency. However, the computational requirements of MCMC methods can be prohibitive
in applications that involve large, high-dimensional data sets or complex models [134].
An alternative is to abandon the theoretical guarantees of MCMC methods and to con-
struct analytically tractable approximations to the true posterior distribution, which is the
underlying motivation of variational methods [135].

As one relevant and representative example of using MCMC in a Bayesian inference
context, we want to discuss the approach by Werhli and Husmeier [117] to identify the
most plausible gene regulatory network architectures, given the data as well as additional
prior biological knowledge. Werhli and Husmeier [117] utilize MCMC for sampling
networks as well as parameters simultaneously from a posterior distribution. Given the
network’s cyclic structure, the joint probability of all random variables factorizes into a
product of less complex conditional probabilities according to conditional independence
relationships defined by an individual, potential network structure m. In turn, given certain
regularity conditions [117], the parameters associated with such conditional probabilities
can be analytically integrated out, allowing for the estimation of the marginal likelihood
or evidence p(d|m), which captures how well the network structure m explains the data d.
Since the objective is to learn causal relationships between interacting nodes in a network,
one wants to find the network structure m that maximizes p(m|d), i.e., the posterior.
Unfortunately, the number of putative network architectures increases super-exponentially
with the number of nodes. In addition, the amount of information from the data and the
prior usually does not suffice to render the posterior distribution p(m|d) sharply peaked
into a single network structure and typically rather spreads over a large set of possible
network architectures. As a consequence, one should refrain from explaining such a
distribution by a single network and, instead, aim to sample a series network architectures
from the posterior distribution p(m|d) so as to obtain a reasonable collection of plausible
networks as well as to capture inherent inference uncertainty.

Since direct sampling from this distribution is typically infeasible, Werhli and Hus-
meier [117] resort to Markov Chain Monte Carlo-based sampling. The posterior can be
defined as p(m|d) ∝ p(d|m)p(m) where p(d|m) is the evidence, and p(m) denotes the
prior distribution, i.e., prior knowledge, over network structures m. Given a network m,
a new structure proposal m′ is proposed from a proposal distribution K(m′|m), which is
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then rejected or accepted according to the standard Metropolis–Hastings scheme with
acceptance probability α defined as:

α := min
(

1,
p(d|m′)p(m′)K(m|m′)
p(d|m)p(m)K(m′|m)

)
The functional form of the proposal distribution K(m′|m) depends on what kind of

proposal moves are chosen. Werhli and Husmeier [117] select three edge-based proposal
operations, i.e., edge creation, deletion and inversion.

Integration of Prior Knowledge on Network Structures

To incorporate biological prior knowledge, i.e., before any evaluation of the data d,
about interactions between nodes, Werhli and Husmeier [117] define a matrix B, where
Bij = 0.5 indicates no prior knowledge about an edge between nodes i and j, while
Bij < 0.5 and Bij > 0.5 denote prior evidence of absence and, respectively, presence of an
edge. To integrate such prior knowledge into the inference of gene regulatory networks,
they define distance functions to evaluate the agreement between a proposed network
structure m, represented as a binary adjacency matrix, and the biological prior knowledge,
i.e., Ek(m) = ∑i,j |Bij − mij| with k ∈ {0, 1} where E0 represents all edge prior beliefs
Bij < 0.5 and E1 all Bij > 0.5 and i, j represent individual nodes. Hence, E0, is associated
with the absence of edges, while E1, is associated with the presence of edges. The prior
distribution over network structures m is then defined to form a Gibbs distribution as:

p(m|β0, β1) =
e−(β0E0(m)+β1E1(m))

Z(β0, β1)

Here, β0 and β1 are parameters denoting the weight of the respective source of prior
knowledge with respect to the data, and the partition function may consequently be
defined as Z(β0, β1) = ∑m e−(β0E0(m)+β1E1(m)). Z sums over the set of all possible network
structures and, as the number of putative architectures increases super-exponentially with
the number of nodes, computation becomes intractable for large networks. Hence, given
such a definition of the prior probability distribution over network structures as well as the
distributions on the parameters β0 and β1, i.e., p(β0) and p(β1), the Metropolis–Hastings
updating scheme may be augmented in order to simultaneously sample both the network
structure and parameters from the posterior distribution p(m, β0, β1|d). Then, a new
network structure m′ is sampled from the proposal distribution K(m′|m) as well as a set of
new parameters from specific proposal distributions K(β′0|β0) and K(β′1|β1), given their
acceptance probability α defined as:

α := min
(

1,
p(m′, β′0, β′1|d)K(m|m′)K(β0|β′0)K(β1|β′1)
p(m, β0, β1|d)K(m′|m)K(β′0|β0)K(β′1|β1)

)
= min

(
1,

p(d|m′)p(m′|β′0, β′1)p(β′0)p(β′1)K(m|m′)K(β0|β′0)K(β1|β′1)
p(d|m)p(m|β0, β1)p(β0)p(β1)K(m′|m)K(β′0|β0)K(β′1|β1)

)
The acceptance probability and, as a consequence, the convergence of the Markov

chain may be enhanced by dividing the proposal move into three sub-moves: (i) sam-
pling a new network structure m′ from the proposal distribution K(m′|m) for fixed set of
parameters β0 and β1 ; (ii) sampling a new parameter β′0 from the proposal distribution
K(β′0|β0) for a fixed parameter β1 as well as a fixed network structure m; and (iii) sam-
pling a new parameter β′1 analogously to β′0. These three sub-moves may then be iterated
until convergence.
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4.2. Random Forest Regression Based Gene Regulatory Network Inference from
Transcriptomic Data

Regression-based approaches to gene regulatory network inference from transcrip-
tomic data are based on the assumption that the expression profiles of the transcription
factors that directly regulate a target gene are the most informative, among all transcription
factors, to predict the expression profile of the target gene. In this regard, gene regulatory
network inference is reformulated as a feature selection problem [119] that seeks to find
the most predictive subset of transcription factors for each target gene. In order to infer
the global gene regulatory network, a regression model is formulated to predict a set of
putative direct regulators among all transcription factors r1, ...rM for each target gene g as

∑N
i=1 (e

g
i − f (er1,...,rM

i ))
2
. Here, f (.) denotes a mapping function to combine the expression

profiles Er1,...,rM (based on N individual expression samples) of M transcription factors to
approximate the expression profile Eg of a target gene, e.g., by minimizing the square error
loss. Several alternative approaches have been proposed for implementing f (.), resulting
in feature selection strategies such as stepwise selection [136], ridge regression [137], least
angle regression [138], or least absolute shrinkage and selection operator (LASSO) [139].
Among all these methods, LASSO has emerged as the most popular in gene network
reconstruction [8]. Unlike ridge regression, which aims to shrink insignificant coefficients
close to zero, Lasso exploits L1 regularization [139] to shrink insignificant coefficients to be
exactly zero. This leads to a much sparser linear model, i.e., only a few predicted regulators
per target gene.

Several tree-based ensemble regression methods have been proposed [17,140–144]. In
contrast to linear regression models, tree-based approaches do not make any assumptions
about the nature of gene regulation. They can, therefore, handle combinatorial and non-
linear interactions, as well as highly correlated input variables and provide an inherent
measure of variable importance. Random forest regression has emerged as one of the
most prominent examples of a tree based approach [105]. The methodology describes
an ensemble of individual decision trees, each constructed based on random sampling
a subset of the original data, to form a Random Forest, hence the name. Each decision
tree describes several, binary if–else condition-based junctions, starting at the top with the
initial starting node. Each node splits into a left and right node until the final, so called leaf
nodes. The value in each leaf does not usually denote the average of observations occurring
within that specific region. The results per tree are averaged across all trees. Randomness
is, therefore, inherent to the model building process and is introduced in two ways, i.e.,
(i) each tree is created from a different sample of the data; and (ii) a different subspace
of features is selected for splitting at each node within a tree. In this way, the inherent
random selection process of this ensemble learning approach eradicates the limitations of
the decision tree algorithm, reducing overfitting by achieving high diversity among the
individual trees, as well as increasing robustness and precision. The method is also flexible
in that it allows a variety of sampling strategies [106,145]. As already mentioned in the
beginning of this section, tree-based methods rank among the best performing ensemble-
based machine learning approaches for classification or regression tasks [119] and have
been among the top performers in the DREAM5 network inference challenge [8], and on
benchmarks on network inference from single-cell transcriptomic data [121]. Since its initial
implementation, extensions have been proposed to handle time-series data [141,142,146] or
integrate prior knowledge [143].

