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Abstract: Rapid industrialization and population growth cause severe water pollution and increased
water demand. The use of FeCu nanoparticles (nanoFeCu) in treating sewage has been proven to
be a space-efficient method. The objective of this work is to develop a recurrent neural network
(RNN) model to estimate the performance of immobilized nanoFeCu in sewage treatment, thereby
easing the monitoring and forecasting of sewage quality. In this work, sewage data was collected
from a local sewage treatment plant. pH, nitrate, nitrite, and ammonia were used as the inputs.
One-to-one and three-to-three RNN architectures were developed, optimized, and analyzed. The
result showed that the one-to-one model predicted all four inputs with good accuracy, where R2

was found within a range of 0.87 to 0.98. However, the stability of the one-to-one model was not as
good as the three-to-three model, as the inputs were chemically and statistically correlated in the
later model. The best three-to-three model was developed by a single layer with 10 neurons and
an average R2 of 0.91. In conclusion, this research provides data support for designing the neural
network prediction model for sewage and provides positive significance for the exploration of smart
sewage treatment plants.
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1. Introduction

Water is a crucial resource for life. Population growth, expansion of irrigated areas,
and industrial development increase the global demand for freshwater supply. The global
demand for freshwater supplies has increased by more than 600% since the 1960s [1]. Conse-
quently, freshwater shortages have become a threat to sustainable human development [2].
It is prevalent in developing countries because of the poor enforcement of environmental
laws and the low awareness of freshwater protection. Water pollution exacerbates the
shortage issue. The major causes of water pollution include chemical spills [3], illegal in-
dustrial wastewater discharge [4], rural aquaculture wastewater [5], and domestic sewage
pollution [6].

Studies showed that sewage polluted the world’s coastlines. Cascade et al. [7] used
a geospatial model to measure and map the nitrogen (N) and pathogen-fecal indicator
organisms (FIO) found in human sewage in approximately 135,000 watersheds worldwide.
The results show that 63% of the nitrogen in coastal waters, which was equivalent to 3.9 Tg
N, comes from sewage systems. It affects the safety of seafood, and human pathogens in
seafood can lead to outbreaks of foodborne disease [8]. Eventually, it would be a threat to
biodiversity and ecosystem health. Efforts have been made by government bodies and re-
searchers to overcome the water pollution issue, especially for sewage treatment. Generally,
the sewage treatment process is classified into three stages (primary, secondary, and tertiary
treatment) controlled by a combination of physical, chemical, and biological processes. The
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primary treatment mostly adopts physical methods to treat larger suspended solids and
sand in sewage through grid retention, filtration, and sedimentation. This treatment tech-
nology is relatively mature. Secondary treatment typically involves biological treatment to
remove dissolved and suspended biological matter, such as the activated sludge process
(ASP). It is worth noting that the effluent quality of the secondary treatment was unstable
due to the microbe’s sensitivity to changes in pH, dissolved oxygen, pollutant concentration,
and temperature [9]. Tertiary treatment processes include physical-chemical treatment such
as coagulation, flocculation, sedimentation, and filtration, as well as advanced oxidation
processes, for instance, photocatalytic oxidation and electrochemical oxidation. Usually,
tertiary treatment processes have the advantage of high treatment efficiency and reliable
effluent quality, but the process is expensive and possibly causes secondary pollution, such
as the degradation of photocatalysts and electrodes [10].

Thus, it is important to create cross-disciplinary synergies to develop innovative
technology for sewage treatment to address space and cost-effectiveness issues [11]. Lately,
Chan et al. [12] found that FeCu nanoparticles could be used for ammonia removal via
the oxidation process. The results demonstrated that the immobilized FeCu nanoparticles
exhibited good ammonia removal performance when handling 10–100 ppm of ammonia
solutions. The reusability study revealed that the immobilized FeCu could be reused at least
three times without deterioration [13]. Meanwhile, the pilot-scale studies also revealed
the full potential of immobilized FeCu for sewage treatment [14]. Recently, with the
development and availability of computing power and big data, artificial neural networks
(ANN) have been successfully applied in many fields, especially sequential prediction,
such as rainfall-runoff [15] and weather and hydrological time sequence prediction [16]. In
water treatment plants, sensors are used for measuring water level, flowrate, and water
quality [17]. This generated a pool of time series data that can be used to monitor treatment
efficiency. It is noteworthy that the acquired data are related in complex and nonlinear
ways [18]. It is impractical to manually compute and analyze the data. Hence, it is essential
to incorporate machine learning into water research.

