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Abstract: The research refers to the modeling of the meaningful and relatively stable visual-figurative
and verbal-sign representation of real problems in medical diagnostics of the human organs and
systems. The core results of the research are presented. Here, a new visual metalanguage is proposed.
It describes the solution of a diagnostic problem by combining several interconnected processes of
reasoning in different languages defining “a state of human organs and systems”, “a diagnostic
problem” and elements of its decomposition. In the paper, a subject-figurative model of the cognitive
hybrid intelligent diagnostic system, its typical architecture, and a synthesis algorithm are provided.
Due to the integration of imitation of an internal subject-figurative vision of medical diagnostic
problems and the corresponding communication statements of private diagnoses with imitation
of the behavior inherent for councils in problem situations, the future implementation of such
system prototypes will reduce the number of medical errors. The further stage of this research is the
approbation of all solutions for the problem of diagnosing diseases of the pancreas on the materials
of the Kaliningrad Regional Clinical Hospital and experimental study of the system. The research is
limited by the subject area of medicine but can be generalized to the other areas.

Keywords: hybrid intelligent system; diagnostic problem; collective diagnostic decision making;
cognitive image of the diagnostic object; operational images of the diagnostic object

1. Introduction

Nowadays, a significant variety of processed information and an unprecedented rate
of increase in its volume, as well as the ambiguity of the assessment of diagnostic situations,
errors in the choice of priorities, and the inconsistency of requirements, contribute to
the ever more frequent occurrence of situations with insufficiently identified or detected
conditions and with an uncertain purpose. A diagnostic problem (DP) is a complex
(heterogeneous) problem of recognizing a disease and assessing individual biological
characteristics and social status of the object of diagnosis (patient) by interpreting the results
of a targeted medical examination and summarizing them in the form of an established
diagnosis. The nature of decision-making regarding the DP is multilingual. Its composition
and structure are variables. At the same time, the clinical thinking cannot be identified
with scientific (formal-logical), philosophical, or figurative-artistic thinking, since it is
a combination of all these types of thinking. The main difficulty lies in the fact that in
each specific case the proportion of different types of thinking is always different, which
predetermines the uniqueness and complexity of medical thinking.

Hence, the study of cognitive structures and mechanisms of a specialist in medicine
is relevant, as well as the development of functional hybrid intelligent systems (HIS) or
HIS with cognitive modeling of a diagnostic problem based on its results. It will make the
processes of overcoming a diagnostic problem visible and contrasting.

The purpose of the study is to improve the quality of diagnoses by solving the follow-
ing tasks:
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• To model the image of a diagnostic medical problem;
• To imitate mixed, integrated visual-figurative and verbal-sign representations of the

problem by experts;
• To imitate collective restructuring of reduced representation of the problem image ac-

cording to the principle of consultation using the methods of HISs as decision support
diagnostic systems with cognitive visualization of problems arising in medicine.

Within the research, theories, methods, models, and information technologies of
representation of mental objects “diagnostic problem” and its decomposition elements, as
well as methods of reduction of complex problems including diagnostic problems, have
been analyzed.

The core results of the research are:

• The visual metalanguage;
• Representations of the mental image “an integrated method for solving a diagnostic

problem” and a heuristic mechanism for solving problems by dynamically restruc-
turing the whole into a decomposition of related problems as well as a language for
their description;

• A subject-figurative model of cognitive hybrid intelligent diagnostic systems (CHIDS),
their typical architecture, and synthesis algorithm.

Method of reduction of the diagnostic problem in medicine and formation of the
representation of methods of solving functional and technological subproblems from the
decomposition of the diagnostic problem, as well as verbal-sign languages describing
individual and collective reasoning, have been developed.

In the paper, only the core results are presented. This document is structured as
follows. Section 2 presents readers with the literature review of approaches and methods
of patients’ state representation. Section 3 introduces readers to Materials and Methods.
Section 4 explains the core results of the research. Section 5 includes the discussion of the
results and future research work. Finally, Section 6 shows the assumptions.

2. Literature Review

The founders of cognitive computer graphics are D.A. Pospelov and A.A. Zenkin. I.B.
Fominykh [1] is the founder of image engineering. They laid down the basic terminology
and defined tasks. Their ideas were developed by B.A. Kobrinsky, V.B. Tarasov, O.P.
Kuznetsov, Yu.R. Valkman, V.M. Khachumov, A.A. Bashlykov, and A.E. Yampolskaya.

Within the studies of V.M. Khachumov directed at cognitive visualization of controlled
objects [2], multidimensional data are correlated to a cognitive graphic image in the form
of integral functional profiles or scenes with the help of a computer. Here, a continuous
monitoring of the state of patients with bronchial asthma is provided. States and refer-
ence values of the process are visualized with three-dimensional images (stars). The star
increases and becomes more solid with respiratory distress; if a temperature or a pulse rate
increases then points of a star elongate; with a growth in the parameters of blood gases, a
star increases with a possible change in the common structure without a pronounced effect
of smoothing or separation.