The generalized version of random forest regression based gene regulatory network
inference is illustrated in Figure 3. The main rationale is that for each gene g, a number
of decision trees are grown over different bootstrapped samples of the complete gene
expression dataset. Within each decision tree, the method recursively splits the data
sample. It applies binary tests per node in the tree based on a random subset of either
only dedicated transcription factor genes, or, as in the generalized version, all remaining
genes as putative regulators, trying to reduce the variance of the target gene expression
profile. The logic, similar to linear regression approaches, is to select the set of putative
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regulator genes that best explains the expression profile of the target gene. More formally,
let E represent a gene expression dataset with the input variables Nr being all putative
regulator genes r (e.g., transcription factors or all remaining genes). Ns denotes the set of
gene expression values (e.g., RNA samples from different experiments). For each gene
g, a number Ntree of decision trees is grown over different subsets of Ns. The decrease
of Gini impurity (DGI) is typically used as a criterion for splitting a tree node [105] and
selecting the splitting predictor, i.e., a putative regulator gene ri. Within each tree, the
Gini information gain (IG) of ri at node n, IG(ri, n), denotes the difference between the
impurity at node n and the weighted average of impurities at each child node of n, i.e.,
IG(ri, n) = DGI(ri, n)− wL IG(ri, nL)− wR IG(ri, nR), with nL and nR being the left and
right child nodes of n. wL and wR are the ratios of the number of instances at the left and
right child nodes to the number of instances at node n. At each node, a random subset kr
of putative regulators is evaluated for node splitting based on IG(r, n). Each tree-based
model yields a separate ranking of the genes as potential regulators r of a target gene
g. Averaging these individual predictions over several trees leads to a final prediction
of regulators for each target gene. Note that, as depicted in Figure 3, gene regulatory
networks are typically uni-directional, i.e., a regulator is controlling a target gene, however
the opposite is generally not the case. Of course, the fact that, as stated in [17], a random
forest regression model predicts asymmetric networks does not ensure that the prediction
of these asymmetric links is really informative. Asymmetric predictions might correspond
to spurious predictions, in particular when derived from steady state gene expression data.
However, Huynh-thu et al. [17] were able to show that their random forest based algorithm
tends to correctly assign the highest weight to the true directionality of a gene regulatory
interaction.

Figure 3. The generalized version of random forest regression-based gene regulatory network
inference. Main rationale is that for each gene g, a number of decision trees are grown over different
bootstrapped samples of the complete gene expression dataset, thereby using all remaining genes as
putative regulators, trying to best explain the target gene expression profile. The resulting importance
scores are subsequently combined into an edge matrix, which defines the final, weighted gene
regulatory network. Given the inherent directionality of predicted links, edges not only are weighted,
but also not likely to be symmetric (Figure adapted from [144]).

A second type of tree-based models for gene regulatory network inference worth
mentioning would be Gradient Boosting [147–151], an ensemble learning algorithm that
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uses boosting [152] as a strategy to combine weak learners, like shallow trees, into a
strong predictor. In contrast, random forest regression uses bagging, also called bootstrap
aggregation, for model averaging to improve regression accuracy.

Extension to Prior Knowledge Integration

Main rationale of the prior knowledge integrative approach to random forest regres-
sion as presented in [143] is to introduce a weighted sampling scheme within the random
forest framework in order to incorporate information from additional data sources. As
in [17], the model considers the expression of each gene as a function of the expression of
other genes. However, for each node in the tree ensemble, instead of randomly sampling a
subset of genes from the entire gene set, as done in [17], the approach samples genes, i.e.,
the potential regulators, according to the information provided by other data such as pro-
tein–protein interactions or expression data from perturbation experiments, so that genes
supported by additional data will be favorably sampled as potential regulators. Hence,
information embedded in these additional sources of data is integrated in the network
being constructed, while the effective search space of potential regulators is at the same
time significantly reduced.

4.3. Random Walks for Gene Module Detection in Biological Networks

Many methods have been proposed in order to reduce the complexity of large gene
or protein networks into relevant subnetworks or modules, such as identifying relevant
transcriptional modules from gene regulatory networks [153,154]. A recent community
challenge performed a comprehensive assessment of module identification methods across
diverse protein–protein interaction, signaling, gene co-expression, homology and cancer-
gene networks [124]. Among the top performers of the challenge was a random walk
based approach [125], an extension of the Markov Clustering (MCL) algorithm, originally
proposed on protein–protein interaction networks [126]. In computational biology, MCL
has become very popular specifically to cluster protein sequences as well as genes from
co-expression data [155].