Table 1 summarizes recent research on the use of machine learning to model and
estimate water quality. Wu [19] combined the auto-regressive integrated moving average
(ARIMA) and clustering models to improve the poor predictive performance of the tradi-
tional time-series ARIMA model for data with random characteristics. Tan [20] proposes
a hybrid model for water quality prediction that combines the respective advantages of
the convolutional neural network (CNN) model and the long short-term memory (LSTM)
model. After the feature extraction of the CNN layer, the original data will get a new
sequence with more vital feature ability than the original sequence. Compared with the
conventional LSTM model, its mean absolute error was optimized by 11.63%. Li [21] uses
several models, including back propagation neural networks (BPNN), radial basis function
neural networks (RBFNN), and support vector machines (SVM), to simulate and predict
water quality parameters. The results showed that the SVM achieved the best prediction
effect, with an accuracy of 99% for both published and measured data.

Table 1. Recent works on the use of machine learning to model and estimate the water quality.

Applications Model Description Variables Results Limitations References

River water quality
prediction

Combines
auto-regressive

integrated moving
average (ARIMA) and

clustering model

The water quality
total phosphorus

(TP)

Mean absolute error
(MAE) = 0.0082

Inaccurate rainfall
data will affect the
model’s prediction

accuracy.

[19]

Predicting water
quality data (obtained
from the water quality
monitoring platform)

CNN-long short-term
memory network
(LSTM) combined

model

Dissolved oxygen
(DO) RMSE = 0.8909

Multi-layer hidden
layer experiments
were not explored.

Fewer input
variables.

[20]
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Table 1. Cont.

Applications Model Description Variables Results Limitations References

Predicting
aquaculture water

quality

BPNN,
RBFNN.

SVM.
least squares support

vector machine
(LSSVM).

DO,
pH,

NH3-N,
NO3-N,
NO2-N

SVM obtained the
most accurate and
stable prediction

results.

Hyperparameter
tuning

experiments have
not been

performed in more
detail.

[21]

Monitoring water
quality parameters LSTM -RNN

pH,
DO,

chemical oxygen
demand (COD),

NH3-H

R2 = 0.83
Mean Relative Error

(MRE) = 0.18

The number of
hidden layers can

be further
adjusted.

[22]

Predict the water
quality of urban
sewer networks.

Multiple linear
regression (MLR),

Multilayer
perception (MLP)

RNN,
LSTM and gated

recurrent unit (GRU)

Biological
oxygen demand
(BOD), (COD),

NH+
4 -N

total nitrogen (TN),
TP

GRU achieved a
0.82–5.07% higher R2

than RNN and LSTM.

The contribution of
each input

indicator to the
model predictions

needs to be
explored.

[23]

Predicting water
quality data

Multi-task temporal
convolution network

(MTCN)

DO and
Temperature

Temperature
(RMSE = 0.59)

DO(RMSE = 0.49)

Long training time
(9 hours:58
minutes)

[24]

Prediction of DO in
river waters

General regression
neural network

(GRNN), BPNN,
RNN

Water flow,
temperature, pH

and electrical
conductivity

RNN > GRNN >
BPNN

No adjustment to
the structure and
parameters of the

individual models.

[25]

Lake temperature
modeling

physics-guided neural
networks (PGNN)

11 meteorological
drivers

Compared to SVM,
least squares boosted

regression trees
(LSBoost) and ANN

models, PGNN ensures
better generalizability

as well as scientific
consistency of results.

The spatial and
temporal nature of

the data is not
taken into account.