Works by B.A. Kobrinsky [3,4] are aimed at problems of figurative representations
of specialists in medicine and the inclusion of visual images in the knowledge bases
(KB) of intelligent systems. He emphasizes the relevance of creating hybrid visualized
knowledge bases with logical-intuitive-figurative representations. Here, the latter can
be in the form of complexly described situations-precedents, including metaphorically
presented (diagnostically significant) integral manifestations of the pathological process.
Two other forms of it are specific manifestations of the disease as associated signs and
visualized manifestations of the disease (drawings, photos, etc.). They amplify verbalized
concepts and facilitate diagnostic decision-making based on similarity with images of
patients having certain diseases.

E. Vardell and C. Bou-Crick [5] propose a system of visual diagnostic decisions support
after a preliminary diagnosis has been made by a doctor. The system contains 1212 uniquely
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defined diagnoses and 24,115 images of manifestations of diseases. It is aimed at identifying
a number of diseases including dermatological, infectious, genetic ones, etc.

F. Rassom [6] identifies the main trends in the field of visualization—the development
of complex types of diagrams, an increase in the level of interaction with user visualization,
and an increase in the size and complexity of data structures represented by visualization.
These trends are also typical for medical information systems. For example, C. Plaisant [7]
and T. Wang [8] describe the information systems LifeLines and LifeLines2, in which medi-
cal records are divided according to their inherent aspects, such as problems, symptoms,
examinations/results, diagnoses, treatments, and medications, etc. The color is used to
indicate the severity or type of disease. The level of detail of the mechanism allows scaling
of the patient’s medical history. The group of authors of [9] presented the AnamneVis
system where all information about a patient is presented in the form of a diagram that
shows all human diseases in the past and present. The human body in AnamneVis is
stylized as a map of organs and systems easily enlarged to detail down to the smallest
anatomical structures. Another frequently used method for visualizing patient data is
topological and temporal plan execution diagrams in the Asgaard project [10]. The first
one displays the links between the planned activities, and the second one is based on the
time dimension in the planning and various conditions.

There are also several works [11–14] which investigate medical artificial intelligence
with visualization of information, but they have no representation of patients’ state or
processes of diagnostics.

Thus, there is no common understanding of the phenomenon of the image of the
state of the human body, its individual systems, and elements of the diagnostic problem
(plan and various “homogeneous subproblems”). The way to reduce the informational
and cognitive load on the doctor diagnosing the patient is the modeling of an integrated
and mixed visual-figurative and verbal-sign representation of a diagnostic problem. This
will also improve the quality and the safety of medical intelligent diagnostic decision
support systems.

3. Materials and Methods

Under the study, methods of systems theory and system analysis, decision making,
theory and technology for the development of hybrid intelligent systems, medical techno-
logical processes, psychology of thinking, cognitive graphics, image engineering, as well as
a systematic approach to the analysis of body, were used.

The approach of P.K. Anokhin was used to remove the uncertainty of diagnostic
situations. According to the approach, there are three stages of research: the stage of
preparation (“pre-decision”), the actual procedure of decision-making, and the stage of
its implementation.

Within the informative preparation (P.K. Anokhin), a “diagnostic problem” and its
elements in medicine were considered from a new point of view—a two-level represen-
tation and solution of them (M.V. Samsonova, V.V. Efimova) [15] were supplemented by
the solution mechanisms according to V.F. Spiridonov [16] based on psychological studies
of beginners and experts. These are “self-determination of the solver” (G.P. Shchedrovit-
sky) [16] and “changing the presentation of the problem (its processing) in the course of
solving”. The latter presents a solved problem as a hierarchically built system of subprob-
lems and serving them tasks that directly imply more or less clear methods of solution.
To develop a new method for reducing the diagnostic problem, taking into account the
cognitive visualization of its elements, the results of research by V.F. Spiridonov [10] on the
mechanisms for solving problems and tasks as well as the results of an investigation in the
field of system analysis aimed at the features of reduction process and presentation of its
result. Reduction methods based on knowledge were used [17].

To develop languages of schemes of role-playing visual relations, the following theo-
ries and methods were used:
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• The developed and tested in practice axiomatic theory of role conceptual models using
the tetrad of concepts “resource-property-action-relationship” [18] (A.V. Kolesnikov)
which follows from the triad of A.V. Uyomov “thing-property-relationship” [19];

• The Nazarenko–Osipov theory of medical technological processes [20,21];
• The approach of M.A. Gaides to the system analysis of the human body [22];
• The principle of virtual consultation by S.B. Rumovskaya [17] according to which the

virtual team model was developed as a stratified (multilevel) model of a council of
highly specialized experts following the works of M. Mesarovich and I. Takahara on
the theory of hierarchical multilevel systems [23].

