
computers

Article

CBAM: A Contextual Model for Network Anomaly Detection †

Henry Clausen 1,* , Gudmund Grov 2,3 and David Aspinall 1,4

����������
�������

Citation: Clausen, H.; Grov, G.;

Aspinall, D. CBAM: A Contextual

Model for Network Anomaly

Detection. Computers 2021, 10, 79.

https://doi.org/10.3390/

computers10060079

Academic Editor: Paolo Bellavista

Received: 6 May 2021

Accepted: 7 June 2021

Published: 11 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK; david.aspinall@ed.ac.uk
2 Norwegian Defence Research Establishment (FFI), 2007 Kjeller, Norway; Gudmund.Grov@ffi.no
3 Department of Informatics, University of Oslo, 0373 Oslo, Norway
4 The Alan Turing Institute, London NW1 2DB, UK
* Correspondence: henry.clausen@ed.ac.uk
† This paper is an extended version of our paper published in MLN’2020.

Abstract: Anomaly-based intrusion detection methods aim to combat the increasing rate of zero-
day attacks, however, their success is currently restricted to the detection of high-volume attacks
using aggregated traffic features. Recent evaluations show that the current anomaly-based network
intrusion detection methods fail to reliably detect remote access attacks. These are smaller in volume
and often only stand out when compared to their surroundings. Currently, anomaly methods
try to detect access attack events mainly as point anomalies and neglect the context they appear
in. We present and examine a contextual bidirectional anomaly model (CBAM) based on deep
LSTM-networks that is specifically designed to detect such attacks as contextual network anomalies.
The model efficiently learns short-term sequential patterns in network flows as conditional event
probabilities. Access attacks frequently break these patterns when exploiting vulnerabilities, and
can thus be detected as contextual anomalies. We evaluated CBAM on an assembly of three datasets
that provide both representative network access attacks, real-life traffic over a long timespan, and
traffic from a real-world red-team attack. We contend that this assembly is closer to a potential
deployment environment than current NIDS benchmark datasets. We show that, by building a deep
model, we are able to reduce the false positive rate to 0.16% while effectively detecting six out of
seven access attacks, which is significantly lower than the operational range of other methods. We
further demonstrate that short-term flow structures remain stable over long periods of time, making
the CBAM robust against concept drift.

Keywords: network intrusion detection; deep learning; anomaly detection; flow prediction; ac-
cess attacks

1. Introduction

Remote access attacks are used to gain control or access information on remote devices
by exploiting vulnerabilities in network services and are involved in many of today’s
data breaches [1,2]. A recent survey [3] showed that these attacks are detected at signifi-
cantly lower rates than more high-volume probing or DoS attacks. We present CBAM , a
short-term Contextual Bidirectional Anomaly Model of network flows, which improves
detection rates of remote access attacks significantly. The underlying idea of CBAM is
to capture probability distributions over sequences of network flows that quantify their
overall likelihood, much like a language model. CBAM is based on deep bidirectional
LSTM networks. This paper is an extension of our previously presented work [4].

We evaluated CBAM carefully on three modern network intrusion detection datasets.
By carefully selecting input parameters based on their sequential interdependence as well
as increasing model complexity in terms of depth and efficient input embedding compared
to preceding models, we are able to detect remote access attacks at a false positive rate of
0.16%, a rate at which none of the comparison models are able to detect any attacks reliably.
CBAM is both able to detect six out of seven access attacks in the CICIDS-17 benchmark
dataset and identifies traffic from real-world attacks in the LANL-15 dataset.
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We also discuss specific design choices and how they enable the effective modelling
of specific traffic characteristics to boost performance. Recently, deep learning models such
as LSTMs have been a popular tool in network intrusion detection [5–7]. However, the
evaluation of these models is generally agnostic to particular characteristics of the modelled
traffic and fails to explain where and why the corresponding model fails to classify traffic
properly. We recently demonstrated how a detailed examination of these failings of two
state-of-the-art NID models enables specific improvements in the model design to boost
detection performances [8]. The additional results presented herein aim to do the same for
our short-term CBAM model and provide a validation for the undertaken design steps.