[26]

The ANNs simulate the functions of the human brain [27], in which a large number of
widely interconnected neurons form a network to conduct continuous learning, summarize
past experience, and store the acquired knowledge. This information is then used for future
forecasting [28]. During the training process, the network continuously adjusts its weights
to minimize errors. If the network makes a poor prediction, the connection weights in the
network will be adjusted in order to increase accuracy. Thus, the network is less likely to
make the same mistake during the next iteration [29,30]. ANN is a general approximator
that extracts the nonlinear relationships and interactions from different data features and
solves large-scale problems by identifying the relationships in a given pattern [31], such
as time series forecasting, pattern recognition, nonlinear modeling, classification, and
control [32].

The recurrent neural network (RNN) is a versatile and easily assembled ANN [33].
The conventional ANN architecture is composed of an input layer, multiple hidden layers,
and an output layer. Each layer consists of numerous interconnected neurons [34]. A
neuron is a non-linear algebraic function [35]. When the signal is applied to the input of the
neuron, its weights are modified [36]. Contrary to other neural network architectures, RNN
uses state variables to store previous information. The output is then computed based on
the current and previous states. Therefore, the RNN is widely used in the applications
of time series, such as natural language processing, speech recognition, and machine
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translation [37]. However, it is noted that conventional RNNs usually do not perform
well for long sequences due to gradient disappearance and gradient exploding [38]. These
issues can be effectively addressed by optimizing the activation function or changing the
network architecture [39].

The analysis based on experiments showed that the changes in the water quality
parameters are not entirely random. Not only are there correlations among the water quality
parameters, but the current statistical moments of the parameters are also closely related
to the past moments, and these changes have certain asymptotic characteristics [40]. This
characteristic makes it advantageous to use RNN for modeling water quality parameters.
It is noted that the selection of appropriate input variables is an important step in the
development of deep learning models. The work aims to develop an RNN model to
predict the performance of immobilized nanoFeCu for sewage treatment with a focus on
nitrogen compounds, including ammonia, nitrate, and nitrite. In this work, the water
quality parameter data is obtained from a local sewage treatment plant. An ANN is
designed for predicting the water quality to explore the correlation between the data,
improve the prediction accuracy, and finally obtain the prediction results based on different
network architectures and parameters. The study’s findings provide an exemplary model
for predicting nano-FeCu-treated sewage using an RNN approach, which has not been
studied previously. This work would serve as an important reference for the researchers
and engineers who are exploring smart sewage treatment and nanotechnology.

2. Methodology
2.1. Data Collection and Processing

The data was collected from a pilot-scale study conducted at a local sewage treatment
plant. 100 g of immobilized nanoFeCu was placed in a 50-L reactor and used to treat
the sewage for a period of 27 weeks. A total of 84 sets of data were collected for ammo-
nia, nitrate, nitrite, and pH readings at varied flowrates in the range of 210 mL/min to
1200 mL/min, from time t = 0 h to t = 7 h.

The data preprocessing is done by data screening, data cleaning, and data normal-
ization. The purpose of data screening and cleaning is to filter out missing values and
address the problem of outliers, which could be due to unpredictable weather during the
process of data acquisition. The process of data cleaning to identify outliers in the dataset
is performed based on the Pauta criterion [41]. Lastly, the data was normalized using the
min-max normalization method, where the data was linearly transformed within the range
of 0 to 1 for both inputs and outputs [42]. This is done to ensure that the data is properly
fitted to the model. The min-max normalization method is mathematically expressed as
Equation (1)

yi =

xi − min
1≤j≤n

{
xj
}

max
1≤j≤n

{
xj
}
− min

1≤j≤n

{
xj
} (1)

where xi denotes the raw data and yi denotes the normalized value. Xmin and Xmax
represent the minimum and maximum data, respectively.

The statistically analyzed data was presented in Table 2 and illustrated using a box-
and-whisker plot, as illustrated in Figure 1. The processed data were divided into 10 groups
according to the collection time and flowrate. 90% of the data was used for training, and
the remaining 10% was used for testing purposes.

Table 2. A statistical analysis of the processed data.

