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Abstract: Since lossless compression can only achieve two to four times data compression, it may
not be efficient to deploy lossless compression in bandwidth constrained applications. Instead, it
would be more economical to adopt perceptually lossless compression, which can attain ten times
or more compression without loss of important information. Consequently, one can transmit more
images over bandwidth limited channels. In this research, we first aimed to compare and select the
best compression algorithm in the literature to achieve a compression ratio of 0.1 and 40 dBs or more
in terms of a performance metric known as human visual system model (HVSm) for maritime and
sonar images. Our second objective was to demonstrate error concealment algorithms that can handle
corrupted pixels due to transmission errors in interference-prone communication channels. Using
four state-of-the-art codecs, we demonstrated that perceptually lossless compression can be achieved
for realistic maritime and sonar images. At the same time, we also selected the best codec for this
purpose using four performance metrics. Finally, error concealment was demonstrated to be useful in
recovering lost pixels due to transmission errors.

Keywords: perceptually lossless compression; error recovery; maritime and sonar images; JPEG2000;
X264; X265; Daala

1. Introduction

Since the appearance of the Joint Photographic Experts Group (JPEG) standard in the 1990s, image
compression has been well-developed [1–6]. Lossless image compression algorithms include JPEG [7]
and JPEG2000 [8]. Some recent algorithms such as X264 (software implementation of H.264/AVC
standard) [9] and X265 (software implementation of H.265/HEVC standard) [10] also provide lossless
compression options. JPEG, X264, and X265 are discrete cosine transform (DCT) based algorithms
and JPEG2000 is wavelet based. About 15 years ago, there were some developments in DCT based
algorithms, where overlapped blocks known as lapped transforms (LT) were used to further improve
the compression [11]. In the past few years, a group of researchers at Xiph have incorporated LT [11]
into an open source codec known as Daala [12]. Through several years of rigorous development, Daala
has reached a stage where it outperforms X264 and has comparable performance to X265 in terms of a
performance metric that mimics human visual system (HVS) [12,13].

In this research, our sponsor had specified three requirements on the image codec for maritime
and sonar images: (1) 10 to 1 compression ratio; (2) the decompressed image should have 40 dBs or
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more in HVSm, which may be considered as “near perceptually lossless” performance; and (3) the lost
pixels need to be effectively concealed without incurring additional bandwidth. It should be noted that
“perceptually lossless” has been defined in digital picture coding since mid-1990s [14]. One conventional
way to handle transmission errors is to adopt error correction coding, which will add redundant bits
and reduce the data transmission efficiency. We explored error concealment techniques, which do
not incur additional bandwidth usage. It is important to emphasize that perceptual performance
requires a suitable metric. Some conventional metrics such as peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) may not match well with human’s subjective evaluations. Two metrics in
the literature that have better correlation with human perception in the literature were also compared
in our studies.

In the literature, there are excellent papers discussing perceptually lossless coding [15–18].
The authors of [15] provided a survey of various ideas of embedding human perceptual model into
the encoding process of various codecs such as JPEG2000, H264, and H265. The concepts of just
noticeable difference (JND) and just not noticeable difference (JNND) [15–18] were introduced and
embedded into some of the codecs. The output bit stream is compliant with the standards. Daala also
incorporated perceptual vector quantization (PVQ) into its codec [12,13], which resulted in enhanced
performance. We would like to emphasize that our paper is not about new developments in the
perceptually lossless coding. In our studies, we used the codecs using the default settings and did
not change any of the parameters. The only parameters we varied is the quality (or quantization)
parameter (qp). The decompressed images were then evaluated using the four metrics, two of which
are related to HVS. Similar to some existing papers (e.g., [15]), our sponsor specified 40 dBs or more in
terms of HVSm, which may be considered as “near perceptually lossless”.

