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Abstract: Enhancing resiliency in a power grid system is one of the core mandates of electrical
distribution companies to provide high-level service. The power resiliency research community has
proposed numerous schemes, to detect, classify, and localize fault events. However, the literature
still lacks a comprehensive taxonomy of these schemes which can help advance future research.
This study aims to provide a compact yet comprehensive review of the state-of-the-art solutions
to fault analysis in transmission power systems. We discuss fault types and several fault-analysis
methodologies adopted by relevant research works, propose a novel framework to classify these
works, and highlight their strengths and limitations. We anticipate that this brief review would be
helpful as a literature review and benefit the research community in choosing suitable techniques for
fault analysis.

Keywords: power system; smart grid; fault analysis; fault identification; fault detection; fault
localization

1. Introduction

Electric power systems have evolved over decades from synchronous machines to
renewable energy sources for generating electricity. However, the power grid’s operation
has always been challenging because of extreme operational and environmental conditions.
In this section, we address the need for power system fault analysis and provide the
contributions and structure of this paper.

1.1. Background

Power transmission is the first step to transporting the bulk of power from a power
generator to the last mile of a power grid. The transmission system includes many fun-
damental components such as step-up and step-down transformers, power lines, towers,
switches, relays, and reclosers. Figure 1 shows different subsystems of a power grid system.
This system is susceptible to many challenges, such as power loss that changes to thermal
energy due to conductor resistance (I2R), where I is the current and R is the resistance. That
is why the voltage is increased to minimize the resistive loss. Another challenge is the
skin effect, where current flows along the outer surface/skin of the cable due to a high fre-
quency. This means that the current flows through a very small portion of the conductor’s
cross-section, thereby increasing the resistance. These challenges and environmental factors
such as storms, heavy freezing rains, and wild habitat activities contribute to transmission
element faults. These could heavily impact customers, such as the recent historic blackouts
that hit Texas, USA, in 2021 due to a severe winter storm. Hurricane Sandy is another
example that hit the USA in 2012, causing a wide range of damage, hundreds of casualties,
and thousands of displaced residents in the great New York area [1].
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hundreds of casualties, and thousands of displaced residents in the great New York area 
[1]. 

The most recent review in this field [2] described different techniques investigated 
by several researchers for detecting, classifying, and localizing transmission faults. How-
ever, it lacks a clear classification scheme and only provides a comparative analysis for 
fault localization proposals. In [3], the authors employed fault-analysis methods to clas-
sify a limited number of relevant previous works. Other studies and surveys classified the 
works differently, e.g., according to their computational intelligence features [4] as prom-
inent, hybrid, or modern [5]. 
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Figure 1. A schematic of a Power Grid System, where the gray-shaded part represents the trans-
mission system. 

1.2. Contribution of the Paper 
Our contributions relative to the recent research work in the field can be summarized 

as follows: 
 Unlike other surveys, this study provides a deeper insight into the comprehensive 

and most recent state-of-the-art techniques for academic and industrial research com-
munities; 

 We highlight the key challenges presented in the recent literature and summarize the 
related research work in terms of their strengths, weaknesses, and gaps; 

 We provide a novel classification scheme to classify relevant fault-analysis tech-
niques according to the method used and the target task (i.e., detection, classification, 
or localization). 

1.3. Review Methodology 
In Figure 2, we present a flowchart to provide a visual connection of the different 

components of our methodology. While each component is described in detail in the sub-
sequent sections, this flowchart shows our review methodology as a whole, emphasizing 
the integration between its components. 

Figure 1. A schematic of a Power Grid System, where the gray-shaded part represents the transmis-
sion system.

The most recent review in this field [2] described different techniques investigated by
several researchers for detecting, classifying, and localizing transmission faults. However,
it lacks a clear classification scheme and only provides a comparative analysis for fault
localization proposals. In [3], the authors employed fault-analysis methods to classify a
limited number of relevant previous works. Other studies and surveys classified the works
differently, e.g., according to their computational intelligence features [4] as prominent,
hybrid, or modern [5].

1.2. Contribution of the Paper

Our contributions relative to the recent research work in the field can be summarized
as follows:

• Unlike other surveys, this study provides a deeper insight into the comprehensive and
most recent state-of-the-art techniques for academic and industrial research communities;

• We highlight the key challenges presented in the recent literature and summarize the
related research work in terms of their strengths, weaknesses, and gaps;

• We provide a novel classification scheme to classify relevant fault-analysis tech-
niques according to the method used and the target task (i.e., detection, classification,
or localization).

1.3. Review Methodology

In Figure 2, we present a flowchart to provide a visual connection of the different
components of our methodology. While each component is described in detail in the
subsequent sections, this flowchart shows our review methodology as a whole, emphasizing
the integration between its components.
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Figure 2. The process flow of our review methodology. 

1.4. The Paper Outline 
The structure of this paper is as follows: Section 2 provides a classification of faults 

in a transmission system. Fault analysis techniques are discussed in Section 3; a summary 
of these techniques based on the method used for fault analysis and some key points is 
provided in Section 4. Finally, we conclude the paper in Section 5. 

2. Fault Classification and Monitoring 
A transmission power system encounters different types of faults, classified into tran-

sient and intransient, as shown in Figure 3. The former is not usually visible to power 
technicians and is difficult to locate; the power can go off temporarily and then be re-
stored. Examples of transient faults are temporary contact of a tree to any transmission 
phase, animals like birds contacting power lines, lightning strikes affecting the transmis-
sion system, and phases clashing due to storms. The latter type, i.e., intransient, is perma-
nent until power engineers fix it. It can be either open or short circuited [6,7]. 

In contrast to short-circuit faults, open-circuit faults occur when one or more lines 
malfunction or break without making contact with any external objects or ground. This 
fault produces a very high voltage in some parts of the transmission system, causing volt-
age instability, which may develop into short-circuit faults and pose a danger to humans 
and animals [8]. 