Data Set Unit Count Mean Min Max Std Dev

pH 80 7.600 6.240 9.310 0.816
Nitrate mg/L 80 5.694 1.100 18.300 3.247
Nitrite mg/L 80 0.02284 0.006 0.081 0.014

Ammonia mg/L 80 23.434 1.700 47.400 9.731
Flowrate mL/min 80 742.00 210.000 1200.000 374.788
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2.2. Pearson Correlation Coefficient

The Pearson correlation coefficient, as presented in Equation (2), was used to identify
the relation between the inputs using SPSS 26 software

r = ∑(xi − x)(yi − y)√
∑(xi − x)2 ∑(yi − y)2

(2)

r = correlation coefficient
xi = values of the x-variable in a sample
x = mean of the values of the x-variable
yi = values of the y-variable in a sample
y = mean of the values of the y-variable

2.3. Model Setup and Implementation

Table 3 shows the RNN architectures adopted in this study, which are ideal to model
time series data. pH, ammonia, nitrate, and nitrite at different time intervals were used as
the inputs and outputs of the model. In this study, flowrate is the manipulated variable,
which affects the performance of immobilized nanoFeCu. The flowrate was not affected by
the time; thus, it was not used to develop the model. The number of neurons and hidden
layers were manipulated within the range of 10–50 and 1–5, respectively, to increase the
model’s performance. The dropout rate was set at 0.09. ReLU was chosen as the activation
function as it is faster than Sigmoid and Tanh due to its simple function composition
(when x ≤ 0, output = 0, and when x > 0, output = x) [43]. In addition, the non-saturating
activation function of ReLU avoids the vanishing gradient. The RNN model is developed
using TensorFlow, which is open-source software for deep learning [44]. 1000 iterations
were used in this study due to minimum training loss, as illustrated in Figures S1–S5.

Figure 2a,b present the one-to-one and three-to-three RNN architectures. Figure 2c
presents the design scheme of the RNN model. In the one-to-one model, one of the inputs,
for example pH at t = 1 and 2 h, was used to predict the subsequent output at the following
time interval, which was pH at t = 3 h. Meanwhile, three inputs (ammonia, nitrate, and
nitrite) at a specific time were used to estimate the subsequent outputs in the three-to-three
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model. This means that ammonia, nitrate, and nitrite at t = 1 h and 2 h served as the inputs
for ammonia, nitrate, and nitrite at t = 3 h.

Table 3. Specification of the RNN architecture.

Inputs at t = 0 h to 7 h Ammonia, Nitrite, Nitrate, pH
Outputs at t = 0 h to 7 h Ammonia, Nitrite, Nitrate, pH
Number of neurons 10, 20, 30, 40, 50
Number of hidden layers 1–5
Window size 2
Activation function ReLU
Number of iterations 1000
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The accuracy of prediction is measured by the coefficient of determination (R2) as
presented in Equation (3)

R2 =

(
∑n

i=1(cti − ct)·
(
cti − cp

))2

∑n
i=1(cti − ct)

2·∑n
i=1
(
cpi − cp

)2 (3)

n denotes the number of data, cti represents the true value at the ith sample, cpi represents
the predicted value for the ith sample, and cp and ct represent the average of the predicted
results and the real results, respectively.

3. Result and Discussion
3.1. The Performance of One-to-One Model in Ammonia, Nitrate, Nitrite and pH Prediction

Figure 3 shows the prediction results of the one-to-one model for (a) pH, (b) ammonia,
(c) nitrate, and (d) nitrite. In Figure 3a, when the number of hidden layers is 1, the R2
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value is almost not affected by the number of neurons. However, as the number of hidden
layers increases, the R2 value decreases. It could be clearly observed in the model, which
consisted of 3 hidden layers and 40 neurons, where the R2 was equal to 0.844, while the
model with a single layer and 40 neurons has a R2 value of 0.966. This could be due to the
fact that the change in pH was not significant during the nanoFeCu-triggered ammonia
oxidation process, as shown in Table 2, where the SD value of pH is 0.816. This indicates
that a single layer is sufficient to develop a good model to predict the pH. A similar trend
was observed in the nitrite model, where a small SD value of 0.014 was observed in Table 2,
and Figure 3d showed that a single layer was good enough to predict its performance with
a high R2 of ~0.8. The best nitrite prediction was found in the model with a single hidden
layer, 30 neurons, and an R2 value of 0.872.
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A similar approach was used to predict ammonia and nitrate, as shown in Figure 3b,c.
In Figure 3b, one hidden layer is insufficient to support the model and achieve good results
in predicting the value of ammonia. The increase in the number of neurons improves
the performance of the prediction (R2 from 0.611~0.823), which indicates that the model
structure of one hidden layer is too simple to extract the features of complex data. When
the hidden layers are increased to 2–5 layers, the performance of the model is basically
stable, and the R2 of the models is all greater than 0.793. The highest R2 value of 0.9770 was
achieved from 3 hidden layers and 50 neurons in the RNN. For nitrate prediction, different
variations of hidden layers and neurons can all achieve results with R2 > 0.8, except when
the hidden layer is 2 and the neurons >10, as depicted in Figure 3c. A maximum R2 of
0.9456 was found in the RNN model with a single layer and 40 neurons. Comparatively,
the R2 of pH and nitrite were higher than ammonia and nitrate, which could be due to the
higher SD of ammonia and nitrate, which were 3.247 and 9.731, as tabulated in Table 2.