It should be noted that this paper is an extension of our conference paper [19]. There are several
key differences. First, we corrected an issue related to the compression ratio computation in our
earlier study [19]. Since the input image formats for different codecs are different, we converted all
the raw images to different image formats in our earlier study. For instance, X264 and X265 require
the format to be Y4M and JPEG2000 and Daala use other formats. However, one issue is that the
converted file sizes are slightly different for different formats. In our earlier study [19], each codec was
using its own set for computing the compression ratios, causing some slight differences in terms of
compression ratios. In this study, we consistently used the original image sizes as references instead of
the converted ones. Second, when we generated the results presented in [19], X264 and X265 could
only handle YUV420 format. In this study, we used the latest versions of X264 and X265, which can
handle YUV444 format. Moreover, Daala has a newer version, which is improved over its previous
version. Now, we re-generated all the performance metrics for all the datasets in this study. Third, we
added two new sections to this paper containing new maritime and sonar images, and one new section
containing images from the Xiph website. This is to demonstrate that the compression algorithms
need to be robust to images with different resolutions and modalities. Fourth, we also present new
error concealment results for the maritime and sonar images in this paper. Again, our goal was to
demonstrate that the error concealment algorithms can handle different image modalities.

Although the compression algorithms are well-known, there was still some customization work
in this project. For example, the use of YUV444 format instead of the default YUV420 ensured high
quality compression for X264 and X265 for still images. Moreover, the error concealment needed to be
tailored to the data that we used. One key contribution of our project was to integrate three components
(compression, error concealment, and near perceptually lossless evaluation after decompression) in the
compression process into a single system to achieve 10 to 1 near perceptually lossless compression
for maritime and sonar images. That is, the novelty of our paper is not in new perceptually lossless
compression theory, but rather in the integration of existing compression and error concealment
technologies to achieve near or even perceptually lossless image compression at 10 to 1 compression
for bandwidth constrained and interference-prone applications.
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Our paper is organized as follows. Section 2 summarizes the technical approach, the various
codecs, and the performance metrics. Section 3 summarizes all the experiments using actual maritime
and sonar images that are of interest to our customer. Visual comparisons of different codecs at 10 to 1
compression are also included. Finally, concluding remarks are given in Section 4.

2. Technical Approach

2.1. Proposed Image Compression and Error Recovery Approach

In this study, we focused on objective evaluations using four well-known compression algorithms
in the literature. This was to ensure that we delivered the best algorithm to our customer. Our overall
technical approach is summarized in Figure 1. First, we briefly reviewed the state-of-the-art compression
algorithms available on the market. At the same time, we described different performance metrics for
algorithm evaluation. The focus was on metrics that can better model human perception. We also
reviewed the error concealment techniques. Second, we obtained realistic maritime (low and high
resolution) and sonar images for algorithm evaluation. Third, we applied the various compression
algorithms to the collected images and generated various performance metrics. Finally, we also applied
advanced algorithms to deal with the corrupted pixels due to channel errors.
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Figure 1. Proposed approach to evaluating different compression and error concealment algorithms.

2.2. Short Review of Compression Algorithms

We compared image codecs on the market, objectively evaluated each one using diverse maritime
and sonar images, and recommended the best codec to our customer. With that in mind, we performed
a brief review of the existing high performance codecs, performance metrics, and error resilient coding.

2.2.1. DCT Based Algorithms

• JPEG [1]: JPEG is the very first image compression standard developed in the 1990s. The video
counterparts are the MPEG-1 and MPEG-2 standards. It is efficient and is still being used by
NASA in space applications [4,5].

• JPEG-XR [20]: It was developed by Microsoft. The performance is comparable to JPEG-2000. It is
mainly used for still image compression.

• VP8 and VP9 [21,22]: These video compression algorithms are owned by Google. The performance
is somewhat close to X-264. However, it is not as popular as X264.

• X-264 [9]: X264 is the current state-of-the-art algorithm in video compression. YouTube uses X264.
It has good still image compression as well.

• X-265 [10]: This is the next-generation video codec and has excellent still image compression and
video compression. However, the computational complexity is much more than that of X264. In
general, X265 has the same basic structure as previous standards, but contains many incremental
improvements over X264. Several studies conclude that X265 yields the same quality as X264, but
with only half the bitrate. It should be noted that X264 and X265 are optimized versions of H264
and H265, respectively.