1.1. Contribution

This paper extends our work “Better Anomaly Detection for Access Attacks Using
Deep Bidirectional LSTMs”, presented at the Third International Conference on Machine
Learning for Networking (MLN’2020) [4], and provides additional traffic examinations
and corresponding performance results to demonstrate the design process. In particular,
we present the following contributions:

• We provide extensive examination how common access attacks perturb short-term
contextual sequence structures, and can thus be detected as anomalies by our pre-
sented model.

• We examine in detail how adding bidirectional LSTM-layers, increasing network
depth and adding a separate size vocabulary helps CBAM predict flows better for
specific traffic types to reduce false-positives.

• We provide additional performance results on the LANL-15 real-world dataset to
demonstrate that CBAM is capable of detecting real-world attacks in real-world traffic.

• We examine in more detail how short-term flow sequence structures remain stable
over long time periods, what the most common sources for false-positives are, and
how the size of the training data affects the model’s ability to reliably recognise
benign traffic.

1.2. Outline

We now briefly explain the structure in which this paper is written, which is also
visualised in Figure 1:

Figure 1. Structure of this paper.

Design and scope: Section 2 provides a motivation for short-term contextual models and
their benefits for the detection of access attacks. Section 3 explains the methodology and
architecture of CBAM as well as the data preprocessing. Section 4 describes the problems
with network traffic datasets which previous methods were evaluated on and explains
the advantages of our selection of datasets. We also describe how and why traffic from
particular hosts is selected and how training and test data are constructed.
Evaluation: Section 5 discusses evaluation principles, our detection rates on attack traf-
fic in the CICIDS-17 and LANL-15 data and examines how and why CBAM is able to
identify these attacks. Section 6 discusses the false positive rate on benign traffic and
examines the long-term stability of flow structures and corresponding model performance.
It also provides details on the score distributions and the type of traffic that is both pre-
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dicted accurately and inaccurately, as well as the influence of the training data size on
these predictions.
Design validation: Section 7 examines through given examples how attacks perturb
reoccurring traffic structures and how CBAM processes them. We also discuss how
different types of benign traffic are processed and the major cause for false-positives.
Section 8 discusses the reason and measured benefit of specific design steps that increase
model complexity.
Scientific context: Section 9 discusses related works and puts our method into context.
Section 10 highlights potential shortcomings and resilience against evasive tactics. Section 11
concludes our results.

2. CBAM: Flow Anomalies as Deviation from Predicted Sequences

In verbal or written speech, we expect the words “I will arrive by . . . ” to be followed
by a word from a smaller set such as “car” or “bike” or “5 p.m.”. Similarly, on an average
machine, we may expect DNS lookups to be followed by outgoing HTTP/HTTPS connec-
tions. These short-term structures in network traffic are a reflection of the computational
order of information exchange. Attacks that exploit vulnerabilities in network communi-
cation protocols often achieve their target by deviating from the regular computational
exchange of a service, which should be reflected in the generated network pattern.

Table 1a depicts a flow sequence from an XSS attack. Initial larger flows are followed
by a long sequence of very small flows which are likely generated by the embedded attack
script trying to download multiple inaccessible locations. Flows of this size are normally
immediately followed by larger flows, as depicted in Figure 2, which makes the repeated
occurrence of small HTTP flows in this sequence very unusual.

Table 1. The left side depicts a flow sequence from an XSS attack. The right side depicts a benign
SMB-sequence (top) and a sequence from a pass-the-hash attack via the same SMB service.

(a) XSS attack, A = 192.168.10.50, B = 172.16.0.1

Src Dst DPort bytes # packets

A B 80 247,956 315
A B 80 7544 13
A B 80 328 6
A B 80 2601 10
A B 80 328 6
A B 80 328 6
A B 80 380 7
A B 80 328 6

...

(b) Benign SMB, C = C6267, D = C754

Src Dst DPort bytes # packets

D C N33 600 5
C D 445 77,934 1482
D C N33 600 5
C D 445 5202 10

(c) Pass-the-hash attack via SMB

Src Dst DPort bytes # packets

C D 445 4,106,275 2830
C D 445 358,305,611 242,847

Table 1b depicts a regular SMB service sequence while Table 1c depicts a pass-the-hash
attack via the same SMB service. As shown, the flows to port N33 necessary to trigger the
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communication on the SMB port are missing while the second flow is significantly larger
than any regular SMB flows due to it being misused for exfiltration purposes.