The result of the existing study is better than the work published by Lei [45], where back
propagation neural network (BPNN) and radial basis function neural network (RBFNN) were
used to predict pH, ammonia, nitrite, and nitrate. The highest R2 values of pH (R2 = 0.84)
and ammonia (R2 = 0.88) were obtained by using RBFNN. Meanwhile, the highest R2

value of 0.96 for nitrate and 0.87 for nitrite were reported for BPNN. In the current study
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(one-to-one model), the highest R2 values for pH, ammonia, nitrate, and nitrite were 0.985,
0.977, 0.946, and 0.872, respectively. This could be due to the suitability of RNNs to handle
time-series data.

3.2. The Performance of Three-to-Three Model in Ammonia, Nitrate and Nitrite Prediction

A three-to-three model to predict the performance of ammonia, nitrate, and nitrite was
developed, and the results are presented in Figure 4. This model was made as there was a
close relationship between these three reactants in ammonia oxidation processes [12,13],
as indicated in Equations (4)–(10). Nitrate and nitrite are the intermediate products used
to oxidize ammonia to nitrogen gas with the aid of nanoFeCu. Fe releases the electrons to
facilitate the oxidation process, while Cu assists in the electron transfer [46,47].
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In Figure 4, for a single hidden layer, the added neurons decrease the R2 value of the
model, especially in Figure 4a,b. This could indicate that the increasing number of neurons
leads to the risk of overfitting the model. It is noteworthy that the change in neurons from
10 to 50 did not cause a dramatic change in R2 values when the number of hidden layers
was increased from 1 to 5, as shown in Figure 4a,b. This suggests that when the hidden
layer is small, even increasing the number of neurons may not lead to better prediction
results. The best R2 predictions for ammonia, nitrate, and nitrite were 0.961 with 5 layers
and 30 neurons, 0.940 with a single layer and 50 neurons, and 0.941 with 5 layers and
20 neurons, respectively. In addition, the three-to-three model predicted ammonia, nitrate,
and nitrite well with an R2 value of > 0.9, except for the results of the single hidden layer.

NH4Cl + H2O→ H3O+ + NH3 + Cl− (4)

2NH3 + 4O2 → NO−2 + NO−3 + 3H2O (5)

Fe0 → 2e− + Fe2+ (6)

NO−3 + 2e− + H2O→ NO−2 + 2OH− (7)

H2O + e− → OH− + Hads (8)

2NO−2 + 4Hads → N2 + 4OH− (9)

2NO−2 + 12Hads → 2NH+
4 + 4OH− (10)