• Daala [12]: Recently, there is a parallel activity at Xiph.org foundation, which implements a
compression codec called Daala [12]. It is based on DCT. There are pre- and post-filters to increase
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energy compaction and remove block artifacts. This type of transform is known as lapped
transform (LT). Daala borrows ideas from the work in [11], which was written by one of us (T. D.
Tran). The block-coding framework in Daala is illustrated in Figure 2.Computers 2019, 2, x FOR PEER REVIEW  4 of 20 
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2.2.2. Wavelet Based Algorithms

JPEG2000 is a wavelet [8] based compression standard. It has better performance than JPEG.
However, JPEG2000 requires the use of the whole image for coding and hence is not suitable for real-time
applications. In this study, we mainly compressed images using Daala, X264, X265, and JPEG2000.

2.3. Principle of Error Concealment for Still Images

Error resilient coding has some major issues. First, it increases overhead and hence lowers the
coding efficiency. Second, error resilient coding can only repair corrupted pixels to a certain extent. In
severe channel conditions, some additional post-processing, such as error concealment, is needed to fix
the corrupted pixels and recover lost data.

The core idea of the local matrix completion with similar blocks (LMCS) [23] is that, for a missing
pixel, we first extract the corresponding patch and use similar patches in the image to help fill in the
missing value based on matrix completion. If there are not enough similar patches, we fill in the pixel
with another of our algorithm, known as local patch matrix completion (LPMC) [24]. A flow chart for
the LMCS algorithm is also shown in Figure 3. More details of our algorithms can be found in [23,24].
Researchers have used sparse representation in hyperspectral image processing [25–28], denoising [29],
compressive sensing [30,31], and target recognition ([32], and references therein).
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2.4. Performance Metrics

In many compression systems, researchers use the peak signal-to-noise ratio (PSNR) or structural
similarity (SSIM) to evaluate the compression algorithms. Given a fixed compression ratio, algorithms
that yield higher PSNR or SSIM are regarded as better algorithms. However, PSNR and SSIM do
not correlate well with human perception. Recently, a group of researchers investigated a number of
different performance metrics [33]. Extensive experiments were performed to investigate the correlation
between human perception with various performance metrics. According to the results found in [33],
it was determined that two performance metrics known as human visual system (HVS) and HVS with
masking (HVSm) correlate well with human perception.

For completeness, we briefly present the above four metrics.

• PSNR [34]

To generate PNSR, we need to compute the Root Mean Squared Error (RMSE). The RMSE of two
vectorized images S (ground truth) and Ŝ (prediction) is defined as

RMSE(S, Ŝ) =

√√√√
1
Z

Z∑
j=1

(
s j − ŝ j

)2
(1)

where Z is the number of pixels in each image. The ideal value of RMSE is 0 if the prediction is perfect.
The PSNR is related to RMSE defined in Equation (1). If the image pixels are expressed in doubles with
values between 0 and 1, then

PSNR = 20 log(1/RMSE (S, Ŝ)) (2)

A higher PSNR means better quality.

• SSIM

This is a metric [35] to reflect the similarity between two images. The SSIM index is computed
on various blocks of an image. The measure between two blocks x and y from two images can be
defined as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
x + c1)(σ2

x + σ
2
x + c2)

(3)

where µx and µy are the means of blocks x and y, respectively; σ2
x and σ2

y are the variances of blocks x
and y, respectively; σxy is the covariance of blocks x and y; and c1 and c2 are small values (0.01, for
instance) to avoid instability. The ideal value of SSIM is 1 for perfect prediction.

• HVS

The HVS metric is defined as

HVS = 20log(255/MSEH) (4)

where

MSEH = K
I−7∑
i=1

J−7∑
j=1

8∑
m=1

8∑
n=1

((X[m, n]i j −X[m, n]ei j)Tc[m, n])2 (5)

I and J denote image size, K = 1/[(I − 7)(J − 7)64], Xi j are the discrete cosine transform (DCT) [36]
coefficients of 8 × 8 image block for which the coordinates of the its upper left corner are equal to i and
j, Xe

i j are the DCT coefficients of the corresponding block in the original image, and Tc is the matrix of
correcting factors [37].