On the other hand, short-circuit faults result from abnormal contact of low imped-
ance between two parties of different potentials due to random and unpredictable events 
such as severe weather conditions, animals, supply/demand unbalancing, and aging. Con-
sequently, power returns to the source and does not reach the distribution system, causing 
a high current to flow through the transmission system to an object/ground, damaging the 
equipment. Therefore, transmission power faults can be further classified into phase faults 
or ground faults. Phase fault refers to the case when power lines contact each other or 

Figure 2. The process flow of our review methodology.

1.4. The Paper Outline

The structure of this paper is as follows: Section 2 provides a classification of faults in
a transmission system. Fault analysis techniques are discussed in Section 3; a summary
of these techniques based on the method used for fault analysis and some key points is
provided in Section 4. Finally, we conclude the paper in Section 5.

2. Fault Classification and Monitoring

A transmission power system encounters different types of faults, classified into
transient and intransient, as shown in Figure 3. The former is not usually visible to power
technicians and is difficult to locate; the power can go off temporarily and then be restored.
Examples of transient faults are temporary contact of a tree to any transmission phase,
animals like birds contacting power lines, lightning strikes affecting the transmission
system, and phases clashing due to storms. The latter type, i.e., intransient, is permanent
until power engineers fix it. It can be either open or short circuited [6,7].

In contrast to short-circuit faults, open-circuit faults occur when one or more lines
malfunction or break without making contact with any external objects or ground. This
fault produces a very high voltage in some parts of the transmission system, causing voltage
instability, which may develop into short-circuit faults and pose a danger to humans and
animals [8].

On the other hand, short-circuit faults result from abnormal contact of low impedance
between two parties of different potentials due to random and unpredictable events such
as severe weather conditions, animals, supply/demand unbalancing, and aging. Conse-
quently, power returns to the source and does not reach the distribution system, causing
a high current to flow through the transmission system to an object/ground, damaging
the equipment. Therefore, transmission power faults can be further classified into phase
faults or ground faults. Phase fault refers to the case when power lines contact each other
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or another object but not the ground. If the fault affects all three phases equally, the fault
is symmetric (LLL). Otherwise, it is asymmetric (LL). On the other hand, a ground fault
occurs when any transmission phase contacts the ground. So, it is either one line to the
ground (LG), two lines to the ground (LLG), or three lines (LLLG) [9].
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Figure 3. Classification of faults in overhead transmission lines. 

Power grids are highly fragile systems, and many factors impact the performance 
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service [10]. One of the pillars of resilient systems is having data about different system 
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nately, legacy power grids lack both a real-time measurement of their state and a direct 
way to assess the parameters of a power grid system such as active current, voltage, phas-
ors, etc. However, deploying sensors enables legacy power grid systems to cope with this 
drawback and act proactively rather than reactively to prevent faults. Furthermore, the 
power in a transmission line can flow in either direction according to the load at the two 
ends, and hence the information from the endpoints of transmission lines is necessary to 
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Historically, the topology of a transmission system has been used alongside electric-
ity laws to estimate various power parameters, such as voltage values at several intercon-
nection points of the power system. The control center calculates these parameter readings 
to generate a partial picture of the system’s state. As a result, faults can be detected. How-
ever, the fault itself can’t be accurately localized using minimal measurements. It is usu-
ally spotted and inspected visually, which is time-consuming [11]. 

In the early 1980s, relays were used to detect and localize faults in power transmis-
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surges flow to relays placed at the two ends of the power line. Thus, a fault is detected. 
The time difference between receiving these surges is measured to calculate the fault lo-
cation. This method is simple and easy to apply, using a wavelet transform to signals [12]. 
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Power grids are highly fragile systems, and many factors impact the performance
and quality of service. Therefore, it is imperative to embed fault resiliency and self-
healing processes in power grids to promptly locate the faults, repair them, and restore the
power service [10]. One of the pillars of resilient systems is having data about different
system components, processing it, and drawing an instantaneous picture of their state.
Unfortunately, legacy power grids lack both a real-time measurement of their state and a
direct way to assess the parameters of a power grid system such as active current, voltage,
phasors, etc. However, deploying sensors enables legacy power grid systems to cope with
this drawback and act proactively rather than reactively to prevent faults. Furthermore, the
power in a transmission line can flow in either direction according to the load at the two
ends, and hence the information from the endpoints of transmission lines is necessary to
develop a holistic picture of the state of a transmission system.

Historically, the topology of a transmission system has been used alongside electricity
laws to estimate various power parameters, such as voltage values at several interconnec-
tion points of the power system. The control center calculates these parameter readings to
generate a partial picture of the system’s state. As a result, faults can be detected. However,
the fault itself can’t be accurately localized using minimal measurements. It is usually
spotted and inspected visually, which is time-consuming [11].

In the early 1980s, relays were used to detect and localize faults in power transmission
lines. Once a fault occurs, two surges of power are generated by that fault. These surges
flow to relays placed at the two ends of the power line. Thus, a fault is detected. The
time difference between receiving these surges is measured to calculate the fault location.
This method is simple and easy to apply, using a wavelet transform to signals [12]. Still,
it suffers from drawbacks such as localization inaccuracy due to the lack of capturing an
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accurate measurement of the time difference between the two surges, given that the signals
travel at the speed of light (i.e., 3 × 108 m/s). Indeed, a slight drift in time difference will
significantly impact the localization of the fault place. For instance, 1 µs (microsecond)
of time difference drifts the estimated location of the fault by 300 m. Recent research has
overcome the inaccuracy of the wavelet transform by combining it with other tools such as
entropy-based methods to identify different faults’ time-frequency characteristics. Hence,
it accurately and quickly determines the fault type or disturbances with sufficient noise
tolerance [13].

Fault-monitoring systems usually target three tasks: detection, identification or classi-
fication, and localization, as shown in Figure 4.
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Fault detection refers to the process that shows instability in the transmission system
and depends on collecting different system state measurements such as voltage, current,
and phases’ differences. The measurements from all phases can indicate whether or not
there is a fault in a power system. The second step is responsible for classifying and
identifying fault types. Monitoring of all transmission lines allows better identification of
fault types. This step is critical for technical staff to understand the issues they are dealing
with and to gather all of the necessary equipment to solve them.