3.3. The Comparison of One-to-One and Three-to-Three Models in Ammonia, Nitrate and
Nitrite Estimation

The best RNN architectures of one-to-one and three-to-three models for predicting
ammonia, nitrate, and nitrite were identified from Figures 3 and 4. The selection criteria
were made based on the R2 values and simplicity of RNN architectures. Based on the
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average R2 values of three-to-three models, a single hidden layer with 10 neurons was
identified as the best RNN architecture, where the R2 average was equal to 0.9132. The
R2 values for ammonia, nitrate, and nitrite were 0.8736, 0.9295, and 0.9366, respectively,
as presented in Table 4. Compared to the one-to-one model, the R2 values of ammonia,
nitrate, and nitrite were much lower, whereas the values were 0.6110, 0.8201, and 0.7943
for the same design of RNN architecture. The high R2 value found in the three-to-three
model could be due to the chemical reaction between the three nitrogen compounds, as
shown in Equations (4)–(10). This is also proved by the Person correlation coefficient chart,
as illustrated in Figure 5, where ammonia, nitrate, and nitrite were significantly correlated
at the 0.01 level. The details of the comparison between the one-to-one and three-to-three
models are available in the supplementary data, Tables S1 and S2.

Table 4. The best RNN architectures for one-to-one and three-to-three models.

Model
Hidden Layers One-to-One Three-to-Three

Hidden Layers R2 R2

Ammonia Single: 10 neurons 0.6110 0.8736
Nitrate Single: 10 neurons 0.8201 0.9295
Nitrite Single: 10 neurons 0.7943 0.9366

Average R2 - - 0.9132

The best RNN architectures with the highest R2 in the one-to-one model are extracted from Figure 3.
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The Pearson correlation coefficient chart in Figure 5 showed that the correlation
between pH and flowrate is lowest at r = 0.092. This indicates that pH and flowrate
are independent parameters. Hence, these two parameters were not considered when
developing the three-to-three model. It is notable that there is a weak correlation among
pH, ammonia, and nitrate. This is because pH affects the NH+

4 and NH3 equilibrium [48],
which eventually affects the formation of nitrate, as shown in Equation (10).

It was observed that the stability of the prediction model is higher in the three-to-three
model compared to the one-to-one model, as depicted in Figures 3 and 4. When a one-to-
one model was used to predict nitrate, the R2 fluctuated from 0.740 (2 hidden layers and
30 neurons) to 0.946 (1 hidden layer and 40 neurons), as shown in Figure 3c. In Figure 4b,
the three-to-three model becomes relatively stable, and R2 ranges from 0.805 (4 hidden
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layers and 10 neurons) to 0.940 (1 hidden layer and 30 neurons). This demonstrates the
improved predictive stability of the model.

The coefficient matrix and bias values for the three-to-three model (single hidden layer
and 10 neurons) are shown in Figure 6.
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4. Conclusions

In this work, one-to-one and three-to-three RNN models were developed, optimized,
and compared to identify the best model to predict and forecast the performance of
nanoFeCu in sewage treatment. The R2 values of the one-to-one model for predicting
pH, ammonia, nitrate, and nitrate fell within the range of 0.87 to 0.98. However, the overall
performance of the model decreases and the results fluctuate when the number of hidden
layers and neurons is increased. Comparatively, the stability of the three-to-three model
was better as the nitrogen compounds are chemically related in the oxidation process. It
is also proved by the Person correlation coefficient, where the nitrogen compounds were
significantly correlated at the 0.01 level. Besides, the three-to-three model also improved the
overall prediction performance. The best RNN architecture for predicting the nanoFeCu-
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treated sewage was identified at a single layer with 10 neurons, where an average R2 of
0.91 was recorded. The findings of this study showed that the RNN model developed
in this study is suitable for a contact time of up to 7 h. The accuracy of the model could
be reduced if the data is collected for >7 h due to the exploding and vanishing gradients
problem in time series [49,50]. It is recommended to extend the research by developing the
model using other machine learning approaches for a comparative study.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/computation11020039/s1. Table S1: The results for different numbers of
neurons and hidden layers in one-to-one models. Table S2: The results for different numbers of neurons
and hidden layers in three-to-three models. Figures S1–S5: The loss values of different neurons and hidden
layers for three-to-three models at 1000 iterations.

Author Contributions: D.C.: software, validation, formal analysis, investigation, writing—original
draft preparation, visualization. M.C.: conceptualization, methodology, formal analysis, investigation,
resources, data curation, writing—original draft preparation, writing—review and editing, supervi-
sion, funding acquisition, project administration. S.N.: validation, writing—review and editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by SEGi University, grant number SEGiIRF/2022-Q1/FoEBEIT/003.