Figure 2. HTTP flow size distribution overall and if preceded by an HTTP flow smaller than 500 bytes.

The underlying idea of CBAM is to predict probabilities of connections in a host’s
traffic stream conditional on adjacent connections. The probabilities are assigned based
on the connection’s protocol, network port, direction and size and the model is trained to
maximise the overall predicted probabilities.

To assign probabilities, we map each connection event to two discrete sets of states,
called vocabularies, according to the protocol, the network port and the direction of
the connection for the first, and according to the number of transmitted bytes for the
second. The size of the vocabulary is chosen to be large enough to capture meaningful
structures without capturing rare events that can deteriorate prediction quality. We feed
these vocabularies into a deep bidirectional LSTM (long short-term memory) network that
takes bivariate sequences of mapped events as input to efficiently capture the conditional
probabilities for each event.

CBAM acts as an anomaly-detection model that learns short-term structures in benign
traffic and identifies malicious sequences as deviations from these structures. By predicting
probabilities of flows in benign flow sequences, CBAM is trained in a self-supervised
way on strictly benign traffic. In contrast to classification-based training, CBAM does not
require labelled attack traffic in the training data and is thus not affected by typical class
imbalances in network intrusion datasets.

3. Design
3.1. Session Construction

A network flow (often referred to as “NetFlow”) is a summary of the connection
between two computers and contains a timestamp, the used IP protocol, the source and
destination IP address and network port and a choice of summary values. The raw input
data, in the form of network flows, contains unordered traffic from and to all hosts in the
network. To order the raw network flows, we first gather all outgoing and incoming flows
for each of the hosts selected for examination according to their IP address.

The traffic a host generates is often seen as a series of sessions, which are intervals
of time during which the host is engaged in the same continued activity [9]. In our
context, flows that occur during the same session can be seen as having strong short-term
dependencies. We therefore group flows going from or to the same host to sessions using
an established statistical approach [9]:

If a network flow starts less than α seconds after the previous flow for that host, then it belongs
to the same session; otherwise, a new session is started. If a session exceeds β events, a new session
is started.

We chose the number of α = 8 seconds as we have found that on average, around 90%
of flows on a host start less than 8 seconds after the previous flow, a suitable threshold
to create cohesive sessions according to Rubin-Delanchy et al. [9]. We introduced the β
parameter in order to break up long sessions that potentially contain a small amount of
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malicious flows and estimated β = 25 to be a suitable parameter. However, detection rates
do not seem to be very sensitive to the exact choice of β.

A perfect session grouping would require (unavailable) information from the top
layers of the network stack. We therefore use our session definition as a first approximation
which we found to be useful enough for this experiment. We will discuss this issue further
in Sections 8.2 and 10.

The interarrival time distribution for selected hosts in the used datasets, described in
Section 4.1, along with 90% quantile lines, is depicted in Figure 3.

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20
Interarrival times [s]

ra
te

CICIDS−17 

0.0

0.1

0.2

0.3

0 5 10 15 20
Interarrival times [s]

ra
te

LANL−15 

0.0

0.1

0.2

0.3

0 5 10 15 20
Interarrival times [s]

ra
te

UGR−16 

Figure 3. Flow interarrival distributions for selected hosts in the CICIDS-17, the LANL-15 and the
UGR-16 data, with 90 percent quantile lines.

3.2. Contextual Modelling

Each session is now a sequence of flows that are assumed to be interdependent. We
observed in an initial traffic analysis that the protocol, port and direction of a flow as well
as its size are highly dependent on the surrounding flows, which motivates their use in
the modelling process. We treat flows as symbolic events that can take on different states,
much like words in a language model. The state of a flow is defined as the tuple consisting
of the protocol, network port and the direction of the flow. We consider only the server
port numbers, which indicate the used service, in the state-building process. We introduce
the following notation:

M: number of states

C: number of host groups

S: number of size groups

Ni
embed: embedding dimension

Ni
hidden: LSTM layers dimension

Nj: the length of session j

xi,j ∈ {1, . . . , M} : the state of flow i in session j

cj ∈ {1, . . . , C}: the host group

si,j ∈ {1, . . . , S}: size group of flow i in session j

pi,j,k
x = P(xi,j = k|j) the predicted probability of xi,j = k

conditional on the other flows in session j

pi,j,l
s = P(si,j = l|j) the predicted probability of si,j = l

conditional on the other flows in session j
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The collection of all states is called a vocabulary. For prediction, the total size of a
vocabulary directly correlates with the number of parameters needed to be inferred in an
LSTM network, thus influencing the time and data volume needed for training. Too large
vocabularies also lead to decreased predictive performance by including rare events that
are hard to predict [10]. We therefore bound the total number of states and only distinguish
between the M− 2 tuples of the protocol, port and direction most commonly seen on a
machine, with less popular combinations being grouped as “other”. Furthermore, the
end of a session is treated as an additional artificial event with its own state. The total
vocabulary size is then given by M.

Our experimentation has shown that detection rates improve when including the size
as an additional variable, as we discuss in Section 7.1. Rather than making a point estimate
of the size, we want to produce a probability distribution for different size intervals. This
provides better accuracy for situations in which both small and large flows have a similar
occurrence likelihood. We group flows into S different size quantile intervals, with the
set of all size intervals forming a third vocabulary. The S− 1 boundaries that separate
the size intervals correspond to S− 1 equidistant quantiles of the size distribution in the
training data.

Hosts are grouped according to their functionality (Windows, Ubuntu, servers, etc.), a
distinction that can easily be performed using signals in the traffic. The group is provided
to the model as an additional input parameter cj and forms a third vocabulary.

3.3. Architecture Selection

We now represent each session as a set of two symbolic sequences which contain
between three and 27 items, in order to capture their contextual structure for the reasons
described in Section 2. A number of techniques exist to describe such sequences, such
as Markov models and hidden Markov models, finite-state automata, or N-Gram models. How-
ever, the success of recurrent neural networks in similar applications of natural language
processing over these methods suggests they would be the most appropriate architec-
ture to capture contextual relationships between flows. In Section 8.3, we compare the
performance of CBAM to both Markov-based models and finite-state automata. Even
though convolutional neural networks and feed-forward networks can be more suitable
choices for specific sequential problems with tabular or regression characteristics, recurrent
neural networks such as LSTMs or GRUs normally outperform them for short tokenised
sequences [11]. Both LSTMs and GRUs perform similarly well and generally outperform
simple RNNs.

3.4. Trained Architecture

We use a deep bidirectional LSTM network which processes a sequence in both
forward and reverse direction to predict the state and size group of individual flows.
The architecture of the network we trained is depicted in Figure 4. The increased model
complexity we present has not been explored in previous LSTM applications to network
intrusion detection and enables us to boost detection rates while lowering false positive
rates, which we demonstrate in Section 8.

3.4.1. Embedding

First, each of the three vectors is fed through an embedding layer, which assigns them
a vector of size Ni

embed, i ∈ {1, 2, 3}. This embedding allows the network to project the
data into a space with easier temporal dynamics. This step significantly extends existing
designs of LSTM models for anomaly detection and allows us to project multiple input
vocabularies simultaneously without a large increase in the model size. By treating the
state, the size group and the host group as separate dictionaries, we avoid the creation
of one large vocabulary of size M× C× S, which makes training faster and prevents the
creation of rare states [10].
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Figure 4. Architecture of the trained bidirectional LSTM network.

3.4.2. LSTM-Layer

In the second step, the vectors are concatenated and fed to a stacked bidirectional
LSTM layer with N1

hidden hidden cells. This layer is responsible for the transport of sequen-
tial information in both directions. The usage of bidirectional LSTM layers compared to
unidirectional ones significantly improved the prediction of events at the beginning of a
session and consequently boosted detection rates within short sessions, as we demonstrate
in Section 8.1. Increasing the number of LSTM layers from one to two decreases false
positive rates in longer sessions while maintaining similar detection rates, as we show
in Section 8.2. In Section 10.1, we discuss why we are not further increasing the number
of layers.

3.4.3. Output Layer

The outputs from the bidirectional LSTM layers are now concatenated and fed to an ad-
ditional linear hidden layer of size N2

hidden with the commonly used rectified linear activation
function. We added this layer to enable the network to learn more non-linear dependencies
in a sequence. We found that by adding this layer, we are able to capture complex and rare
behaviours and decrease false positive rates, as demonstrated in Section 8.3.