Next comes the second stage named “decision-making” according to P.K. Anokhin.
Here, the axiomatic theory of role conceptual models (A.V. Kolesnikov) [18], the concept
of thinking by D.A. Pospelov and V.N. Pushkin [24], the principle of consultation by
S.B. Rumovskaya [17], and studies of N.L. Morina, D.A. Oshanina [25], and L.D. Linden-
brathan [26] were used. According to the latter, the diagnosis is made in the process of
comparing the image of current state of the object with a set of sample images that are im-
ages of various pathological abnormalities and the norm. The more experienced the doctor,
the greater the number of sample images he has. Respectively, their quality is much higher,
and the efficiency of formation of the image underlying the diagnosis is higher, and the
probability of error is lower. Thinking, according to D.A. Pospelov and V.N. Pushkin [24],
is the establishment of relations between objects. By special mental mechanisms, the object
of diagnosis is recreated in the head of a person (doctor) with a reflection of detected
properties and relations between resources. In contrast to the language of perception which
fixes those properties of resources that are manifested in the effects on the sense organs,
thinking is characterized by a special language of relations and links, through which the
subject (doctor) gets the opportunity for internal work with those objects (subsystems of
the body) and their properties (that are not given in perception) which are outside the
scope of its direct contacts with the object of diagnosis. The results of the second stage
are: languages of verbal-sign statements of individual activity aimed at solving diagnostic
problems and subtasks, determining subject solutions, searching for diagnostic links, and
eliminating compensated difficulties; a description of collective activity to overcome diag-
nostic problems and the language of subject-figurative representation of mental image “an
integrated method for solving a diagnostic problem”.

The method of forming subject-figurative models of concepts of methods for solving
homogeneous diagnostic problems, which are elements of the decomposition of a diagnostic
problem and the heterogeneous diagnostic problem, were developed on the basis of the
research by V.F. Spiridonov [16], the principle of consultation by S.B. Rumovskaya [17],
and the research by B.A. Kobrinsky on the inclusion of visual-figurative representations in
medical knowledge bases and at different stages of decision-making [3,4].

At the last stage of implementation of solutions to develop the typical architecture and
the algorithm for the synthesis of cognitive HIS, the following methods and approaches
were used: problem-structural methodology of functional HIS (by A.V. Kolesnikov and
I.A. Kirikov) [27]; an engineering technique for automated solving of a complex medical
diagnostic problem using the Virtual Council tool environment (S.B. Rumovskaya); and
experience in applying a systematic approach and analytical methods of solving problems
in medicine including the approach of M.A. Gaides to the analysis of the human body [22].

4. The Core Results
4.1. Metalanguage for Description and Representation of Patient’s States

The visual metalanguage of an axiomatic theory of role-based visual relations of
a problem diagnostic situation and its elements within the categorical core “resource-
property-action–relation” is proposed at the Figure 1.
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Figure 1. Visual metalanguage.

It determines the relevant mapping of the verbal-symbolic and visual-spatial aspects
of intellectual activity into the architecture and algorithms of artificial intelligence. The
metalanguage includes nine levels, each of which is represented by a subject-figurative
core and a verbal-sign shell. The last one is the synthesis of names of resources, their
properties, actions of objects, subjects, cause-and-effect and other relations, which are taken
from everything that can be expressed by concepts, definitions, sentences, and texts in the
language of professional activity.

The axiomatic theory of role visual diagnostic models is based on the understanding
of visual language as a semiotic system:

Sd = 〈Yd, Gd, Md, Vd, δd〉, (1)

Yd = 〈KYd, VYd, Ψ〉, KYd =
〈

1X , 2X , 3X , R
〉

, VYd =
〈

1
dV , 2

dV , 3
dV , dRv

〉
, (2)

Ψ =
〈

1Ψ, 2Ψ, 3Ψ, RΨ
〉

, 1Ψ : 1X ↔ 1
dV, 2Ψ : 2X ↔ 2

dV, 3Ψ : 3X ↔ 3
dV, 2Ψ : R↔ dR, (3)

vGd = 〈VYd′N, pP〉, v Md = 〈KYd, Gd〉, VvVd = {〈E, ad, Mod, Cd〉}, (4)
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where Yd—conceptual-visual categorical core; Gd, Md, Vd—sets of syntactic, semantic (knowl-
edge about the subject area of medical diagnostics), and pragmatic rules (a set of rules
for inferring diagnostic solutions), respectively; δd—transformation rules for the sets
Yd,Gd, Md, Vd; KYd—conceptual categorical core; VYd—subject-figurative core; 1X , 2X ,
3X—sets of resources, their properties, and actions, which reflects the process of diag-
nostics in medicine; R—a set of relations defined on 1X , 2X , 3X ; 1

dV , 2
dV , 3

dV—sets of visual
signs of resources, properties, and actions; dRv—a set of role-visual relations defined on
one or more of 1

dV , 2
dV , 3

dV , subject-figurative schematic statements; vN—a dictionary of
nonterminal symbols;a dictionary of nonterminal symbols; pP—a set of product rules;
E—qualified doctors whose actions are limited by the external environment; ad—an action
defined on the set of actions Ad that is an object of norm regulation; Mod—a set of modality
systems; Cd—a set of situations in which the action has not to be applied.

Each concept in the language describing the relations and links (LDRL) of the verbal-
sign shell is denoted as xn ∈ Xn where n = 0 for basic concepts and n ∈ {1, 2, . . .} for
derivative concepts. A set of concepts of the LDRL is X0 = X0

α ∪ X0
β where X0

α and X0
β are

major and auxiliary subsets, respectively. The major subset is defined by three categories:
resources, properties, and actions. The auxiliary subset is defined by categories of measures,
values, characteristics, parameters, names, states, and evaluations.

Hence, 1X0—resources, 2X0—properties, 3X0—actions, 4X0—measures, 5X0—values,
6X0—states, 7X0—evaluations and 8X0—unusual concepts. X0 = ∪

i
iX0 for i ∈1; 8.