The last step is localizing the fault, which refers to the process that ends up find-
ing/locating the fault place. Fault localization utilizes the measurements from the detection
step to locate faults accurately.

3. Fault Analysis Techniques

This paper provides a novel classification scheme to classify fault analysis techniques
by the methods used and their tasks (i.e., detection, identification, and localization). Figure 5
shows the classification of fault analysis techniques by the methods used. A technique can
either use conventional or modern approaches to analyze faults.

A fault is temporary if it is cleared after breaker reclosing and is a permanent fault
otherwise [14]. A permanent fault requires power technicians to locate and repair the
faulted line section to restore power service. In conventional methods, protective relays,
placed at both ends of a transmission line, sense the fault immediately and isolate the
faulted line by opening the associated circuit breakers [15]. Distance relays are fast and
reliable ways to locate the fault area. However, they fall short of providing accurate fault
localization. In addition, it is difficult to identify and classify faults using relays, triggering
the need for other techniques to overcome this drawback.

A wavelet-based technique is effective for analyzing transient power faults. It is
mainly effective for fault detection and localization [16–20]. Improving fault detection and
location accuracy can be achieved by using the maximum wavelet coefficients (WCs) of the
frequency and voltage signals under fault disturbance and investigating the relationship
between the WCs and power variation. Fault detection, identification, and location usu-
ally need to be solved as a unified problem in power systems. However, most methods
discussed in previous literature focus on one or two aspects and cannot solve all three
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problems simultaneously. It can be foreseen that a multifunctional approach, which can
achieve fault detection, identification, and localization, has the potential for a wide range
of applications in power systems.
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T. Takagi et al. [21] developed an equation based on the electrical equations of the loop
formed by a single-phase to ground resistive fault, using only the wavelet readings from
one end of the transmission line. They localized faults in a transmission line by separating
the circuit into two equivalent circuits: one prior to the fault and the other during the fault.
Each of these gives an equation about the current and the voltage. On the other hand,
modern techniques can be classified into control theory, Artificial Intelligence (AI), and
communication networks.

3.1. Control Theory

Control theory refers to the field focusing on controlling dynamic systems and ensuring
the stability of the operating systems without delay. Next, we discuss fuzzy logic and
Boolean logic as well-known methods in control theory.

3.1.1. Fuzzy Logic

Fuzzy logic (FL) is an extension of a multivalued logical system. This control theory
class follows an intuitive approach with less complexity [22]. The truth variables are real
values between 0 and 1, where 0 means very false and 1 means very true. FL can model
nonlinear functions and simplify the control of dynamic systems. Natural languages,
control systems, and clustering in networks are some of the applications of FL. FL has also
been used in power systems for control and analysis [23–26]. For instance, the impact of the
lightning strike on a fault location in a transmission power system was determined using
FL [27]. The authors found that the rate of false or missed alarms is minimal for the FL
method, while FL-based and SCADA methods have comparable performance for lightning
strike trips, and the correlations of 100 km line trips are equivalent for the conducted
experiment throughout the time interval.

The authors in [28] used a fuzzy inference system to detect, classify, and localize a fault
section in combined transmission lines and underground power cables. Their approach
depends on ten adaptive networks based on a fuzzy inference system (ANFIS), using
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post-fault voltage and current measurements. ANFIS1 is used to classify the fault type.
The fundamental frequency amplitude of the three-phase currents plus the neutral current
will be the input for ANFIS2. The output has the formats A, B, C, and G, representing
the three phases and the ground. Any output A, B, or C close to 1 refers to a fault in that
phase. Similarly, if G closes to 1, the fault involves the ground. The four short-circuit fault
types, namely LL, LLL, LLG, and LG, can be overhead or underground. Thus, the eight
ANFISs are trained for each type to locate the faulty section. To classify overhead and
underground faults, sampled values (within one cycle) of a post-fault peak can be used
to estimate the inputs of ANFIS The authors tested their proposed algorithm to ensure
accuracy, conducting several scenarios including short-circuit fault types, fault inception
angles, and impedances. The maximum location error of a faulty section is below 0.07%.
However, considering these parameters increases the complexity and learning time for
different training sets.

3.1.2. Boolean Logic

Boolean logic is simpler than fuzzy logic as the variables have truth values of true
or false. It provides only a binary value representation: 0 for false and 1 for true. This
representation is different from fuzzy logic, where values can be any real value between
0 and 1, and is also different from ordinary algebra, where the variables can have any
numerical value [29]. The three main operators in Boolean logic are conjunction (∧),
disjunction (∨), and negation (¬). Boolean logic played a significant role in the digital
revolution, especially in digital circuit design and information communication. Boolean
logic applications such as error propagation modeling and computational geometry are
applied to approximately a molecular surface area [30]. Boolean logic was implemented in
power systems analysis along with other methods to diagnose faults [31].

3.2. Artificial Intelligence

Next, we discuss AI-based techniques, including probabilistic methods for uncertain
reasoning, evolutionary computation, statistical learning methods, and neural networks.

3.2.1. Probabilistic Methods for Uncertain Reasoning

There are many probabilistic methods for uncertain reasoning and include the hid-
den Markov model (HMM), Bayesian networks, and Kalman filter. HMM is a statistical
method based on the Markov process with hidden states. Using HMM, researchers seek
to recover the sequence of hidden (unobserved) states from the observed generated data.
There are many applications of HMM, such as speech recognition, protein structure pre-
diction, genome-sequence analysis, and image classification [32]. HMM has been used
recently in the fault diagnosis of power systems, for example, to detect power faults that
lead to islanding in a smart grid [33,34]. In [35], the authors formulate the problem of
detecting a transmission line fault using HMM. They produced a probabilistic estimation
of the transmission line status using inference and particle filtering. This approach is
robust to measurement errors of phasor measurement units (PMU). The proposed HMM-
based algorithms outperform other algorithms for noise levels of 0.1, 0.15, and 0.2 with
detection percentages of 99, 95, and 91, respectively. However, using HMM has two
drawbacks: the expensive computational complexity and the high amount of memory
required, posing a scalability issue. Although this approach claims to reduce computational
complexity, it is clear that there is a tradeoff between computational complexity and fault
detection accuracy.