• HVSm
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This metric is similar to HVS except that visual masking effects are taken into account. A block
diagram is shown in Figure 4. The inclusion of a block containing contrast masking is the only
difference between HVS and HVSm. Details can be found in [33].
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On the website of the authors of [33], there is a table containing the correlation of different metrics
with human perception. For completeness, we include that table below (Table 1). It can be seen that
HVSm and HVS have much higher correlation with human perception than PSNR and SSIM in terms
of Spearman and Kendall correlation coefficients.

Table 1. Correlation of different metrics to human’s visual perception.

Measure Reference Spearman Correlation Kendall Correlation

HVS-m Ponomarenko, N.; et al. [33] 0.984 0.948

HVS Egiazarian, K.; et al. [37] 0.895 0.712
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DCTune Watson, A. B.; et al. [39] 0.829 0.712

UQI Wang, Z.; Bovik, A. C. [40] 0.550 0.438
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SSIM Structural similarity [35] 0.406 0.358

VIF Sheikh, H. R.; Bovik, A. C. [41] 0.377 0.255
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Hence, in addition to PSNR and SSIM, we also used HVS and HVSm for assessing perceptually
lossless compression.

3. Still Image Compression Results

3.1. Data

We searched the Internet and found over 30 low resolution color images, over 10 high resolution
maritime images, and over 10 sonar images. Moreover, we also included four high quality images
from Xiph’s website. Although these images from Xiph are not related to maritime or sonar images,
we included them to demonstrate that the proposed framework can be used for diverse images.
These images were used to demonstrate that the compression algorithms need to have consistent
performance for images with different resolutions and modalities. We applied four compression
algorithms: Daala, X264, X265, and JPEG2000. All of them, except JPEG2000, are DCT based
compression algorithms. For each image, we applied these four algorithms to compress the
images at different compression ratios. Four performance metrics were applied to evaluate the
compression performance.

3.1.1. Low Resolution Maritime Images

We found over 30 images, which are of low resolution. If one zooms in to look at the details, one
can notice some artifacts. Here, we include a few sample maritime images in Figure 6.
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3.1.3. Sonar Images

We found more than 10 images from the Internet. Some of them are shown in Figure 8.
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3.1.4. High Quality Color Images

We also used four high quality images from [12]. As shown in Figure 9, these images are neither
maritime nor sonar images. However, the images have diverse image contents and we would like to
demonstrate that our framework can also effectively compress such images at 10 to 1 compression.
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3.2. Low Resolution Maritime Image Compression Results

There are cameras with different resolutions onboard naval ships. The objectives of the study
were: (1) to compare the performance of four compression algorithms using four performance metrics
and determine which algorithm has the best performance; and (2) to investigate the performance at 0.1
compression ratio and see if we could achieve near or even perceptually lossless quality (>40 dBs in
HVSm) in the decompressed images. Let us focus on a region near 0.1 compression ratio in Figure 10.
One can immediately observe some big variations in performance for different algorithms and metrics.
For low resolution maritime images, JPEG2000 performed the best, followed by Daala, in terms of
PSNR. JPEG2000 had better performance because it uses the whole image, whereas the other codecs
use small blocks. However, for SSIM and HVSm, Daala had the highest scores. To our knowledge, the
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high HVSm values are because the researchers at Xiph have devoted a lot of their effort in fine-tuning
and improving the perceptual quality of the decompressed images by removing small artifacts such
as blocky artifacts. For HVS, Daala and JPEG2000 had similar performance (see Figure 10). We also
generated a table summarizing the statistical performance of different codecs at 0.1 compression
ratio. As shown in Table 2, JPEG2000 and Daala, except SSIM, yielded more than 40 dBs in PSNR,
HVS, and HVSm, meaning that Daala and JPEG2000 could achieve near or even perceptually lossless
compression. The SSIM metric for Daala was more than 0.9. For this dataset, we think Daala is the
best codec because of its high scores in performance metrics and its parallel processing potential (see
block processing in Figure 2). JPEG2000, on the other hand, requires the whole image and hence is not
suitable for parallel processing.