∅ = ∪
i

(
iX0∩jX0

)
for i 6= j and i, j ∈1; 8 (double concepts and homonymity can exist).

Each relation in the LDRL is denoted as r0∈R0 or rn∈Rn depending on its notation
by a word or a phrase in the language of the professional activity (LPA). R0 = ∪iR0 for

i ∈1; 7: 1R0—definitional relations, 2R0—comparison, 3R0—dimensional, 4R0—temporary,
5R0—inclusion, 6R0—causality, 7R0—preference. Further, denote to be by r0

1∈2R0, 3R0, 4R0

and to have by r0
2∈1R0, 5R0, 6R0, 7R0, then we have ∅ = ∪

(
iR0∩jR0

)
for i 6= j and i, j ∈1; 7

in the general case. This makes it possible to single out seven classes of relations in the LPA
and to fill in appropriate dictionaries. To specify the structure of signs in LPA, the separation
of R0 into subsets R0

11, R0
22, . . . , R0

23, R0
24, R0

25, R0
45, R0

16, R0
37, R0

66, R0
77 was obtained such

that R0 = ∪
ij

R0
ij for i, j ∈ 1, 7 and ∅ = ∪

(
R0

ij∩R0
km

)
for i 6= k, j 6= m, i, k ∈1; 7 and j, m∈1; 7

in the general case. For example, R0
11 = {to be in, near, a part, to have a composition}, R0

22 = {to
be larger, smaller, equal}, R0

33 = {to be simultaneously, earlier}, R0
31 = {to have a subject, an object,

a tool}, R0
13 = {to be a condition, an object, a tool, a location}, R0

32 = {to have a duration, a result}.
Relations from classes R0

12, R0
21, R0

23, R0
24, R0

25, R0
45, R0

16, R0
37 include words to be, to have, as

well as concepts a parameter, a characteristic, a name, a measure, etc.
The derivative relations Rn

ij were also considered. The language of the first level

L1(X0, R0
ij, P

1) =
{

rΠ
ijl

}
is a set of signs of derivative relations (DR). It is equal to Rn

ij. DR

are deduced from purpositive relations r0
1 (to have) and r0

2 (to be).
The definition of simple and complex resources, properties, and actions is executed at

the second and the third levels, respectively.
The language of the second level L2

(
X0, 1RΠ

ij , (, ),P2
)
=
{ixk

}
is a set of signs of

derivative concepts (DC). It is equal to X. DCs are deduced from X0, 1Rn
ij, (, ).

The language of the third level L3

(
X0, X , 5RΠ

ij , (, ),P3
)
=
{ixn

k
}

is a set of signs of

DCs. It is equal to Xn. DCs are deduced from X0, X , 5RΠ
ij , (, ) and arranged by the inclusion

relation (to be a part of or to include) in a hierarchical structure.
Modeling of spatial and production structures, d-situations (simultaneous execution

of a set of actions on the object of diagnosis—diagnostic operations as well as medi-
cal operations), and r-situations (simultaneous execution of actions by resources, which
include reactions of some systems of the body, its subsystems and their elements to
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the activity of other systems of the body, its subsystems and their elements, as well as
reactions to external influences on the body) is executed at the fourth level of LDRC
L4

(
X0, Xn,

{
f RΠ

ij

}
, (, ),P4

)
=
{iπk

}
—is a set of signs of DCs. It is equal to Π. DCs are

deduced from X0, Xn, 3RΠ
ij , 4RΠ

ij , 6RΠ
ij , (, ).

Formalisms of languages of the fifth–ninth levels are considered in [28,29]. The CHIDS,
its subject-figurative model, architecture, and algorithm of synthesize are presented below.

4.2. Subject-Figurative Model of the Functional Hybrid Intelligent Diagnostic System

The cognitive hybrid intelligent diagnostic system is considered as a functional hybrid
intelligent system with modeling a diagnostic problem and is defined on the basis of
(1.5) from [17] as a hybrid intelligent system that perceives input diagnostic data, issues
output signals (diagnosis) and is in a certain state relevant to the state of the collective
diagnostic process:

αu(t) = Rn
19
(1X0, METi) ∧ Rn

12

(
1X0, 2_x

n
1

)
∧ Rn

12

(
1X0, 2_x

n
2

)
∧ Rn

12

(
1X0, 2_s

n)
∧

∧6R22

(
2_s

n
(t), 2_s

n
(t + 1)

)
∧ 7R22

(
2_x

n
1 (t), 2_s

n
(t)
)
∧ 8R22

(
2
_
s

2
(t), 2_x

n
2 (t)