The main assumption of the Markov Clustering algorithm is that in a given graph,
there will be more links within a cluster than between clusters. As a consequence, beginning
at a particular node, and performing a random walk [156], i.e., randomly traveling between
connected nodes, one is more likely to stay within a cluster than to travel between them. A
random walk on a graph is generally calculated as a stochastic process called a Markov
chain, as introduced in section 4.1, in which the next state is solely dependent upon the
current state based on some probability. More formally, given some network structure
defined as a graph G = (V, E) with nodes V and edges E, the graph G may be represented
as an adjacency matrix A. One then simulates some imaginary particle starting a random
walk at some initial node v0 ∈ V and iteratively moving to a randomly selected neighboring
node. Considering the time t ∈ N, to be discrete, then after t time steps the particle
would be at node vt. It then walks from vt to vt+1, some randomly chosen adjacent node
of vt following the transition matrix M, i.e., the column normalization of A. Column
normalization of A is achieved as M = AD−1 with D being the diagonal degree matrix of
graph G. Therefore, we can write ∀x, y ∈ V, ∀t ∈ N:

p(vt+1 = y|vt = x) =

{
1

d(x) if(x, y) ∈ E,

0 otherwise.

with d(x) denoting the degree of x in the graph G. Defining pt(v) as the probability for
the random walk to be at node v at time t, we can describe the evolution of its probability
distribution pt = (pt(v))v∈V as: pt+1 = Mpt. If existing, the stationary distribution, i.e.,
the solution to the equation p∗ = Mp∗, describes the probability for the particle to remain
at a given node for an infinite amount of time. When discussing random walks in the
context of their application within the Markov Clustering algorithm in [126], one needs
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to consider two alternating operations to the transition matrix known as Inflation and
Expansion, which are pivotal to the design of the MCL algorithm. Under Inflation, for each
node the transition values are changed so that strong neighbor values are strengthened
and large neighbor values are demoted, i.e., inflation changes the transition probabilities
by favoring more probable walks over less probable ones. This is achieved by raising the
values of each column to non-negative power and then re-normalizing it. Expansion on
the other hand helps in making the farther nodes or neighbors reachable, i.e., it allows the
random walk to take longer paths. This is achieved by taking n-th power of the transition
matrix. See Algorithm 1 for a definition of the entire procedure.

Algorithm 1 Markov Clustering
Input: Graph adjacency matrix A, Expansion parameter e, inflation parameter i
Output: Transition matrix M

A← A + I // add self-loops to graph adjacency matrix A
M← AD−1 // initialize canonical transition matrix M
while M has not converged do

M← Me // Expansion
for each x ∈ V do

for each y ∈ V do

Mxy ←
Mi

xy

∑y∈V Mi
xy

// Inflation

end for
end for

end while

The expansion operator is responsible for connecting different regions of the graph,
and the combination of expansion and inflation boosts the probabilities of walks inside
each cluster. Moreover, it will reduce walks between the clusters. The subsequent iteration
of these two operations leads to the separation of the graph into individual, connected
components, i.e., reaching convergence. Therefore, unlike many clustering algorithms that
need the user to specify the expected number of clusters beforehand, Markov Clustering
provides a clustering that naturally arises from the graph topology itself. An example of
applying Markov Clustering in order to identify context-specific gene regulatory networks
is given in [157].

Regularized Markov Clustering and Random Walks with Restart

The variant of the Markov Clustering algorithm that ranked among the top perform-
ers [125] in the aforementioned challenge is known as regularized Markov Clustering
(r-MCL) [158]. It has been invented to address some of the limitations of the original
MCL algorithms, such as fragmentations, i.e., too many clusters, or imbalanced outputs,
i.e., large variation in cluster sizes. r-MCL modifies the expansion step by introducing a
canonical flow matrix, ensuring the original topology of the graph to still influence the
graph clustering process beyond the initial iteration. A limitation of MCL and its variants,
e.g., regularized MCL, is that they typically only support hard clustering. This, however,
can create an implausible constraint, given significant overlaps of genes or proteins across
functional modules can regularly be observed. Hence, a soft clustering variation of r-MCL
has been proposed based on the idea of iteratively (re-)executing r-MCL while ensuring
that multiple executions do not always converge to the same clustering result and, as a
consequence, allowing for overlapping clusters. The resulting algorithm, denoted soft reg-
ularized Markov Clustering, is shown to outperform a range of state-of-the-art approaches
with respect to accuracy of identifying functional modules on protein–protein interaction
networks [159].