Computers 2019, 2, x FOR PEER REVIEW  9 of 22 

effort in fine-tuning and improving the perceptual quality of the decompressed images by removing 
small artifacts such as blocky artifacts. For HVS, Daala and JPEG2000 had similar performance (see 
Figure 10). We also generated a table summarizing the statistical performance of different codecs at 
0.1 compression ratio. As shown in Table 2, JPEG2000 and Daala, except SSIM, yielded more than 40 
dBs in PSNR, HVS, and HVSm, meaning that Daala and JPEG2000 could achieve near or even 
perceptually lossless compression. The SSIM metric for Daala was more than 0.9. For this dataset, we 
think Daala is the best codec because of its high scores in performance metrics and its parallel 
processing potential (see block processing in Figure 2). JPEG2000, on the other hand, requires the 
whole image and hence is not suitable for parallel processing. 

Figure 11 shows a visual comparison of decompressed images using different codecs at 10 to 1 
compression ratio. It can be seen that JPEG2000 and Daala had no perceptually loss, whereas X264 
had over smooth reconstruction and X265 had some color distortions. 

Table 2. Performance metrics of four codecs at 0.1 compression ratio for low resolution maritime 
images. Bold numbers indicate the best performing method. 

 PSNR (dB) SSIM HVS (dB) HVSm (dB) 

JPEG2000 47 0.87 41 46 

X264 39 0.725 35.5 40 

X265 40 0.85 38 44 

Daala 44 0.92 40.9 52.5 

 

(a) (b) 

(c) (d) 

Figure 10. Performance metrics for those low resolution maritime images: (a) averaged PSNR in dB 
of all maritime images versus compression ratio; (b) averaged SSIM of all maritime images versus 

Figure 10. Performance metrics for those low resolution maritime images: (a) averaged PSNR in dB
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averaged HVSm in dB of all maritime images versus compression ratio.

Table 2. Performance metrics of four codecs at 0.1 compression ratio for low resolution maritime
images. Bold numbers indicate the best performing method.

PSNR (dB) SSIM HVS (dB) HVSm (dB)

JPEG2000 47 0.87 41 46

X264 39 0.725 35.5 40

X265 40 0.85 38 44

Daala 44 0.92 40.9 52.5
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Figure 11 shows a visual comparison of decompressed images using different codecs at 10 to 1
compression ratio. It can be seen that JPEG2000 and Daala had no perceptually loss, whereas X264 had
over smooth reconstruction and X265 had some color distortions.
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Figure 11. Visual comparison of decompressed low resolution maritime images using different codecs
at 10 to 1 compression ratio: (a) original image; (b) decompressed image using JPEG2000 (HVSm: 44.38
dBs); (c) decompressed image using Daala (HVSm: 52.38 dBs); (d) decompressed image using X264
(HVSm: 38.03 dBs); and (e) decompressed image using X265 (HVSm: 40.78 dBs).

3.3. High Resolution Maritime Image Results

The purpose of this study was to see whether the observations for low resolution images presented
in Section 3.2 were still valid for high resolution images. For this dataset, we also focused on the
region around 0.1 compression ratio in Figure 12. Similar to the results of the lower resolution images,
JPEG2000 and Daala were significantly better than the others. JPEG2000 consistently produced a
higher PSNR than Daala at 0.1 compression ratio. As explained above, JPEG2000 performs wavelet
decomposition on the whole image and hence had better energy compaction. However, Daala tended
to have stronger SSIM, HVS, and HVSm because Daala incorporated overlapped blocks that suppressed
blocky artifacts. Daala also put more emphasis on perceptual quality by fine-tuning its algorithm. As
shown in Table 3, Daala reached 60 dBs for HVSm at 0.1 compression ratio, which is perceptually
lossless. The SSIM of Daala is more than 0.9. The higher resolution images produced slightly higher
scores overall as compared to those in Figure 10.