Similarly, Bayesian networks (BNs) have been used successfully to create consistent
probabilistic representations of uncertain reasoning in many fields, such as audio-visual
speech recognition, medical diagnosis from partially correct data, biological interactions,
and many others [36]. BNs also locate faults in transmission power systems [37,38]. Fault
diagnosis BN-based models can work with uncertain or incomplete data related to a power
fault analysis system [39]. In [39], the initial parameters of the BN depend on historical
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inputs from domain experts, which are further refined using an error backpropagation.
The proposed system uses the following evaluation criteria: (1) if the fault belief degree of
an element is >0.7, this element is faulty; (2) if the degree of an element is in the range of
[0.15–0.7] inclusive, this element may be faulty; and (3) if the degree of an element is <0.15,
this element is normal. This approach is efficient, scalable, and independent of network
topology; hence, it can be applied to any large-scale transmission power system. However,
there are some concerns regarding the computational cost of running this approach.

On the other hand, the Kalman filter (KF) is an optimal estimation algorithm for
variables of interest that cannot be directly measured. It also assesses the state of the system
from indirect and noisy measurements. KF is used in many ways, such as spacecraft to
estimate their altitude and localize objects such as mobile robots and driverless vehicles [40].
In many domains, KF has also been adopted in many research studies concerning power
systems [41–43]. Recently, Neto et al. [44] presented a KF-based solution to locate faults in
transmission lines where magnetic fields produced by current signals are measured using
magneto-resistive sensors installed at transmission line terminals. The proposed solution
uses the extended KF (EKF) to process these measurements and employs a travelling
wave approach to localize the fault. The proposed algorithm performs approximately
250 multiplications and 400 additions for a new sample provided by the sensors.

Consequently, accuracy is limited by the sampling frequency. The minimum and
maximum localization errors of the proposed solution are 0 m and 107 m, with an average
fault location of 26 m and a standard deviation of 16 m, fault resistance of 229 Ω and a fault
inception angle of 245◦. Furthermore, this approach requires highly synchronized clocks to
calculate the travelling wave time and achieve accurate localization.

3.2.2. Artificial Neural Networks

An artificial neural network (ANN) is a powerful tool that has been used for a long
time in many applications spanning pattern recognition, feature extraction, noise reduction,
and prediction. An ANN is trained, usually in a supervised manner (each set of inputs is
associated with the desired output), by feeding it with many input examples. Once the
ANN is sufficiently trained, it can solve different test scenarios than those it was trained
with. It can even generalize the learning by producing solutions to new data that have
not been part of the training phase [45]. Figure 6 shows the simplest form of 1-perceptron
ANN, where Xi and Wi represent the input and weight, respectively. Sigma is the learning
function followed by the activation function, which ends with the output. ANN-based
techniques for faulty transmission lines can handle one or more steps of fault diagnosis.
In other words, ANN-based techniques detect, classify, or localize the fault. For detecting
a fault, the output is binary, indicating whether there is a fault or not, while classifying
the fault type requires more outputs. On the other hand, a fault location can be referred
to using distance measurements from a specific line terminal or a block/section where
the fault has occurred. The former requires only one output, while the latter may require
multiple outputs to identify the fault block/section.
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ANN can be either shallow or deep. Most fault analysis techniques follow a shallow
learning approach [46,47]. Several research papers have employed ANN for fault analysis
in the power grid [48–51]. A feed-forward 3-layer ANN has been designed to estimate
the resistance and location of a faulty 3-phase transmission line using voltage and current
readings of a single terminal [52]. Similar to Takagi’s method [21], Ref. [52] it requires
the voltage and current parameters prior to and during the fault. Each value of these
two parameters has two parts: real and imaginary. The total number of inputs for ANN
is 15, where the number of hidden nodes is 8, 11, or 12 for weak, medium, or strong source
impedance, respectively. The outputs are the fault resistance and the fault location in
terms of distance from the used terminal of the transmission line. The result shows the
high performance of this technique with 1% precision for the fault location and 3% for the
fault resistance. Although this result outperforms the conventional methods, it is unclear
whether or not the technique in [52] will hold for high values of resistive fault with changes
in source impedance.

On the other hand, deep learning is a relatively new dimension in ANN, with the
most recent breakthrough in 2006. Deep learning enables unsupervised feature learning,
pattern analysis, and classification. The fundamental principles of deep learning can
be summarized as follows [53]: (1) Unsupervised learning is used to pre-train each layer;
(2) unsupervised training of one layer at a time, on top of the previously trained ones, where
the representation learned at each level is the input for the next layer; and (3) supervised
training used to fine-tune all the layers (in addition to one or more additional layers
dedicated to producing predictions). Recently, attention has been drawn to applying deep
learning to fault diagnosis in a power transmission system [54–57]. In [49], the authors
developed a technique based on deep learning where data is extracted from a power
system control center and preprocessed before the deep learning network training. Then
auto-encoders are used to process the data, and hidden features are evaluated to conclude
the existence of the fault. If a fault is detected, the second step is to classify the fault type,
where trained stacked auto-encoders are used for training a deep learning network. For
proper parameter setting, the diagnosis accuracy rate is more than 80%. This means the
number of hidden layers and epochs influences the accuracy rate of diagnosis. For example,
large numbers of hidden-layer units and epochs might enhance the accuracy, but would
also cost more time for training, influencing on-the-fly fault diagnosis.

Feature Extraction

Feature extraction is a major step for fault analysis in power grids, without which most
fault-analysis methods may not be set up correctly. AI-based techniques use the extracted
features for training AI models. In power grid analysis, current and voltage measurements
are usually collected in samples and forwarded to a feature extraction technique. The
extracted features are then used to detect, classify, and locate faults. For example, frequency
measurements could be collected and decomposed in a time-frequency form to extract
time-frequency features. The extracted features can then be used by clustering techniques
to partition the power grid and determine the fault location [58]. The scope of this topic is
large and diverse, and we highlighted its significance and application multiple times in
the text.