)
∧

∧ψϕ
..
R

k
11
(1X0, 1Xn) ∧ 9Rn

22

(
2_x

n
1 , 2Xn

1

)
∧ 10Rn

22

(
2Xn

2 , 2_x
n
2

)
,

(5)

where METi—an integrated method; 2_x
n
1 —a vector of the initial data of the DP transmitted

to the input of one or more elements of the hybrid αu solving subproblems from the
decomposition of the DP; 2_x

n
2 —a vector of the output of one or more αu—elements (a goal

of the DP solving); 2_s
n
—a vector of states of the αu formed from the states of “behavioral”

elements with analytical, evolutionary, statistical calculations and logical reasoning as
well as pseudo-states of elements with neuro-, fuzzy calculations and reasoning based on
experience; 6R22, 7R22, 8R22—the hybrid functioning relations specified at adjacent times
on sets of state–state, input–state pairs and state–output pairs, respectively; 1Xn—a set

of sings of elements; ψϕ
..
R

11
k —hybrid element ϕ and ψ integration relations (knowledge of

these elements involves in the integration of the type k); 2Xn
1 , 2Xn

2 —a set of elements values
“input” and “output” from 1Xn, respectively; 9Rn

22, 10Rn
22—relations on the set of pairs of

“HIS input–inputs of elements” and on the set of pairs of “outputs of elements–output of
HIS”, respectively.

A heterogeneous model field (HMF) of a diagnostic problem in Equation (5) is a set of
heterogeneous models reflecting theoretical, professional knowledge and experience of
experts (doctors) and technological models that forms subject-figurative representations
of experts, a decision-maker, and the object of diagnosis. Each model is implemented as
an element of a hybrid. An integrated method in Equation (5) is the result of the process of
synthesis of a method of solving the diagnostic problem.

The subject-figurative model of CHIDS is presented at the Figure 2. It is relevant to the
conceptual model at Equation (5). In the center of the CHIDS model (oval), there is an arrow
forming a role-visual relation “aggregate-action” which emphasizes the activity approach
to the representation of the system. Above the resource part of the arrow, there is CHIDS’s
property—a system identifier. The triangular part of the arrow displays the content of
the role-visual relation “action-property”: “action-time” (to have a start time, to have an
end time); “action-name” (to have a name); “action-characteristic” (to have a characteristic);
“action-assessment” (to have an assessment). The characteristic pictogram here reveals the
methodological aspect of the design of the CHIDS element.



Computation 2022, 10, 66 8 of 16Computation 2022, 10, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 2. The subject-figurative model of the Cognitive hybrid intelligent diagnostic system. 

Below the resource part of the arrow, there are the properties of the CHIDS which 
schematize the role-visual relations “aggregate-input”, “aggregate-state”, and “aggre-
gate-output”. The triangular part of the arrow displays the contents of the role-visual re-
lation “action-property”. The characteristic pictogram reveals the methodological aspect 
of the design of the CHIDS. 

4.3. Typical Architecture of the Cognitive Hybrid Intelligent Diagnostic System 
The CHIDS architecture is relevant to the structure of the diagnostic problem from 

the conceptual model at Equation (5) for which it is intended. The typical architecture of 
the CHIDS (Figure 3) includes: 
• user interface; 
• functional elements (FE) that solve a set of subproblems of accounting and control as 

well as diagnostic subproblems solved by experts and the decision-maker; 
• technological elements that solve the subproblem of information preprocessing and 

the problem of forming cognitive images of experts, decision-maker and the diagnos-
tic object; 

• the storage of subject-figurative models. 
The minimum power of the FE sets that solve the problems of accounting and control 

is equal to 1. The elements of the CHIDS interact and exchange information including 
visual information. By transferring private solutions to each other in a graphical, verbal-
sign or combined form, the elements of the CHIDS modify the initial version of the prob-
lem decomposition, design an integrated solution by running the algorithm for synthesiz-
ing the CHIDS in the “Coordinating unit”. The result of its work modifies the composition 
and connections of the elements of the CHIDS and, if necessary, requests the addition 
and/or updating of the values of the set of health indicators of the object entered through 
the user interface. The algorithm can be launched when additional information about the 
state of health of the object appears entered by the user through the interface. This takes 
into account the dynamic nature of the DP and the synthesis of the CHIDS which is rele-
vant to the problem at the certain time of its solution. Technological elements that solve 
the problems of forming subject-figurative models of experts, decision-maker and the di-
agnostic object are implemented as static production expert systems with the inclusion of 
pictograms and basic visual symbols in the right parts of the knowledge bases designed 
similarly to the expert system at [30] (Table 3.1, (3.19)). 

Figure 2. The subject-figurative model of the Cognitive hybrid intelligent diagnostic system.

The resource (rectangular) component of the action (arrow) to form the system includes
the following role-visual relations:

• “action-object” where the object is HMF;
• “action-subject” where the right role is the resource “team of experts”; “action-object”

where the right role of the resource is “a set of programs”;
• “action-result” where the right role is the architecture of the CHIDS that is relevant to

the structure of the DP;
• “action-property” performed after a connection between the input of the CHIDS

and the input of one of its elements is established. This connection is symbolized
by the closed bases of triangles (properties). Each property consists of a role-visual
relation “property-resource”: on the left, the “input” property and the resource is
CHIDS (rectangle);

• “action-property” (shown at the Figure 2 by ellipsis which number is equal to the
HMF dimension) which is performed after a connection between the output of one
element of the CHIDS and the input of another is established. Each property is in a
role-visual relation “property-resource”: on the left-the “output” property and the
resource-element. The similar right one visualizes the statement “the input of the
CHIDS element”;

• “action-property” which is performed after the connection between the output of the
CHIDS element and its output is established. Each property consists of a role-based
visual relation “property-resource”: on the left, the “output” property and the resource
(an element). The similar right one visualizes the statement “CHIDS exit”.