Table 3. Performance metrics of four codecs at 0.1 compression ratio for high resolution maritime
images. Bold numbers indicate the best performing method.

PSNR (dB) SSIM HVS (dB) HVSm (dB)

JPEG2000 53.5 0.825 46 50

X264 45 0.7 42 46

X265 47 0.875 45 53

Daala 50.5 0.91 49 60
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Figure 13 shows the visual comparison results at 10 to 1 compression. It was difficult to spot any
differences between the original and the decompressed images.
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Figure 13. Visual comparison of decompressed high resolution maritime images using different codecs
at 10 to 1 compression ratio: (a) original image; (b) decompressed image using JPEG2000 (HVSm: 50.32
dBs); (c) decompressed image using Daala (HVSm: 59.40 dBs); (d) decompressed image using X264
(HVSm: 46.08 dBs); and (e) decompressed image using X265 (HVSm: 53.13 dBs).



Computers 2019, 8, 32 12 of 21

3.4. High Quality Color Image Compression Results

Here, we present results using the high quality color images in Section 3.1.4. First, the images
presented in Section 3.1.4 are neither maritime nor sonar images. The purpose of this study was to see
whether we could observe similar trends to those presented above. For this dataset, we also focused
on the region around 0.1 compression ratio in Figure 14. JPEG2000 continued to perform well in terms
of PSNR and SSIM. However, for HVS and HVSm, Daala and X265 had better performance. In Table 4,
one can clearly see that Daala resulted 48.5 dBs in HVSm. This further corroborated that, at 10 to 1
compression, Daala could achieve near perceptually lossless compression.
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Figure 14. Performance metrics for those high quality color images: (a) averaged PSNR in dB of
all images versus compression ratio; (b) averaged SSIM of all images versus compression ratio; (c)
averaged HVS in dB of all mages versus compression ratio; and (d) averaged HVSm in dB of all images
versus compression ratio.

Table 4. Performance metrics of four codecs at 0.1 compression ratio for high quality color images.
Bold numbers indicate the best performing method.

PSNR (dB) SSIM HVS (dB) HVSm (dB)

JPEG2000 44 0.84 37.5 42

X264 38 0.67 36 33

X265 38.5 0.75 38 45

Daala 41 0.82 39 48.5

Figure 15 compares the various decompressed images at 10 to 1 compression. Again, it was hard
to see any perceptual differences between the original and the decompressed images.
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Figure 15. Visual comparison of decompressed high quality color images using different codecs at 10
to 1 compression ratio: (a) original image; (b) decompressed image using JPEG2000 (HVSm: 42.59 dBs);
(c) decompressed image using Daala (HVSm: 52.16 dBs); (d) decompressed image using X264 (HVSm:
43.34 dBs); and (e) decompressed image using X265 (HVSm: 47.27 dBs).

3.5. Sonar Image Compression Results

Sonar images are also of interest to our sponsor and hence we included them in our study. Similar
to in Sections 3.2–3.4, we determined which one of the four algorithms was the best in terms of the four
performance metrics. Moreover, we attmepted to achieve perpetually lossless compression (>40 dBs)
in terms of HVSm at 0.1 compression ratio. Figure 16 shows the four metrics of different codecs for
the sonar images. The results comparing JPEG2000, Daala, X264, and X265 are very similar to the
low and high resolution maritime results. JPEG2000 and Daala consistently outperformed X264 and
X265, which were nearly identical. JPEG2000 yielded the strongest PSNR across all compression rates
because of high energy compaction due to wavelet transform. At compression rates higher than 0.1,
Daala produced a stronger SSIM, HVS, and HVSm because of strong emphasis in perceptual quality by
the developers of Daala. As shown in Table 5, Daala and JPEG2000 had more than 40 dBs in HVSm.
This means that near or even perceptually lossless compression could be achieved.

Table 5. Performance metrics of four codecs at 0.1 compression ratio for sonar images. Bold numbers
indicate the best performing method.