Finally, the output of this layer is fed to two output layers with M and S softmax
output cells. These produce two numeric vectors of size M and S:

pi,j,k
x , k ∈ {1, . . . , M},

M

∑
k

pi,j,k
x = 1

pi,j,l
s , l ∈ {1, . . . , S},

S

∑
l

pi,j,l
s = 1

which describe the predicted probability distribution of xi,j and si,j, respectively.
The prediction loss for the state group is then given by the negative log-likelihood:

lhi,j
x =

M

∑
k=1

(1− xi,j
k ) · log(1− yi,j

k )− xi,j
k · log(yi,j

k )
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with the size group loss being calculated in the same way. We calculate the total loss as
the sum of the state loss and the size group loss. A visualisation of the prediction-making
process is depicted in Figure 5.

Figure 5. Visualisation of model prediction process.

After the training, we use the network to determine the anomaly score of a given
input session via the average of the predicted likelihoods, as this measure is independent
of the session length:

ASj = 1−
Nj

∑
i=1

(
exp(lhi,j

x ) + exp(lhi,j
s )

)
/Nj

An anomaly score close to 0 corresponds to a benign session with a very high like-
lihood while a score close to 1 corresponds to an anomalous session with events which
the network would not predict in the context of previous events. We rescaled all anomaly
scores, however, this was done purely for better readability and does not influence the
ordering and thus the detection process.

3.5. Parameter Selection and Training

We trained CBAM and tuned it to maximise its prediction performance. We trained it
on a quad-core CPU with 3.2 GHz, 16 GB RAM and a single NVIDIA Tesla V100 GPU, and
we used minibatches of size 30 using the ADAM optimiser in PyTorch. Training a model
can be achieved in under three hours.

We aimed to create a model that has sufficient parameters to capture complex flow
dependencies but does not overfit the training data. For this, we split the available training
data into a larger training and a smaller validation set. We then selected two model
configurations, one with a larger number of parameters and one with a smaller number. We
then trained the model for 500 epochs on the training set and observed whether the same
loss decrease can be observed on the validation set. As long as the larger model performed
better than the smaller model and the validation loss was consistent with the training loss,
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we kept increasing the number of parameters, a standard practice to train deep learning
models. The best performing parameters were N1

embed = 10, N2
embed = N3

embed = 5 for the
embedding layers and N1

hidden = N2
hidden = 50 for the hidden layers.

To build a more powerful model without the risk of overfitting, we used a drop-
out rate of 0.5 as proposed by Hinton et al. [12], and a weight-decay regularization of
5× 10−4 per epoch. To increase the training performance, we used an adaptive learning of
0.0003, which decays by a factor of 2 after each fifty subsequent epochs, as well as layer
normalization. The values for the learning rate and weight decay were estimated in a
similar procedure as the model size.

As we mentioned above, too large vocabularies can cause problems both for model
training and event prediction. We achieved the best results for M = 200 for the available
data and computational resources. The size of the group was chosen to be smaller with
S = 7, which improves the detection capabilities without increasing anomaly scores
for benign sessions too much. We found that a suitable value of C = 4 can describe
different host types, which include servers, two types of client machines depending on the
operating system and auxiliary devices (printers, IP-phones and similar). Host groups were
individually determined for each dataset and the corresponding machines were labelled
manually. However, for larger datasets, this process is easily automated by filtering for
specific traffic events such as requests for Microsoft update servers.

# Cells # Parameters

Embedding layer 202/10/5 2055
LSTM-layer 1 50 6,700
LSTM-layer 2 50 12,700
Linear layer 50 2550

Softmax layer 202/10 10,557

Total 34,562

3.6. Detection Method

We used a simple threshold anomaly score to identify a session as malicious. We
estimated the 99.9% quantile for benign sessions in the training data, which will then act as
our threshold value T. By determining T from the training data, we controlled the expected
false positive rate in the test data. Threshold values were determined for each dataset and
each host within a dataset separately:

Tc : P[ASj
c j ≤ Tc] ≤ 0.999

Finding an appropriate threshold value is a compromise between higher detection
rates and lower false positive rates, and we chose this value to achieve false positive rates
that are low enough for a realistic setting. We compared the detection and false positive
rates for a different T in Section 5.2, and we give an outlook to more sophisticated detection
methods in Section 10.