Below the resource part of the arrow, there are the properties of the CHIDS which
schematize the role-visual relations “aggregate-input”, “aggregate-state”, and “aggregate-
output”. The triangular part of the arrow displays the contents of the role-visual relation
“action-property”. The characteristic pictogram reveals the methodological aspect of the
design of the CHIDS.

4.3. Typical Architecture of the Cognitive Hybrid Intelligent Diagnostic System

The CHIDS architecture is relevant to the structure of the diagnostic problem from the
conceptual model at Equation (5) for which it is intended. The typical architecture of the
CHIDS (Figure 3) includes:

• user interface;
• functional elements (FE) that solve a set of subproblems of accounting and control as

well as diagnostic subproblems solved by experts and the decision-maker;
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• technological elements that solve the subproblem of information preprocessing
and the problem of forming cognitive images of experts, decision-maker and the
diagnostic object;

• the storage of subject-figurative models.
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The minimum power of the FE sets that solve the problems of accounting and control is
equal to 1. The elements of the CHIDS interact and exchange information including visual
information. By transferring private solutions to each other in a graphical, verbal-sign
or combined form, the elements of the CHIDS modify the initial version of the problem
decomposition, design an integrated solution by running the algorithm for synthesizing
the CHIDS in the “Coordinating unit”. The result of its work modifies the composition
and connections of the elements of the CHIDS and, if necessary, requests the addition
and/or updating of the values of the set of health indicators of the object entered through
the user interface. The algorithm can be launched when additional information about
the state of health of the object appears entered by the user through the interface. This
takes into account the dynamic nature of the DP and the synthesis of the CHIDS which
is relevant to the problem at the certain time of its solution. Technological elements that
solve the problems of forming subject-figurative models of experts, decision-maker and the
diagnostic object are implemented as static production expert systems with the inclusion of
pictograms and basic visual symbols in the right parts of the knowledge bases designed
similarly to the expert system at [30] (Table 3.1, (3.19)).

All subject-figurative models can be displayed at the user interface. Functional ele-
ments that model the solution of diagnostic subproblems by experts and decision-maker
can be complex and have the architecture shown at the Figure 4.
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4.4. Cognitive Hybrid Intelligent Diagnostic System Synthesis: The Algorithm

The method of solving a diagnostic problem is constructed at the current time of its
solution. Input information:

• A decomposition
_
p D =

〈
Ph, 3Rn

88

〉
of the DP in the view of oriented graph. Nodes are

ph
i , i = [1, Nh]—homogeneous subproblems (functional and technological) and edges

are 3rn
88(ph

i , ph
j ) ∈

_
p D for i, j = [1, Nh],i 6= j—relations over HMF;

• HMF Ma and a set of one-to-one correspondence
{

3rn
88

(
ph

ψ, ph
ϕ

)
↔ ψϕ

..
R

k
11

}
where

4Rn
88 is a set of correspondence relations between goals and input data of subproblems

from the decomposition of the DP and goals and input data of the DP;
• A set of interpreters Ia of autonomous models moda

x and inter-model interfaces xyζ ;
• Correspondences of moda ∈ MODa and interpreters Iη ∈ Ia|η = {a, s, e, f , n, g, p}

where a—analytical methods, s—statistical, e—expert systems, f —fuzzy systems, n—
neural networks, g—genetic algorithms, p—CBR-systems;

• A set Sx ∈ S, x ∈ [1, Nms] of valid states Sx =
{

sx
δ

}
, δ ∈ [1, Nsx] for each model moda

x
and the order over the Ph–In =

{
In1, . . . , InNT} where In1 = {in1, . . . , inIn1} and

InNT = {in1, . . . , inInNT}—inferior indexes of subproblems from Ph.

Output information is the list LsD of integration relations over the models from the

HMF 1R12
(
moda

x, sx
δ

)
◦ xy

..
R

k
11

(
moda

x, moda
y

)
, x, y ∈ [1, Nms] and a set E of matrices “model–

model”—Ej ∈ El
j , l ∈ [1, NT] the strings of which are moda in the state sx

δ solving subprob-

lem ph
ψ and columns are moda solving subproblem ph

ϕ.
Steps of the algorithm:

1. The beginning, l = 1;

2. Choose from the decomposition β =
[
1, Nl

h

]
of 3rn

88

(
ph

ψ, ph
ϕ

)
in which each ph

ϕ has the

priority from Inl;
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3. j = 1, El =∅;
4. Choose the next j-th pare from Ph

β ;

5. Initialize the matrix El
j for j-th pair: the columns are models moda

ϕ solving subproblem

ph
ψ, and rows are models moda

ψ in the state sx
δ solving subproblem ph

ϕ.
6. Supplement the El by the matrix El

j ;

7. j = Nh + 1? If NO then j = j + 1 and go to the item 4;
8. j = 1;
9. Choose El

j from El. Only those elements are activated for which integration relations
are specified between models. Using an expert system, the models are evaluated.
Estimations of moda

ψ are entered in the denominators, and estimations of moda
ϕ—in

the numerators of the elements. For the initial states of the models, select a pair of
models with the maximum value of the integrated estimation and add it to the LsD;

10. j = Nh + 1? If NO then j = j + 1 and go to the item 9;
11. l = NT? If NO then l = l + 1 and go to the item 2, otherwise supplement LsD with

interpreters and interfaces and form a knowledge base of a functional element that
models the decision of the decision-maker subproblem from matrices E, so that it can
rebuild the integrated model of the CHIDS depending on the situation and combine
both symbolic reasoning and visual.