3.2.3. Evolutionary Computation

Evolutionary computation is a field based on trial-and-error with stochastic optimiza-
tion. Perhaps, genetic algorithms (GA) are the most common class in the larger category of
evolutionary computation. They are inspired by natural selection theory [59], involving the
following steps:

(1) An initialized population of potential solutions is randomly generated;
(2) The fitness function is evaluated;
(3) If it satisfies the optimization/termination criteria or constraints, the best output is

generated; otherwise the process is terminated;
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(4) The population is subjected to natural selection in order to select the best-fitting
parents for breeding;

(5) To create a new generation, genetic operators such as crossover and mutation are used;
(6) Go to step number (2).

Crossover or recombination combines two or more parts of candidate solutions to
breed a new one. On the other hand, mutation performs local modifications to a solu-
tion [60]. The last two steps, selection and generation, are iteratively run until the best
candidate solution is selected.

Researchers have employed GAs to analyze faults [61,62] and solve other problems
in power grids, such as managing microgrid energy [63] and achieving an optimal design
of distribution powerlines [64]. GA can be employed to locate faults in transmission lines
using the data from the two-terminal transmission line [65]. The authors in [65] utilize
a distributed time-domain model of a power transmission line to derive a fault location
formula. The objective function reflects the relationship between the derived voltages from
both terminals. Therefore, the goal of the proposed GA is to minimize the location error by
collecting synchronous measurements of post-fault voltage and current from the two ends
of the line. For a fault happening 100 km from the S terminal, the proposed GA presents a
fault distance of 99.882 km from the S terminal, which is very close to the actual fault point
(i.e., −0.118% error of fault location).

3.2.4. Statistical Learning Methods

Statistical learning methods include decision tree (DT) and support vector machine
(SVM). DT is a graph with no cycles, a commonly used predictive statistical model, espe-
cially for classifications [66]. It contains decisions and possible outcomes. Safety evaluation
and classifiers on private databases are some applications of DTs [67]. A DT-based method
has been developed to classify a fault type in a single-circuit transmission line [68]. The DT
is trained using the odd harmonics (up to the 19th) of the measured signals. Although the
result is promising, with a classification accuracy of a cycle’s quarter, the reliability is an
issue as the training inputs could be erroneous. Furthermore, DT methods usually pose
computational complexity, which has not been included in [68].

Likewise, SVM is a classification technique that belongs to statistical learning theory.
One of the most effective linear classifiers uses kernel tricks to create a nonlinear clas-
sifier [69]. It is a supervised learning method to train machines to learn independently
without explicit static programming instructions. Applications of SVM cover many fields
such as medicine to classify, for instance, cancer tissue, financial forecasting, and text classi-
fication [70], among many others. Researchers have used SVM successfully in fault analysis
in power systems [71–75]. SVM can also be used to localize faults in power transmission
systems with high accuracy (up to 99%) [76].

3.3. Communication Networks
3.3.1. Global System for Mobile Communications (GSM)

GSM is a telecommunication standard developed by the European Telecommunication
Standard Institute (ETSI). It is considered the second generation (2G) of cellular networks
used by mobile devices [77]. GSM has been used in power fault analysis [78,79]. For
instance, in [79], a technique has been proposed to detect and classify a faulty transmission
line. The proposed system consists of protective equipment such as relays, switch breakers,
reclosers, voltage sensors, an 8-bit microcontroller, a GSM module, and a LED display.
Since the micro-controller works on a 5 V voltage level and serial communication with the
computer system works on a 12 V voltage level, a MAX232 IC is used to boost the signal
from 5 V to 12 V. The sensed fault signal is delivered to the microcontroller to analyze the
characteristics of the signal in terms of current and voltage readings. The microcontroller
will detect and classify the fault once it occurs. GSM will be used to send a message to the
person in charge of any existing fault. Finally, the microcontroller sends a signal to relays
and switch breakers to isolate the faulty section.
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3.3.2. Wireless Sensor Networks (WSNs)

A WSN comprises sensor nodes with sensing functionalities to monitor physical
properties such as voltage, humidity, temperature, pressure, and moving objects. A sensor
has a small processor, a battery as a power supply, memory, and a short-range wireless
transceiver [80]. The collected sensed data is typically propagated towards the base station
(BS) in a multi-hop fashion to provide the whole picture of the target region/object. For
example, Figure 7 shows a path of sensed data from sensor nodes, aggregated at BS,
then transmitted to the end-user via a communication medium such as TCP/IP protocols
or GPRS.
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Since WSN is one of the leading IoT enablers, researchers often use the term IoT to
indicate WSN [19,81]. WSNs have been applied to smart buildings, smart vehicles, health
care, environmental studies, security, tracking objects, and agriculture [80]. They can also
play a key role in monitoring the status of transmission lines in a real-time manner [82,83].
For example, [82], a WSN-based system has been proposed to monitor power transmission
lines. The proposed system can be divided into two subsystems: Monitoring and operation.
In the monitoring subsystem, heterogeneous sensors with different vision and magnetic
induction capabilities are deployed on transmission towers. These sensors collect data on a
real-time basis and send it to the operation subsystem. The collected data is transmitted
wirelessly through the transmission line with up to 138 kV of power. Thus, there is no need
for cellular or optical communication to deliver the sensed data to the operation subsystem
for analysis. The results are displayed through a graphical user interface, showing real-time
monitoring and fault detection. The display shows carbon monoxide (parts per million),
temperature (Celsius), pressure, span and structure images, and luminosity.