4. Datasets
4.1. Dataset Assembly

The field of network intrusion detection has always suffered from a lack of suitable
datasets for evaluation. Privacy concerns and the difficulty of posterior attack traffic
identification are the reason that no dataset exists that contains realistic U2R/R2L (user-
to-root, remote-to-local) traffic and benign traffic from a real-world environment [13]. To
evaluate CBAM, we need both representative access attack traffic to test detection rates, and
background traffic from a realistic environment to test false positive rates. To ensure that
both criteria are met, we selected three modern publicly available datasets that complement
each other: CICIDS-17 [14]; LANL-15 [15]; and UGR-16 [16]. The CICIDS-17 dataset
contains traffic from a variety of modern attacks, while the UGR-16 dataset’s length is
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suitable for long-term evaluation. The LANL-15 dataset contains enterprise network traffic
along with several real-world access attacks.

We trained models with the same hyperparameters on each dataset to demonstrate the
capability of CBAM to detect various attacks and perform well in a realistic environment.

CICIDS-17: This dataset [14], released by the Canadian Institute for Cybersecurity
(CIC), contains 5 days of network traffic collected from 12 computers with attacks that were
conducted in a laboratory setting. The computers all have different operating systems to
enable a wider range of attack scenarios. The attack data of this dataset are among the
most diverse among NID datasets and contain SQL injections, heartbleed attacks, brute-
forcing, various download infiltrations, and cross-site scripting (XSS) attacks, on which we
evaluated our detection rates.

The traffic data consist of labelled benign and attack flow events with 85 summary
features which can be computed by common routers. The availability of these features
makes it suitable to evaluate machine-learning techniques that were only tested on the
KDD-99 data.

The benign traffic is generated on hosts using previously gathered and implemented
traffic profiles to make the traffic more heterogeneous during a comparably short time
span, and consequently closer to reality. For our evaluation, we selected four hosts that are
subject to U2R and R2L attacks, two web servers and two personal computers.

This dataset is generated in a laboratory environment, with a higher proportion of
attack traffic than is normally encountered in a realistic setting. Consequently, we need to
test it on traffic from real-world environments to prove that CBAM retains its detection
capabilities and low false alert rates.

LANL-15 dataset: In 2015, the Los Alamos National Laboratory (LANL) released
a large dataset containing internal network flows (among other data) from their corpo-
rate computer network. The netflow data were gathered over a period of 27 days with
approximately 600 million events per day [15].

In addition to large amounts of real-world benign traffic, the dataset contains a set of
attack events that were conducted by an authorised red team and are supposed to resemble
remote access attacks, mainly using the pass-the-hash exploit. We selected this dataset to
demonstrate that CBAM is able to detect attacks in a realistic environment with low false
alert rates. We isolated traffic from ten hosts, with two being subject to attack events. Two
of these hosts resemble server behaviour, while the other eight show the typical behaviour
of personal computers.

The provided red team events are not part of the network flow data and only contain
information about the time of the attack and the attacked computer. Furthermore, not all of
the attack events are conducted on the network level, so it is impossible to tell exactly which
flows correspond to malicious activity and which do not. Therefore, we labelled all flows
in a narrow time interval around each of the attack timestamps as possibly malicious. As
these intervals are narrow, identified anomalies likely correspond to the conducted attack.

UGR-16 dataset: The UGR-16 dataset [16] was released by the University of Grenada
in 2016 and contains network flows from a Spanish ISP. It contains both clients’ access to the
Internet and traffic from servers hosting a number of services. The data thus contain a wide
variety of real-world traffic patterns, unlike other available datasets. Additionally, a main
focus in the creation of the data was the consideration of long-term traffic evolution, which
allows us to make statements about the robustness of CBAM to concept drift over the 163
day span of the dataset. For our evaluation, we isolated traffic from five web-servers that
provide a variety of services.