PSNR (dB) SSIM HVS (dB) HVSm (dB)

JPEG2000 42.5 0.815 38 42.5

X264 36 0.66 30.5 34

X265 37 0.75 34 38

Daala 40 0.875 37 44.5
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Figure 16. Performance metrics for those sonar images. (a) averaged PSNR in dB of all sonar images
versus compression ratio; (b) averaged SSIM of all sonar images versus compression ratio; (c) averaged
HVS in dB of all sonar images versus compression ratio; and (d) averaged HVSm in dB of all sonar
images versus compression ratio.

Figure 17 shows the comparison between original and decompressed sonar images. One can
hardly see any differences because the HVSm scores were high.

3.6. Error Concealment for Maritime Images

As mentioned above, communication channels in maritime environments have strong and
random interferences, especially in wireless channels, which create packet errors. Even with good error
correction coding, it is unavoidable to have some missing packets. We recommend that the missing
data should be recovered by advanced error concealment algorithms, which do not add any overhead
to the network bandwidth.

In this research, we evaluated two error concealment algorithms: our own algorithm [28] and
a commercial product called Transformic [43]. We randomly introduced corrupted blocks of sizes
16 × 16, 8 × 8, 4 × 4, and 2 × 2 in color images and then applied the concealment algorithms to
recover the missing data. Our objective was to see if we could conceal the errors introduced in the
communication channel.
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Figure 18a shows the original image where a few red blocks indicate some areas of interest. 
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those corrupted blocks. We used RMSE to compare the reconstruction performance using two 

Figure 17. Visual comparison of decompressed sonar images using different codecs at 10 to 1
compression ratio: (a) original image; (b) decompressed image using JPEG2000 (HVSm: 50.85 dBs); (c)
Decompressed image using Daala (HVSm: 58.73 dBs); (d) decompressed image using X264 (HVSm:
46.51 dBs); and (e) decompressed image using X265 (HVSm: 50.19 dBs).

3.6.1. Error Recovery in Maritime Images

We used two images to illustrate the performance of error recovery. Mean square error (MSE) was
used as the objective metric to compare the two algorithms. In addition, we visually inspected the
recovered images and performed subjective evaluation.

Maritime Image 1

Figure 18a shows the original image where a few red blocks indicate some areas of interest.
Figure 18b shows the locations of some corrupted blocks. We then applied two algorithms to repair
those corrupted blocks. We used RMSE to compare the reconstruction performance using two
algorithms. For this image, the RMSE using our method was 6.69 and the RMSE for Transformic was
7.18. When visually inspecting the recovered pixels, one could see that the differences between our
method and Transformic was huge. Comparing Figure 18c–e, it can be seen that Transformic failed to
recover the crane, whereas our method could successfully recover the crane. In addition, by inspecting
Figure 18f–h, one can see that Transformic could not recover the missing block near the building,
whereas our method could reconstruct the missing block. This clearly shows that our method could
effectively conceal the corrupted blocks.
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Figure 18. Comparison of data recovery methods. Our method performs much better than Transformic:
(a) original image with highlighted boxes; (b) locations that have missing blocks; (c) original; (d) our
method; (e) Transformic; (f) original; (g) our method; and (h) Transformic. Please note that the red
rectangles do not necessarily cover the same areas in the three images. The purpose of the red rectangles
is simply to highlight some areas of interest.

Maritime Image 2

Figure 19a shows a number of corrupted blocks in an image. Figure 19b shows the zoomed in
areas of two locations. Figure 19c,d presents the reconstructed images using our method and the
Transformic method, respectively. For this image, the RMSE using our matrix completion method was
5.4 and the RMSE for Transformic wais 5.55. Although the difference between the MSEs was small,
the perceptual appearance of our method was much better (see Figure 19c,d). In particular, the gap
between the two buildings was reconstructed correctly by our method. This example further highlights
the importance of error concealment because, even if one uses error correction coding, there may still
be corrupted packets during image transmission.
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Figure 19. Our reconstructed image looks much better than that of Transformic. Our method is better
than Transformic: (a) image with corrupted blocks; (b) original image; (c) reconstructed image using
our method; and (d) reconstructed image using Transformic. Please note that the red rectangles do not
necessarily cover the same areas in the three images. The purpose of the red rectangles is simply to
highlight some areas of interest.