4. Summary of The Analysis Techniques

Table 1 summarizes the fault analysis techniques. In addition to the remarks, the
third column denotes whether the corresponding technique employs one terminal or
two transmission line terminals to achieve its objective/task of fault analysis. The following
are some key points that we make regarding these techniques: (i) There is an increasing
number of proposals that employ modern techniques such as ANN and machine learning
(ML) methods. However, even this sophisticated tool can fail to catch some transient
events. For example, the voltage drop due to a generator’s malfunction or overloading
usually impacts the three phases uniformly. ANN is usually trained to detect the abnormal
voltage and current differences between these phases due to a fault in one or more of them.
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Therefore, there is a need for further feature engineering to reflect on special transient
events; (ii) sensors are vital devices for data acquisition for almost all modern technologies.
Thus, cybersecurity is of paramount importance to grid operators. It is critical because
cyber attackers could manipulate the readings of voltage and currents to be perceived as
normal while, in fact, there is an imminent failure (i.e., increase the false negatives) or vice
versa. During normal loading, current and voltage measurements collected by sensors are
almost balanced. However, these measurements fluctuated in faulty incidents, indicating
an unbalanced loading state; and (iii) localization-based techniques that utilize the time
difference of travelling signals usually face accuracy issues due to the inaccuracy of time
measurements. Furthermore, techniques that collect power-related readings at the two ends
of power lines provide more accurate fault localization than impedance-based techniques.

Table 1. Summary of the analysis techniques concerning the methods considered in the surveyed
works. It illustrates the tasks these techniques perform (i.e., detection, classification, or localization).
The “General Remarks” column shows the advantages/disadvantages of the corresponding technique,
and whether it uses one terminal or two to achieve its tasks.

Fault Analysis
Method Work Detection Classification Localization General Remarks

Conventional

[21] 3
1-terminal; the assumption of the angles’
equality may lead to erroneous locations

[84] 3
2-terminal; phasor measurement units (PMUs);
tolerant to time-synch signal and PMU losses

[85] 3
1-terminal; EHV transmission lines; has low

efficiency—Better to synch data from both ends

[86] 3 3

Voltage measurements and network bus
admittance matrix; transient stability

assessment problem

[87–89] 3

2-terminal pre-fault and post-fault of current
and voltage; using a wide-area measurement

system to handle a large-scale of data for
accurate fault location

Wavelet

[90] 3

1-terminal; detected using conventional
discrete wavelet transform; more prominent
than other various types of mother wavelets

[91] 3

1-end measurements; using both voltage and
current signals; tested on a 380 kV prototype

power system; find the fault locations in a
short time

[13] 3

2-terminal transmission line; a wavelet
entropy-based method; accurate with a fair

degree of noise tolerance

[92] 3 3 3

2-terminal transmission line; GPS for synch;
efficient approach with a fair

degree of accuracy

Fuzzy Logic

[28] 3 3 3

Overhead or underground; localization by
section; evaluated under different fault

locations, inception angles and several fault
resistances; accurate but requires many ANFIS

networks to work

[27] 3

Fault locations caused by lightning strike;
gather current values from SCADA system;

requires 216 sets of rules to create an
expert database
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Table 1. Cont.

Fault Analysis
Method Work Detection Classification Localization General Remarks

Hidden
Markov
process

[33,35] 3
Phasor measurements; detect faults in a

short time

Bayesian
Networks

[37] 3

Single-phase grounding accidents; “Storm”,
“Aging”, and “Icing” are the most critical

hazards of single-phase grounding,
respectively; however, sensitivity analysis

requires further validation

[39] 3

Fault section localization; feasible and efficient;
however, the lack of prior knowledge of the
domain experts impacts location accuracy

Kalman Filter

[43] 3
Estimate the pre- and post-fault state of

voltages and currents

[44] 3

2-terminal with extended KF; robustness and
accuracy of localization are subject to sampling

frequency; time synch is required between
both terminals

ANN

[46,47] 3 3
2-terminal; high detection and classification

accuracy

[52] 3 1-terminal; small localization error (up to 5%)

[93] 3 3
2-terminal; a single hidden layer is sufficient to

learn and classify and localize faults

[94] 3 3 Utilize samples of currents and voltages

[95] 3
1-terminal; the classifier is suited for

classifying faults in double-circuit lines

[96] 3 3

1-terminal pre-fault and post-fault data;
feasible and tested against different types of

faults at several operating conditions

[97] 3

2-terminal; maximum localization error less
than 2%; error could be further reduced if
longer training time is applied (>2.5 min)

[98] 3 3

LG, LL, and LLG; reliable and attractive
approach for protecting relaying system in

power transmission systems

[49] 3 3

Deep learning neural network: use stacked
auto-encoders (SAE) to train the deep model;
increase the reliability and stability of power

systems and; the accuracy is
parameter-dependent—proper selection of the
numbers of hidden layers and epochs is vital

for an accuracy of around 80%

Genetic
Algorithm

(GA)

[59] 3

Pre-fault for maintenance purposes; efficient
method to solve complex non-linear

optimization problems

[65] 3
2-terminal transmission line; significant
maintenance savings of power systems

[99] 3
Measurement of short-circuit current at

sending terminal; high degree of accuracy
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Table 1. Cont.

Fault Analysis
Method Work Detection Classification Localization General Remarks

Decision Tree

[66] 3
Detect and identify lines that lead to

cascading failure

[68] 3 3 1-terminal; robust and accurate

[100] 3
Current signals sampled at 1920 Hz; high

impedance fault

Support Vector
Machine

[69] 3

2-terminal; combined with GA; the system
uses voltage and current phasor from PMU to

identify fault types; uncertain phasors pose
diagnosis inaccuracy

[76] 3

1-terminal; high accuracy with average
localization of less than 100 m (in 200 km

transmission line, i.e., 0.05%) and the
maximum error is below 2 km (i.e., 1%)

[101] 3
1-terminal; 340 km long 3-phase

transmission line

[102] 3 3 3
Post-fault current samples and

ground detection

GSM

[77] 3 Combined with the Internet of Things (IoT)