Other Datasets

Two datasets and their derivatives, DARPA-98 [17] and KDD-99 [18], are often used
to benchmark detection models, with all anomaly-based techniques discussed in a recent
survey [3] with reported detection rates on U2R and R2L attacks relying on either of them.
Both datasets have been pointed out as flawed and can give overoptimistic results due to
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inconsistencies, a lack of realistic benign traffic, and an imbalance of benign and attack
traffic [19–21]. Both datasets are 20 years old and outdated. The KDD-99 dataset was
collected using a Solaris operating system in a laboratory environment to collect a wide
range traffic and OS features, which makes it the most popular dataset to evaluate machine-
learning-based techniques. The collection of many of these features is, however, currently
infeasible in real-world deployment. All these factors mean that reported detection rates
collected on these datasets have to be taken with care.

CTU 2013: The Stratosphere Laboratory [22] in Prague released this dataset in 2013 to
study botnet detection. It consists of more than 10 million labelled network flows captured
on lab machines for 13 different botnet attack scenarios. A criticism of this dataset is the
unrealistically high amount of malicious traffic contained in the dataset, which makes it
easier to spot it while reducing false positives. Furthermore, the way normal or background
traffic is generated is described only poorly and leaves the question of how representative
it is of actual network traffic.

UNSW-NB 2015: The dataset released by the University of New South Wales in
2015 [23] contains real background traffic and synthetic attack traffic collected at the
“Cyber Range Lab of the Australian Centre for Cyber Security”. The data were collected
from a small number of computers which generate background traffic, which is overlayed
with attack traffic using the IXIA PerfectStorm tool. The time span of the collection is in
total 31 h. An advantage of the data is the variety of the attack data, which contain a
number of DoS, reconnaissance and access attacks. However, due to the synthetic injection
of these attacks, it is unclear how close they are to real-world attack scenarios, and again,
the generation process of benign traffic is poorly described and leaves the question how
close to the actual network traffic it is.

ADFA 2013/2014 [24]: The ADFA dataset, released by the University of New South
Wales, focuses on attack scenarios on Linux and Windows systems as well as stealth attacks.
To create host targets, the authors installed web servers and database servers, which were
then subject to a number of attacks. The dataset is more directed towards attack scenario
analysis and is criticised as being unsuitable for intrusion detection due to its lack of traffic
diversity. Furthermore, the attack traffic is not well separated from the normal one.

CICIDS 2018 [14]: This dataset, released by the Canadian Institute for Cybersecurity
(CIC), is generated in a similar fashion to the CICIDS 2017 data that we used in this work.
The main differences are that the CICIDS 2018 data spans over three weeks and include in
total 450 hosts but lacks the amount of web-attacks that we require and which are present
in the CICIDS-2017 dataset.

The LITNET-2020 [25] dataset from the Kaunas University of Technology Lithuania
from 2020 was collected from an academic network over a timespan of 10 months and
contains annotated real-life benign and attack traffic. The corresponding network provides
a large network topology with more than a million IP-addresses, and the data were collected
in the form of network flows with more than 80 features. However, the dataset only contains
traffic from high volume attacks such as DoS-, scanning, or worm attacks, which are not
suitable to evaluate CBAM.

The Boğaziçi University distributed denial of service dataset [26] contains both benign
traffic from more than 400 users from an academic network as well as artificially created
DoS-attack traffic. The dataset spans only 8 min and contains no access attacks.

4.2. Dataset Split

We split our data into a test set and a training set. To resemble a realistic scenario, the
sessions in the training data are from a previous time interval than sessions in the test data.

To evaluate detection rates on the CICIDS-17 data, we selected the four hosts in the
data that are subject to remote access attacks, two web servers and two personal computers.
We chose our test set to contain the known attack data while the training data should only
contain the benign data. Due to the short timespan of the dataset, we had to train on traffic
from all five days, with the test data intervals being placed around the attack. In total, the
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test set contains 14 h of traffic for each host while the training set contains 31 h of traffic.
While the test set for the CICIDS-17 data covers a shorter timespan, it contains more traffic
due to voluminous brute-force attacks.

For the LANL data, the test set stretches approximately over the first 13 days with
the training data spanning over the last 14 days. The unusual choice of placing the test set
before the training set was made because the attacks occur early in the dataset. However,
as the training and test are contained in two non-overlapping intervals, a robustness
evaluation is still possible.