Random walk with restart (RWR) [160,161] is another improvement of random walk
based clustering approaches, that allows for the identification of multivariate relationships
between nodes, while exploring the global topology of provided networks [160]. It contains



Computation 2021, 9, 146 16 of 28

a control parameter α that defines a restart probability, while 1− α represents the probability
of the aforementioned imaginary particle to continue moving from one node to an adjacent
one. For a given graph, it can be defined by assigning transition probabilities to graph’s
edges. In this way, the random walk performing particle may jump from one node to
another. The mechanism prevents the walk to become trapped, and, in addition, assures the
existence of a stationary distribution. Furthermore, restart positions of the particle may be
restricted to specific nodes, called seeds. Hence, the particle will explore the graph focusing
on the neighborhood of these seeds, and the stationary distribution can be considered as a
measure of the proximity between the seeds and all other nodes in the graph. Formally,
one may redefine the evolution of the transition probability as: pt+1 = (1− α)Mpt + αp0,
with M denoting the transition probability matrix and p0 representing the vector of initial
probability distributions [160]. Therefore, in p0, only the seeds have values different from
zero. After a series of iterations, a stationary probability distribution is reached, with the
difference between the vectors pt+1 and pt becoming negligible.

Random walk with restart based approaches have been used to identify putative drug-
target interactions from heterogeneous biological data [162], or to determine associations
between diseases and miRNAs [163].

4.4. Randomized Matrix Factorizations and Low Rank Approximations with Applications to
High-Dimensional Gene Clustering and Gene Regulatory Network Inference

Matrix factorization describes the decomposition of a given matrix into a set of smaller
matrices, in order to reduce the matrix to a lower rank while keeping as much informa-
tion as possible, e.g., for dimensionality reduction or data compression purposes, or to
reveal and exploit some underlying, latent factors or low-rank features exhibited by the
original, high-dimensional, data matrix. Some of the early applications in computational
biology, in particular gene expression analysis, include techniques such as Singular Value
Decomposition [164] and Principal Component Analysis [165], Non-negative Matrix Fac-
torization [166–168] or Network Component Analysis [169,170]. More recent applications
include the inference of gene regulatory networks [130,171–175] or drug discovery [56,176].
For more in-depth surveys on factorization techniques for the analysis of omics datasets,
we refer the interested reader to [177,178].

The emergence of ever increasing large-scale, high dimensional datasets, however,
poses a computational challenge for traditional algorithms, placing significant constraints
on both memory and processing power. Recently, the concept of randomness has been
introduced as a strategy to ease the computational load, and, in particular, randomized al-
gorithms have been established to efficiently compute matrix approximations [107,179,180],
forming the field of randomized numerical linear algebra [127,128]. In their seminal work,
Halko et al. [107] introduced a modular framework for randomized matrix factorization, as
illustrated in Figure 4. Main rationale is to utilize randomness in order to derive a smaller
matrix from a high-dimensional one, which captures all essential information. Thus, none
of the randomness should obscure any dominant information—in a spectral sense—within
the data as long as the original matrix features some low-rank structure. Then, determin-
istic matrix factorization methods may be applied to this smaller matrix to compute a
near-optimal low-rank approximation. Here, following the notation and line of reasoning
of Halko et al. [107], we discuss three of the most frequently used randomized matrix
decomposition methodologies, accompanied and exemplified by biological applications.
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Figure 4. Randomness may be used to derive a low-rank approximation of the original data ma-
trix. Then, deterministic approaches are applied on this lower dimensional matrix to compute an
approximate matrix decomposition. Finally, a near-optimal set of (high-dimensional) factors may be
reconstructed. (Figure adapted from [181]).