[78] 3
1-terminal pre-fault and post-fault of current

and voltage

[79] 3 3

Sensed signals are forwarded to a
microcontroller for detection and classification

of faults; less accurate in extreme
weather conditions

WSN

[19] 3

Use IoT device NODE MCU (Esp8266) to
detect voltage change considering weather

conditions; works in a real-time manner;
reliable, and can be used to locate faulty lines;

bounded by Wi-Fi communication range

[82] 3

Monitoring power lines with no optical cables
or GPRS; Wi-Fi through TCP/IP; high
overhead handling and processing of

aggregated data from multiple sensors on
operation center; electromagnetic compatibility

is a challenge

[83] 3
Zigbee and GPRS; good for remote areas; the

system has low power consumption

Fault analysis techniques that use modern tools are more accurate and reliable than
their conventional counterparts. This is due to the real-time data collection of the grid state
and the fast decision-making and action-taking upon any failure event. However, there are
variations among these modern techniques related to their performance evaluation, such
as accuracy. This is further associated with the conducted experiment and the feasibility of
collecting the required experimental parameters. For example, ANN was used in [46] to
detect and identify fault types. The performance of the proposed solution has been tested
using a mean square error (MSE) and confusion matrix with detection accuracy near 100%
and a classification accuracy of 70%. Both faulty voltage and current have been used to
feed the neural network.

On the other hand, a GA proposal in [59] provides a solution to detect faulty lines
and maintain them beforehand, saving overall costs. Both the previous techniques seek
to detect faulty power lines proactively. The solutions are trained/implemented using
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datasets offline. The ANN-based approach requires a large enough dataset for training
purposes, while GA-based algorithms can run over a limited dataset. Achieving high
accuracy can be more challenging in the GA-based approach because it requires a careful
design of a fitness function.

Furthermore, IoT-based solutions can be proposed to detect faults in power lines [103,104].
Voltage sensors collect voltage readings from different phases of a power line and send
them to a microcontroller [19]. The microcontroller compares voltage readings and a
predefined reference voltage value, flagging a fault if there is a difference between these
values. In another example, a GSM and IoT hybrid scheme was proposed [77] to detect and
localize faulty spots. The fast detection and localization help technicians to respond quickly
and fix faults before impacting transformers. The GSM and IoT-based technologies lack
intelligence. Their decision-making depends on a predefined threshold, a crucial difference
from other modern techniques such as GA and ANN, where these thresholds are implicitly
defined through the training/learning process. Embedding intelligence into IoT and GSM
is vital for adapting to various faults and promoting interoperability with newly added
components at the edge and fog computing infrastructures.

In this study, we emphasize the importance of reliable monitoring systems. Challenges
and issues exist in deploying power monitoring systems and operating them correctly. We
discussed some of these issues in Section 3 and Table 1, which can impact the operations
of the monitoring systems and reduce the accuracy of fault detection, classification, and
localization. Examples are related to short-circuits, weather conditions, and power sources
to operate the modules of the monitoring systems.

Although the advanced fault analysis techniques developed in recent years have
contributed to more reliable power grids, there are opportunities for further improvement.
For example, future research should focus on designing a fully autonomous next-generation
smart grid in which a grid will have self-recovery and self-management methods and be
more decentralized to promote sustainability and scalability.

5. Conclusions

This paper provides an insightful study on fault analysis in transmission power
systems. We provide a novel categorization scheme of relevant solutions and proposals
in fault analysis of transmission systems according to the method used and the target
task, whether it is detection, classification, or localization of faults. As a result of this
categorization, we have identified the main research areas required to bridge the gap in
the research body. We have identified gaps such as the lack of automation in the proposed
solutions regarding fault analysis and seamless action-taking upon a failure incident.
Furthermore, cascading faults are a major issue in a transmission system. Current solutions
are not fast enough for quality decision-making to prevent fault propagation.

The general trend of fault analysis techniques is to rely more on smart devices to collect
data about the overall status of the grid’s components. This data enables modernized
methods such as ML-based and evolutionary computation methods to detect, identify, and
localize faults accurately. On a related emerging topic, the distributed detection of cyber-
physical attacks on smart power grids is an interesting future research direction. Another
direction is the decentralized future smart grid, in which fault analysis should be more
localized to a microgrid than the grid as a whole. Leveraging fog and edge computing along
with artificial intelligence (AI) would create a scalable and fast self-recovering smart grid.

Author Contributions: Conceptualization, Y.A.M.; Formal analysis, Y.A.M.; Investigation, Y.A.M.
and A.H.; Methodology, Y.A.M.; Resources, A.H. and T.H.; Visualization, T.H.; Writing—original
draft, Y.A.M.; Writing—review & editing, A.H. and T.H.; funding acquisition, Y.A.M.; All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by The University of Winnipeg grant number 16662.

Conflicts of Interest: The authors declare no conflict of interest.



Computation 2022, 10, 144 16 of 19

References
1. Abramson, D.M.; Redlener, I. Hurricane Sandy: Lessons Learned, Again. Disaster Med. Public Health Prep. 2012, 6, 328–329.

[CrossRef] [PubMed]
2. Mukherjee, A.; Kundu, P.K.; Das, A. Transmission Line Faults in Power System and the Different Algorithms for Identification,

Classification and Localization: A Brief Review of Methods. J. Inst. Eng. India Ser. B 2021, 102, 855–877. [CrossRef]
3. Raza, A.; Benrabah, A.; Alquthami, T.; Akmal, M. A Review of Fault Diagnosing Methods in Power Transmission Systems. Appl.