The coordinating unit (Figure 3) built the integrated model on the basis of the list LsD

and a set E of matrices “model–model” which are output information of the algorithm
proposed above and obtained depending on the current diagnostic situation. The algorithm
is initiated every time the diagnostic problem is solved so the integrated model is always
relevant to the specificities of the object and process of its diagnostics. Moreover, combining
the results of logical-linguistic modeling of the collective decision-making with represen-
tations of the object and subjects (models of members of a council solving problem or
subproblems) makes the situation, the state of the object and processes of reasoning visible
and fixable. Representations reduce the pressure on the doctor because people analyze
schemes (images) at a higher speed than verbal-sign information. Implementation of the
obtained integrated method in the Cognitive Hybrid Intelligent Diagnostic System within
the diagnostics helps its user (a doctor) to highlight only what is important for solving the
current diagnostic problem from the whole content.

5. Discussion

Works in the field of theory, methods, models, and information technologies for
representation of objects of thinking “diagnostic problem” and its elements are associated
with the following names: B.A. Kobrinsky [3,4], L.D. Lendenbratan, N.L. Morina, D.A.
Oshanin [25], F. Rassom [6], V.M. Khachumov [2], C. Bou-Crick [5], D. Heller [7], et al. The
analysis showed that there is no common understanding of the phenomenon of the image
of a state of a human body. At the same time, the safety of the decision depends on the
efficiency of the doctor’s reaction to the emerging problematic diagnostic situation.

Works in the field of hybrid intelligent systems are associated with such names as:
A.N. Borisov, A.V. Gavrilov, I.A. Kirikov, P.M. Klachek, A.V. Kolesnikov, S.V. Listopad,
G.S. Osipov, D.A. Pospelov, S.B. Rumovskaya, G.V. Rybina, S.A. Soldatov, V.B. Tarasov,
I.B. Fominykh, N.G. Yarushkina, S. Goonatilake, S. Khebbal, L. Medsker and others. A
multi-model semiotic system has been developed [31] in 1983–1986. The concept of hybrid
expert systems has then been introduced by D.A. Pospelov and A.N. Borisov [32], and
G.V. Rybina developed the concept of integrated expert systems [33]. HIS were announced
in 1994–1995 by L. Medsker [34] and, in essence, coincided with the intelligent hybrid
systems of S. Goonatilake and S. Khebbal (1992) [35], as well as the hybrid intelligent
adaptive systems of N. Kasabov and R. Kozma (1998) [36]. In 1997–1998, hybrid systems
with a discrete part based on knowledge [37] and semiotic systems of distributed intel-
ligence [38] were proposed. Within the framework of Kaliningrad School (2001–2007),
the informal axiomatic theory of schemes of role conceptual models for the triadic model
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“resource-property-action” and a problem-structural methodology of functional HIS were
developed. In 2009–2012, I.B. Fominykh [1] proposed the formalism of a hybrid intellectual
system based on temporal logical models and image engineering. In Kaliningrad School
(2011–2019) HISs [39–42] were used in combination with multi-agent systems to solve
a complex transport and logistics problem, with coordination, and functional HIS was
used as a support system for making complex diagnostic decisions based on the “het-
erogeneous problem” model relevant to the practice of consultations in clinical medicine
(S.B. Rumovskaya).

In the field of hybrid intelligent systems, the currently working ones must be noted:

• Bauman Moscow State Technical University, Moscow (hybrid intelligent information
systems for the analysis of judicial arbitration practice [43] and hybrid intelligent
systems for processing big data [44]);

• Immanuel Kant Baltic Federal University, Kaliningrad (hybrid computational intelli-
gence methods [45]);

• Rostov State Transport University, Rostov-on-Don (hybrid intelligent systems [46]);
• Lipetsk State Technical University, Lipetsk (hybrid intelligent information systems for

natural language text processing [47]);
• Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus (hy-

brid semantically compatible intelligent systems [48]);
• University of Electronic Science and Technology of China, Chengdu, China (hybrid

intelligent systems for diagnosing cardiovascular diseases [49]), et al.