4.4.1. Randomized Singular Value Decomposition

Singular Value Decomposition (SVD) provides an intuitive approach to matrix de-
composition that can be used to obtain low-rank approximations, to find the least-squares
and minimum norm solution of a linear model, or to compute the pseudo-inverse of a
non-square matrix [164]. Further, SVD is the core algorithm behind a variety of machine
learning concepts, for instance, matrix completion, dictionary learning, sparse coding, or
Principle Component Analysis. It is particular intuitive as it explicitly tries to learn the orig-
inal data’s underlying factors, denoted as singular values, as well as how the data and the
features relate to these latent factors. Represented in mathematical form, for any given data
matrix X ∈ Rn×m, the SVD of X takes the form X = UΣVT where the matrix U ∈ Rn×n and
matrix V ∈ Rm×m consist of left and right singular vectors, respectively. The left singular
vectors in U provide a basis for the range (column space), and the right singular vectors
in V provide a basis for the domain (row space) of X. Both U and V are orthonormal so
that UTU = I and VTV = I, while the diagonal entries of the matrix Σ ∈ Rn×m denote the
singular values ordered from the highest to lowest, i.e., σ1(X) ≥ ... ≥ σm(X) ≥ 0.

SVD plays a pivotal role because truncating it after k terms, i.e., keeping only the top
k singular vectors and singular values, provides a best rank k approximation to X, denoted
as as Xk = UkΣkVT

k , with respect to the spectral and Frobenius norms [181]. Further, the
Eckart–Young theorem [182] states that the best rank k approximation to X is provided in
the least-square sense.

Since computing the SVD of a large matrix may be computationally infeasible, there
are various alternative algorithms that compute near-best rank k matrix approximations
from matrix-vector products [183]. Halko et al. [107] propose a two-stage computation:
(i) compute an approximate basis for the range of X, i.e., a matrix Q with k orthonormal
columns, with k ≤ m, that captures the action of X so that X ≈ QQTX; (ii) use Q to form
a smaller matrix X′ = QTX, i.e., restrict the high-dimensional X to a lower dimensional
space spanned by a near-optimal basis Q, and use X′ to compute the matrix factorization.
Note that we here ignore the use of oversampling Erichson2019 with respect to the number
of orthonormal columns as originally proposed by Halko et al. [107] for simplification
purposes. If Q is given, the matrix factorization based on randomized SVD may be
computed by following algorithmic recipe 2.

The efficiency of this algorithm comes from X′ being small compared to X. Since
X ≈ QQTX = QX′ = QÛΣVT = UΣVT , setting U = QÛ does produce a low-rank
approximation X ≈ UΣVT [181]. Note that randomness only occurs in forming an ap-
proximate basis Q while the application of the SVD is deterministic given Q. Hence, the
challenge is to efficiently compute Q using a randomized approach. To this end Halko et al.
present a series of algorithms, denoted as randomized range finders [107], based on the
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concept of Random Projection [184]. Main goal is to produce an orthonormal matrix Q that
approximates the column space, i.e., range, of matrix X, thereby having as few columns
as possible.

An example of applying randomized SVD to the inference of large-scale gene reg-
ulatory networks is given in [130]. Starting from an initial time course gene expression
matrix X ∈ Rn×m with n genes and m time points, Fan et al. [130] adopt a common ordi-
nary differential equation (ODE) based model to represent the gene regulatory network
as a dynamical system. In this model each gene gi at a specific point in time tk may be
described as ẋi(tk) = ∑n

j=1 aij(tk)xj(tk), with ẋi(tk) ≈ xi(tk)− xi(tk−1) and aij(tk) denoting
the interaction strength from gene gj to gene gi at time point tk, while xj(tk) represents the
expression level of gene j, also at time point tk. In matrix notation this can be rewritten
as Ẋ = AX with Ẋ ∈ Rn×m denoting the matrix of first derivatives of X, and A ∈ Rn×n

representing the (unknown) gene connectivity matrix, consisting of the interaction weights.
In order to infer the unknown coefficients in A, the gene regulatory network inference
problem is transformed into a least-squares problem, i.e., min

A
{||AX− Ẋ||2}, and the objec-

tive is to optimize the interaction strength weight values aij of A. However, solving this
minimization problem directly is possible only if n > m, which often is not the case, as
there are generally fewer experimental time points than the number of measured genes.
Hence, one typically resorts to the application of SVD to XTso that A = ẊXT = ẊUΣVT .
If X is too large the direct application of SVD may, however, this also does not work due
to memory limitations, as well as numerical instabilities of the smaller singular values.
Therefore, Fan et al. [130] adopt the two step procedure by Halko et al. [107], that is X
is first projected onto a smaller matrix using Gaussian Random Projection to form the
orthonormal basis Q , and subsequently, SVD is applied as illustrated in Algorithm 2.