Sci. 2020, 10, 1312. [CrossRef]
4. Ferreira, V.H.; Zanghi, R.; Fortes, M.Z.; Sotelo, G.G.; Silva, R.B.M.; Souza, J.C.S.; Guimarães, C.H.C.; Gomes, S. A Survey on

Intelligent System Application to Fault Diagnosis in Electric Power System Transmission Lines. Electr. Power Syst. Res. 2016, 136,
135–153. [CrossRef]

5. Prasad, A.; Belwin Edward, J.; Ravi, K. A Review on Fault Classification Methodologies in Power Transmission Systems: Part-I.
J. Electr. Syst. Inf. Technol. 2018, 5, 48–60. [CrossRef]

6. Abass, A.Z.; Pavlyuchenko, D.A.; Hussain, Z.S. Survey about Impact Voltage Instability and Transient Stability for a Power
System with an Integrated Solar Combined Cycle Plant in Iraq by Using ETAP. J. Robot. Control (JRC) 2021, 2, 134–139. [CrossRef]

7. Sun, C.; Wang, X.; Zheng, Y.; Zhang, F. A Framework for Dynamic Prediction of Reliability Weaknesses in Power Transmission
Systems Based on Imbalanced Data. Int. J. Electr. Power Energy Syst. 2020, 117, 105718. [CrossRef]

8. Yang, J.; Fletcher, J.E.; O’Reilly, J. Short-Circuit and Ground Fault Analyses and Location in VSC-Based DC Network Cables. IEEE
Trans. Ind. Electron. 2012, 59, 3827–3837. [CrossRef]

9. Guo, C.; Ye, C.; Ding, Y.; Wang, P. A Multi-State Model for Transmission System Resilience Enhancement Against Short-Circuit
Faults Caused by Extreme Weather Events. IEEE Trans. Power Deliv. 2021, 36, 2374–2385. [CrossRef]

10. Al Mtawa, Y.; Haque, A. Clustering-Coefficient Based Resiliency Approach for Smart Grid. In Proceedings of the 2021 IEEE
International Wireless Communications and Mobile Computing Conference (IWCMC), Harbin, China, 28 June–2 July 2021.

11. Abir, S.M.A.A.; Anwar, A.; Choi, J.; Kayes, A.S.M. IoT-Enabled Smart Energy Grid: Applications and Challenges. IEEE Access
2021, 9, 50961–50981. [CrossRef]

12. Parsi, M.; Crossley, P.; Dragotti, P.L.; Cole, D. Wavelet Based Fault Location on Power Transmission Lines Using Real-World
Travelling Wave Data. Electr. Power Syst. Res. 2020, 186, 106261. [CrossRef]

13. Huang, W.; Luo, G.; Cheng, M.; He, J.; Liu, Z.; Zhao, Y. Protection Method Based on Wavelet Entropy for MMC-HVDC Overhead
Transmission Lines. Energies 2021, 14, 678. [CrossRef]

14. Bragatto, T.; Cerretti, A.; D’Orazio, L.; Gatta, F.M.; Geri, A.; Maccioni, M. Thermal Effects of Ground Faults on MV Joints and
Cables. Energies 2019, 12, 3496. [CrossRef]

15. Lee, S.R.; Ko, E.Y.; Lee, J.-J.; Dinh, M.-C. Development and HIL Testing of a Protection System for the Application of 154-KV SFCL
in South Korea. IEEE Trans. Appl. Supercond. 2019, 29, 1–4. [CrossRef]

16. Medeiros, R.P.; Costa, F.B.; Silva, K.M.; Popov, M.; de Chavez Muro, J.J.; Lima Junior, J.R. A Clarke-Wavelet-Based Time-Domain
Power Transformer Differential Protection. IEEE Trans. Power Deliv. 2021, 37, 317–328. [CrossRef]

17. Mukherjee, N.; Chattopadhyaya, A.; Chattopadhyay, S.; Sengupta, S. Discrete-Wavelet-Transform and Stockwell-Transform-Based
Statistical Parameters Estimation for Fault Analysis in Grid-Connected Wind Power System. IEEE Syst. J. 2020, 14, 4320–4328. [CrossRef]

18. Vanitha, V.; Hussien, M.G. Framework for Transmission Line Fault Detection in a Five Bus System Using Discrete Wavelet
Transform. Distrib. Gener. Altern. Energy J. 2022, 525–536. [CrossRef]

19. Namdev, P.P.; Sudhir, M.P.; Shantaram, R.D.; Goutam, M.R.; Shankar, S.V.; Palake, S.A. Transmission Line Fault Detection with
Mini Weather Station Using IoT. Asian J. Converg. Technol. (AJCT) 2021, 7, 130–133. [CrossRef]

20. Kunj, T.; Ansari, M.A.; Vishwakarrma, C.B. Transmission Line Fault Detection and Classification by Using Wavelet Multiresolu-
tionAnalysis: A Review. In Proceedings of the 2018 International Conference on Power Energy, Environment and Intelligent
Control (PEEIC), Greater Noida, India, 13–14 April 2018; pp. 607–612.

21. Takagi, T.; Yamakoshi, Y.; Yamaura, M.; Kondow, R.; Matsushima, T. Development of a New Type Fault Locator Using the
One-Terminal Voltage and Current Data. IEEE Trans. Power Appar. Syst. 1982, 101, 2892–2898. [CrossRef]

22. Zadeh, L.A. Fuzzy Logic. Computer 1988, 21, 83–93. [CrossRef]
23. Bhat, A.U.Q.; Prakash, A.; Tayal, V.K.; Choudekar, P. Three-Phase Fault Analysis of Distributed Power System Using Fuzzy Logic

System (FLS). In Advances in Smart Communication and Imaging Systems; Agrawal, R., Kishore Singh, C., Goyal, A., Eds.; Springer:
Singapore, 2021; pp. 615–624.

24. Jiao, Z.; Wu, R. A New Method to Improve Fault Location Accuracy in Transmission Line Based on Fuzzy Multi-Sensor Data
Fusion. IEEE Trans. Smart Grid 2019, 10, 4211–4220. [CrossRef]

25. Soni, A.K.; Yadav, A. Fault Detection and Classification of Grid Connected Wind Farm (DFIG) Using Fuzzy Logic Controller.
In Proceedings of the 2021 IEEE International Power and Renewable Energy Conference (IPRECON), Kollam, India, 24–26
September 2021; pp. 1–6.

26. Ganthia, B.P.; Barik, S.K. Fault Analysis of PI and Fuzzy-Logic-Controlled DFIG-Based Grid-Connected Wind Energy Conversion
System. J. Inst. Eng. India Ser. B 2022, 103, 415–437. [CrossRef]
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