The advantages of modern research in the direction of hybrid intelligent systems:
(1) combining within a single system of various methods of artificial intelligence which
allows taking into account the instrumental heterogeneity of practical problems making it
possible to compensate for the weaknesses of some methods with the advantages of the
others; (2) modeling the knowledge of specialists in various fields allows us to take into
account the heterogeneity of the structure of the problem. The problems of modern research
in the direction of hybrid intelligent systems: (1) success in solving a problem is made
dependent on the quality of the system of sequentially solved service tasks replacing it and
the quality of the HMF functionally correlated with them for the synthesis of an integrated
method; (2) HIS’s elements are rather rigidly interconnected which makes it difficult to
further improve and maintain them up to date. Unlike existing research in the field of
HIS, the one presented in this paper ensures the adaptation of the system to changing
conditions and the doctor’s representation of the problem by synthesizing each time a
new integrating model of the imitation of the natural mechanisms of the human (expert)
thinking under medical diagnostic problems. The implementation of the components of the
system in the form of separate models of a heterogeneous model field in the long term will
allow improving the system by adding new methods and diagnostic steps and removing
obsolete ones without significantly reworking the algorithm for synthesizing an integrated
diagnostic solution over a heterogeneous model field. So, cognitive hybrid diagnostic
systems are superior to world analogues in the field of building hybrid intelligent systems
for solving practical problems, in particular in medicine.

The next and last stage of the research is the approbation of the architectural solutions
of CHIDS for the problem of diagnosing diseases of the pancreas, in particular acute
pancreatitis and cancer, on the materials of the Kaliningrad Regional Clinical Hospital
(KRCH). The stage includes the development of a user interface, a heterogeneous model
field and the filling of a repository of subject-figurative models. Their implementation is
planned using MATLAB-Simulink, Dgraph database, and JavaScript.

The proposed Metalanguage is universal for all branches of medicine. It determines the
relevant mapping of the verbal-symbolic and visual-spatial aspects of intellectual activity
into the architecture and algorithms of artificial intelligence. There is a high validity in
applying the Metalanguage for describing intellectual activity aimed at solving diagnostic
problems in different subject areas because components of all its levels are filling according
to the type of diagnostic object and the type of its diagnosis. The Metalanguage with
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minor revisions can even be generalized to the problems of the other type, not diagnostic,
depending on the type of object. However, of course these two issues have to be verified at
concrete practical tasks. The same applies to the proposed architecture which is based on
psychological studies of beginners and experts [16], the results of which are universal for
all types of subject areas and problems.

6. Conclusions

The safety of the decisions made depends on the responsiveness of the doctors to the
emerging problematic diagnostic situation. According to various estimates [50], approxi-
mately 50–60% of Russians have encountered doctors’ mistakes at least once in their lives.
On average, in 35% of cases there is a discrepancy between polyclinic and clinical diagnosis,
and in 21.6% of cases the diagnosis established during life was incorrect.

In human thinking [51], a huge role is played by schemes of standard situations
the use of which significantly speeds up reasoning. Visualization allows the translation
of those contents (images, representations and, accordingly, processes with them) into
an externally noticeable plan that occurs “in the specialist’s (doctor’s) head”. It makes
them visible, fixable, and easily manageable both for himself and for those with whom
he interacts. Schematization allows selection from the visualized, “external” content only
what is important for solving a diagnostic problem by highlighting through “drawing” only
what is needed and important in a specific problematic diagnostic situation, and the rest is
omitted. These processes are clear, they are easier to manage and control the influence of
some subjective preferences on them.

Cognitive hybrid diagnostic systems will eliminate contradictions between the prop-
erties of objective reality, diagnostic processes, and features of the diagnostic object (the
patient’s body) and the scientific picture of the world that is a part of the world view of
scientists and specialists working in computer science, design, and medicine. The CHIDS
architecture is relevant to the composition and structure of the intellect of an expert doctor,
reflecting not only the logical-mathematical (left-sided intellect) but also the visual-spatial
(right-sided) mechanism of thinking. The metalanguage of the axiomatic theory of role-
visual diagnostic models is universal. The study is being conducted with the participation
of experts—doctors from the Kaliningrad Regional Clinical Hospital. Presented findings
have been aligned with them for further work. The future work (the last stage) is the
approbation of all solutions for the concrete diagnostic problem. KRCH has chosen the
problem of examination of the pancreas, in particular diagnostics of chronic pancreatitis
and cancer. This problem will be analyzed and identified. Its parameters and limitations
will be specified. After that we will follow the next sequence of steps:

• Reduction of a problem according to the method and general scheme of the represen-
tation of the diagnostic problem decomposition proposed in the [29];

• Developing of the heterogeneous model field on the basis of the obtained decomposi-
tion. Every model of the field will be built by means of a certain method of artificial
intelligence depending on the type of used calculations. The limit of the study regard-
ing types of calculations: neuro-, fuzzy, reasoning based on experience, analytical,
evolutionary, statistical, and logical reasoning;

• Synthesizing of the integrated model by the proposed in the manuscript algorithm. It
would have to be rebuilt over the heterogeneous model field depending on the input
information about the object every time the object is being diagnosed;

• Initialization of the Cognitive Hybrid Intelligent Diagnostic System for the pancreas;
• Laboratory research of the system and interpretation of the results according to which

we could have to return back at the step of “Development of the heterogeneous model
field” for revision of models.

Due to the integration of imitation of an internal subject-figurative vision of medical
diagnostic problems and the corresponding communication statements of private diagnoses
with imitation of the behavior inherent for councils in problem situations, an industrial pro-
totype of the hybrid functional intellectual system with cognitive modeling of a diagnostic
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problem will allow us to approach the smoothing of conflicting indications of equipment,
reduce the number of medical errors, improve the quality and, accordingly, the safety of
medical intelligent diagnostic decision support systems.
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