Data Availability Statement: Data are available upon reasonable request.

Acknowledgments: Professional advice and support by the late Chan Chin Wang to this study are
greatly appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Piesse, M. Global Water Supply and Demand Trends Point towards Rising Water Insecurity. Analysis and Policy Observatory.

2020. Available online: https://apo.org.au/node/276976 (accessed on 27 February 2020).
2. Ma, T.; Sun, S.; Fu, G.; Hall, J.W.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T.; et al. Pollution Exacerbates China’s Water Scarcity

and Its Regional Inequality. Nat. Commun. 2020, 11, 650. [CrossRef] [PubMed]
3. Jiang, J.; Han, F.; Zheng, Y.; Wang, N.; Yuan, Y. Inverse Uncertainty Characteristics of Pollution Source Identification for River

Chemical Spill Incidents by Stochastic Analysis. Front. Environ. Sci. Eng. 2018, 12, 6. [CrossRef]
4. Mukate, S.; Wagh, V.; Panaskar, D.; Jacobs, J.A.; Sawant, A. Development of New Integrated Water Quality Index (IWQI) Model

to Evaluate the Drinking Suitability of Water. Ecol. Indic. 2019, 101, 348–354. [CrossRef]
5. Yi, X.; Lin, D.; Li, J.; Zeng, J.; Wang, D.; Yang, F. Ecological Treatment Technology for Agricultural Non-Point Source Pollution in

Remote Rural Areas of China. Environ. Sci. Pollut. Res. 2021, 28, 40075–40087. [CrossRef]
6. Nsenga Kumwimba, M.; Meng, F.; Iseyemi, O.; Moore, M.T.; Zhu, B.; Tao, W.; Liang, T.J.; Ilunga, L. Removal of Non-Point

Source Pollutants from Domestic Sewage and Agricultural Runoff by Vegetated Drainage Ditches (VDDs): Design, Mechanism,
Management Strategies, and Future Directions. Sci. Total Environ. 2018, 639, 742–759. [CrossRef]

7. Tuholske, C.; Halpern, B.S.; Blasco, G.; Villasenor, J.C.; Frazier, M.; Caylor, K. Mapping Global Inputs and Impacts from of Human
Sewage in Coastal Ecosystems. PLoS ONE 2021, 16, e0258898. [CrossRef]

8. Littman, R.A.; Fiorenza, E.A.; Wenger, A.S.; Berry, K.L.E.; van de Water, J.A.J.M.; Nguyen, L.; Aung, S.T.; Parker, D.M.; Rader,
D.N.; Harvell, C.D.; et al. Coastal Urbanization Influences Human Pathogens and Microdebris Contamination in Seafood. Sci.
Total Environ. 2020, 736, 139081. [CrossRef]

9. Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Mintz, M.M.; Snyder, S.W. An Overview of Biogas Production and Utilization at
Full-Scale Wastewater Treatment Plants (WWTPs) in the United States: Challenges and Opportunities towards Energy-Neutral
WWTPs. Renew. Sustain. Energy Rev. 2015, 50, 346–362. [CrossRef]

10. Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic Reduction of Nitrate: Fundamentals to
Full-Scale Water Treatment Applications. Appl. Catal. B 2018, 236, 546–568. [CrossRef]

11. Wear, S.L.; Acuña, V.; McDonald, R.; Font, C. Sewage Pollution, Declining Ecosystem Health, and Cross-Sector Collaboration.
Biol. Conserv. 2021, 255, 109010. [CrossRef]

12. Chan, M.K.; Abdullah, N.; Rageh, E.H.A.; Kumaran, P.; Tee, Y.S. Oxidation of Ammonia Using Immobilised FeCu for Water
Treatment. Sep. Purif. Technol. 2021, 254, 117612. [CrossRef]