Algorithm 2 Randomized Singular Value Decomposition.

Input: Data matrix X ∈ Rn×m, target rank k
Output: Left and right singular vector matrices U and VT , singular value matrix Σ

Q = rp(X, k) // compute approximate basis Q ∈ Rn×k, e.g., via Algorithm 3
X′ = QTX // project to low-dimensional space
X′ = ÛΣVT // compute SVD of X′

U = QÛ // recover left singular values
X ≈ UΣVT // compute SVD of X

4.4.2. Random Projection

Halko et al.’s solution for finding an approximate basis for the range of the data matrix
X, i.e., a matrix Q, based on the concept of Random Projection is motivated by Johnson
and Lindenstrauss’s theorem [185] that states that pairwise distances d among a set of
points within a Euclidean space will be approximately maintained when projected into
a lower-dimensional Euclidean space, as illustrated in Figure 5. In general, it may be
stated that Random Projection [184] projects a data matrix X ∈ Rn×m onto a k-dimensional
subspace, with k << m using a random matrix W ∈ Rm×k, whose columns have unit
lengths, denoted as XRP = XW, where XRP ∈ Rn×k is the projected matrix.
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Figure 5. Random Projection is motivated by Johnson and Lindenstrauss’s theorem [185] that states
that pairwise distances d among points within Euclidean space can be approximately maintained
when projected into a lower-dimensional Euclidean space (Figure adapted from [181]).

Random Projection depends upon the way the random projection matrix W is initial-
ized. Main rationale by Halko et al. [107] is to generate an orthonormal Gaussian random
matrix Ω ∈ Rm×k as the projection matrix, and then generate a sketch of X as Y = XΩ.
Y is used to construct the matrix Q. Intuitively, one randomly samples the range of X
and subsequently finds an orthonormal basis for these vectors to obtain Q. The whole
procedure is depicted in Algorithm 3. Note that, given its simplicity and effectiveness, Ran-
dom Projection by itself has found applications, including gene expression-based cancer
classification [186] or the clustering of large-scale high-dimensional single-cell RNA-seq
data avoiding excessive distortion of cell-to-cell distances [129].

Algorithm 3 Orthonormal basis estimation via Gaussian Random Projection.

Input: Data matrix X ∈ Rn×m, target rank k
Output: Approximate basis Q ∈ Rn×k

Ω = rnorm(m, k) // generate Gaussian random matrix
Y = XΩ // generate sketch
Q = qr(Y) // form orthonormal basis Q, e.g., using QR factorization

4.4.3. Randomized Principal Component Analysis

Principal components analysis (PCA) [187] attempts to find a low-dimensional linear
transformation of the data that maximizes the projected variance or, equivalently, minimizes
the reconstruction error. Technically speaking, PCA tries to find a new set of basis vectors,
denoted principal axes, so that these vectors sequentially, i.e., in descending magnitude,
capture the variation in data, which is assumed to represent the data’s relevant information.
Projections of the data on these principal axes are called principal components. More
formally, given some data matrix X ∈ Rn×m, PCA relies on finding the eigenvectors of
the covariance matrix C = 1

n−1 XTX ∈ Rm×m. The decomposition is performed using
either the SVD of the data matrix X or the eigen-decomposition of the covariance matrix
C itself. In the eigen-decomposition approach, the covariance matrix C is first explicitly
computed, then the decomposition is performed such that C = VΛVT with diag(Λ) =
λ1, ..., λm being the eigenvalues and V being the matrix of eigenvectors. The principal
components P of the data are given by the projection of X onto the eigenvectors, i.e.,
P = XV where the matrix P is usually truncated, i.e., Pk = XVk, to have as many k
columns as required for any downstream analysis. In the SVD approach C may be written
as C = 1

n−1 XTX = 1
n−1 VΣTUTUΣVT = 1

n−1 VΣTΣVT = V Σ2

n−1 VT . After estimating the
SVD for X, the eigenvalues may than be recovered as Λ = Σ2/(n− 1) and the principal
components P as P = XV = UΣVTV = UΣ.