3.6.2. Error Recovery in Sonar Images

Similar to the study presented in Section 3.6.1, we applied two error concealment methods to
repair damaged blocks in the decompressed images.

Sonar Image 1

Figure 20a illustrates the locations of the damaged blocks. Figure 20b shows the zoomed in areas
of some regions of interest. Two methods were applied to repair the damaged blocks. Figure 20c,d
shows the reconstructed images. For this image, our method achieved a RMSE of 22.68, whereas the
RMSE for Transformic was 71.32. The difference was tremendous. By visually inspecting Figure 20c,d,
one can see that our results are clear and have more textures as compared to the results of Transformic.

Sonar Image 2

To further demonstrate the error concealment for sonar images, we include another example.
Figure 21a shows the locations of regions of interest with corrupted blocks. Figure 21b,c shows the
reconstructed image using the two methods. For this image, the RMSE of our method was 21.87 and
the RMSE for Transformic was 65.55. Again, the difference between RMSEs was huge. By visually
inspecting the reconstructed results in Figure 21c,d, one can see that our results look much better than
that of Transformic.
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Figure 21. Sonar image reconstruction results comparison. Our method is much better than Transformic:
(a) original image with highlighted areas; (b) our results; and (c) Transformic results. Please note that
the red rectangles do not necessarily cover the same areas in the three images. The purpose of the red
rectangles is simply to highlight some areas of interest.
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3.7. Discussions

As mentioned above, our sponsor is interested in achieving 10 to 1 compression or a compression
ratio of 0.1 using new or existing compression algorithms and, at the same time, the decompressed
image should be near perceptually lossless (40 dBs or more in terms of HVSm). These were the first
and second goals. To meet these goals, we collected low and high resolution images (maritime images)
and sonar images. The reason for using low and high quality images was because there are cameras
with different resolutions onboard the naval ships. It was therefore required that the compression
algorithm should work satisfactorily for all images, including sonar images as well. We chose four
metrics, two of which (PSNR and SSIM) have been widely used by many people before, but they
do not correlate well with human perceptions. The two other metrics, HVS and HVSm, have better
correlation with human perceptions. From those metrics for low and high quality optical images and
sonar images, we observed that Daala had consistently reached more than 40 dBs at 10 to 1 compression
in HVSm in all images that we tested. Other codecs such as X265 and JPEG2000 could also marginally
meet the above requirements. It is up to our sponsor to make the final decision on which codec to
adopt. Our third objective was to demonstrate the performance of error concealment, which does not
incur any additional bandwidth usage. Our experiments showed that error concealment could indeed
recover image pixels in those corrupted areas.

4. Conclusions

We would like to emphasize that our work was different from those papers on perceptually
lossless coding [15–18], which embed HVS model into the coding process. One key objective in our
research was to achieve near or even perceptually lossless compression with 0.1 compression ratio
for still images (maritime and sonar). The requirement was raised by our customer. We evaluated
four popular algorithms (JPEG2000, Daala, X264, X265) using four performance metrics (PSNR, SSIM,
HVS, and HVSm). In our compression experiments, JPEG2000 performed the best in terms of PSNR
at 0.1 compression ratio. However, for all the other metrics, Daala achieved the best scores. It was
surprising to find that X264 and X265 did not perform as well as Daala. Perhaps because those codecs
are video codecs and were not optimally designed for still images. For 0.1 compression ratio, we found
that near perceptually lossless compression could be achieved for still images, as the performance
metrics were very high ( >40 dBs for PSNR, HVS, and HVSm). In addition, we think Daala is a good
choice for practical applications because it is amenable to parallel processing. Our observations can be
corroborated by another independent study performed by the Xiph team [44].

We also investigated error concealment algorithms for handling corrupted pixels due to
transmission errors. Extensive experiments demonstrated that error concealment is a feasible method
to conceal corrupted pixels without incurring additional bandwidth usage.
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