13. Kee, C.M.; Mun, N.K.; Kumaran, P.; Selvam, R.; Kumaran, R.; Raja, S.D.; Shen, T.Y. The Impact of Ammonia Concentration and
Reducing Agents on the Ammonia Oxidation Performance of Embedded Nano-FeCu. Mater. Chem. Phys. 2021, 274, 125189.
[CrossRef]

https://www.mdpi.com/article/10.3390/computation11020039/s1
https://www.mdpi.com/article/10.3390/computation11020039/s1
https://apo.org.au/node/276976
http://doi.org/10.1038/s41467-020-14532-5
http://www.ncbi.nlm.nih.gov/pubmed/32005847
http://doi.org/10.1007/s11783-018-1081-4
http://doi.org/10.1016/j.ecolind.2019.01.034
http://doi.org/10.1007/s11356-020-08587-6
http://doi.org/10.1016/j.scitotenv.2018.05.184
http://doi.org/10.1371/journal.pone.0258898
http://doi.org/10.1016/j.scitotenv.2020.139081
http://doi.org/10.1016/j.rser.2015.04.129
http://doi.org/10.1016/j.apcatb.2018.05.041
http://doi.org/10.1016/j.biocon.2021.109010
http://doi.org/10.1016/j.seppur.2020.117612
http://doi.org/10.1016/j.matchemphys.2021.125189


Computation 2023, 11, 39 12 of 13

14. Chan, M.K.; Kumaran, P.; Thomas, X.V.; Natasha, E.; Tee, Y.S.; Mohd Aris, A.; Ho, Y.P.; Khor, B.C. Embedded nanoFeCu for
Sewage Treatment: Laboratory-scale and Pilot Studies. Can. J. Chem. Eng. 2022, 1, 1–8. [CrossRef]

15. Gauch, M.; Kratzert, F.; Klotz, D.; Nearing, G.; Lin, J.; Hochreiter, S. Rainfall-Runoff Prediction at Multiple Timescales with a
Single Long Short-Term Memory Network. Hydrol. Earth Syst. Sci. 2020, 25, 2045–2062. [CrossRef]

16. Tran Anh, D.; Duc Dang, T.; Pham Van, S. Improved Rainfall Prediction Using Combined Pre-Processing Methods and Feed-
Forward Neural Networks. J 2019, 2, 65–83. [CrossRef]

17. Saravanan, K.; Anusuya, E.; Kumar, R.; Son, L.H. Real-Time Water Quality Monitoring Using Internet of Things in SCADA.
Environ. Monit. Assess 2018, 190, 556. [CrossRef]

18. Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring Inland Water
Quality Using Remote Sensing: Potential and Limitations of Spectral Indices, Bio-Optical Simulations, Machine Learning, and
Cloud Computing. Earth Sci. Rev. 2020, 205, 103187. [CrossRef]

19. Wu, J.; Zhang, J.; Tan, W.; Lan, H.; Zhang, S.; Xiao, K.; Wang, L.; Lin, H.; Sun, G.; Guo, P. Application of Time Serial Model in
Water Quality Predicting. Comput. Mater. Contin. 2023, 74, 67–82. [CrossRef]

20. Tan, W.; Zhang, J.; Wu, J.; Lan, H.; Liu, X.; Xiao, K.; Wang, L.; Lin, H.; Sun, G.; Guo, P. Application of CNN and Long Short-Term
Memory Network in Water Quality Predicting. Intell. Autom. Soft Comput. 2022, 34, 1943–1958. [CrossRef]

21. Li, T.; Lu, J.; Wu, J.; Zhang, Z.; Chen, L. Predicting Aquaculture Water Quality Using Machine Learning Approaches. Water 2022,
14, 2836. [CrossRef]

22. Qi, C.; Huang, S.; Wang, X. Monitoring Water Quality Parameters of Taihu Lake Based on Remote Sensing Images and LSTM-RNN.
IEEE Access 2020, 8, 188068–188081. [CrossRef]

23. Jiang, Y.; Li, C.; Sun, L.; Guo, D.; Zhang, Y.; Wang, W. A Deep Learning Algorithm for Multi-Source Data Fusion to Predict Water
Quality of Urban Sewer Networks. J. Clean. Prod. 2021, 318, 128533. [CrossRef]

24. Zhang, Y.-F.; Thorburn, P.J.; Fitch, P. Multi-Task Temporal Convolutional Network for Predicting Water Quality Sensor Data. In
Proceedings of the 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, 12–15 December 2019; pp. 122–130.
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