When n, the number of samples, does not exceed a few thousands, all eigenvectors
can be computed by appropriate dense linear algebra routines, which, however, becomes
impractical as n increases. Hence, randomized approaches to principal component analysis
typically, similar to randomized SVD, rely on first constructing a relatively small matrix
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that captures, with high probability, the top eigenvalues and eigenvectors of the original
data, thereby projecting the original eigenvalue problem onto a low-dimensional subspace,
which includes an invariant subspace associated with the relevant eigenvectors. Next,
standard SVD or eigen-decomposition are performed on the reduced matrix. The entire
procedure for the case of using SVD is depicted in Algorithm 4.

In general, low-dimensional subspaces can be constructed in a variety of ways, e.g., by
means of subspace iteration or Krylov projection schemes [188]. On the other hand, recent
advances in the design and analysis of Randomized Numerical Linear Algebra [128] algo-
rithms have yielded novel insights as well as fast and efficient alternatives to approximate
the leading principal components of large matrices [107].

An example for a typical application of principal component analysis in computational
biology would be genome-wide association studies (GWAS) as in [189]. In this context,
PCA is typically used to account for population-specific variations in alleles distribution on
the single nucleotide polymorphisms being analyzed [189]. Further examples of applying
randomized PCA for genome-wide association studies are given in [190,191].As a side note,
another randomized algorithm has recently been proposed as an alternative to traditional
PCA, i.e., t-distributed stochastic neighbor embedding (t-SNE) [192], which is frequently
used in computational biology, e.g., in single-cell transcriptomics [193].

Algorithm 4 Randomized Principal Component Analysis (via SVD).

Input: Data matrix X ∈ Rn×m (centered, scaled), target rank k < min(m, n)
Output: Eigenvector matrix VT , eigenvalue matrix Λ, k principal component matrix Pk

U, Σ, VT = rsvd(X) // compute randomized SVD of X (Algorithm 2)
Λ = Σ2/(n− 1) // recover eigenvalues
Pk = UkΣk // compute k principal components

5. A Note on Deep Learning Based Methods for Computational Biology

We have recently seen a huge body of work in the area of deep learning and its appli-
cation to the field of computational biology, including regulatory genomics [194–199], gene
expression analysis [200], single-cell RNA-seq data analysis [150,201], and heterogeneous
data integration [202], just to give a few examples. Although typically not considered
randomized approaches, one may still highlight some of the principles from randomness
that also contribute to the success of deep neural architectures, including: (i) randomness
in the initialization of network architectures, such as weights [203]; (ii) randomness within
individual layers, such as word embedding [204]; (iii) randomness in model regularization,
such as dropout [205]; and (iv) randomness in optimization routines, such as stochastic
gradient descent [206,207]. For more in depth surveys on deep learning and its application
in computational biology, we refer the reader to [208–210].

6. Conclusions

Many of the fundamental concepts of transcriptional regulation were established
in bacterial systems half a century ago. Such pioneering work highlighted transcription
factors to bind specific genomic regions thereby recruiting the transcription apparatus.
Although some of the basic principles are shared in eukaryotic systems, the regulatory
networks are very complex, involving fine-regulated co-ordination of specific transcription
factors, their co-factors, and various chromatin regulators. Especially since the advent
of targeted genome editing technologies, better models of the transcriptional regulatory
circuitry that integrate data on regulatory sequences, their occupancy by transcription
factors, co-factors, chromatin regulators as well as genetic or epigenetic variations that
affect regulatory sites have enormous potential to improve many key aspects of our life,
ranging from genetic disease prevention and personalized medicine, to healthy and more
efficient crop production.
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The development of these models should thus be among the top priorities of biomedi-
cal research. Thus, to advance our understanding of these mechanisms, we need scalable
approaches that can deal with the increasing number of large-scale, heterogeneous, high-
resolution, biological datasets. Given the complexity and interdisciplinary nature of the
gene regulatory network inference problem, the decision about what biological questions
can be addressed by which methods requires a compendium of biological data comprehen-
sively analyzed by both biological and computational scientists. It will therefore become
increasingly important for these diverse groups of scientists to engage in a dialogue to
solve this problem most efficiently together.

We hope this survey not only highlights the potential that randomized algorithms
provide as alternatives to deterministic methods, but may also provide a platform to
start such a dialogue about concepts and caveats of these approaches. We believe this to
be a critical step to advance our understanding of the intricate web of highly dynamic,
regulatory events underlying gene regulation and to eventually prevent misregulation
through therapies that treat or cure diseases.
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