To test the long-term stability and robustness of CBAM against concept drift, we split
the UGR-16 data into one training set interval and two test set intervals, for which we
can compare model performance. The training set interval stretches over the first month,
with the first test set interval containing the sessions from the following two months,
and the second test set interval containing the last two months. We then isolated traffic
from five web-servers that provide a variety of services that show behavioural evolution.
Figure 6 depicts the changes of these servers in terms of protocol and port usage over the
different intervals.
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Figure 6. Temporal change in the protocol and port usage over the different train and test intervals
across selected servers in the UGR-16 dataset.

We chose our training data to contain approximately 10,000 sessions per host if
possible. A summary of the amount of data in the training and test data for each dataset
can be found in Table 2.

Table 2. Summary of the amount of traffic extracted from each dataset.

Dataset Hosts Sessions in Sessions in Length
Training Set Test Set

CICIDS-17 4 24,128 32,414 5 days
LANL-15 10 89,480 76,984 27 days
UGR-16 5 65,000 480,018 163 days

5. Detection Performance
5.1. Sample Imbalance and Evaluation Methodology

Most NID datasets include attack events from both low volume access attack classes as
well as attacks like DoS or port scans which generate a large number of events. If reported
detection rates do not distinguish between different attacks or attack classes, performance
metrics will be dominated and potentially inflated by DoS and probing attacks. Similarly,
detection results are often given in terms of precision and recall or F-measures, which are
sensitive to the specific dataset balance of the majority and minority classes in a dataset.
Since the ratio of attack traffic is inflated in general NID-datasets, these measures are not
suitable for model comparison.
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We evaluated the CBAM using simple true positive and false positive rates, which
are independent of the dataset balance. We also distinguished detection rates for different
attacks and assess overall performance by averaging these rates over attack classes rather
than an overall number of attack events. Since there is no agreed upon value for a suitable
false positive rate in network intrusion detection, we computed ROC-curves to display the
detection rates in dependence of the false-positive rate and reported the overall AUC-scores
(area under curve), which describe the separation of benign and anomalous traffic. We use
these for comparison with other models, as this measure is fairer than point comparisons.
The evaluation procedure is supported by several NID evaluation surveys [27,28].

Some researchers have proposed cost-based evaluation metrics by assigning false
alerts and missed intrusion attempts a cost-value and tuning the detection threshold to
minimise the expected cost, such as done by Ulvila and Gaffney [27]. Such a metric is,
however, strongly dependent on the observed ratio of attack to benign traffic, which is
strongly inflated in NID-datasets, and requires operational information to assign costs to a
false alert or intrusion. This evaluation works well in specific cases such as DoS attacks or
cryptojacking, where server-downtime costs and attack volume are generally quantifiable,
but it is not applicable in cases where this information is not available or well defined [28].

Training classifiers on imbalanced datasets can affect their performance, both due to
the imbalanced ratio of attack to benign traffic and the imbalance between several attack
classes. Some methods have been proposed to augment or synthetically inflate minority
samples for attack traffic [29]. As an anomaly-detection method, CBAM is, however, trained
on a self-supervised way strictly on benign traffic, with no attack traffic being present in
the training data. The training stage is therefore independent of the minority class ratio in a
given dataset and does not require specific balancing methods. In the evaluation stage, the
above-described steps apply for both classification- and anomaly-detection-based methods
to consider data imbalances.

5.2. CICIDS-17 Results

We now demonstrate that we can build an accurate and close-fitting model of normal
behaviour with CBAM. We train models for each dataset separately, but without any change
in the selected hyperparameters, i.e., the number of hidden cells, vocabulary size, learning
rate etc.

As described above, we estimated the detection rates using the traffic of various
remote access attacks in the CICIDS-17 dataset. Table 3 describes the number of sessions
present for each attack class.

Table 3. Number of sessions for each attack class in the CICIDS-17 dataset.

FTP-BF SSH-BF Web-BF SQL-Inj. XSS Heartbleed Infiltr.

#
Sessions 243 210 88 8 41 4 17

Table 4 depicts anomaly score distributions and detection rates for traffic from seven
different types of attacks.

Most notable is that scores from all attacks except cross-site scripting (XSS) are sig-
nificantly higher distributed than benign traffic, with median scores lying between 0.75
and 0.89. Detection rates with our chosen threshold of T = 0.77 are highest for Heartbleed
attacks (100%), followed by FTP and SSH brute-force attacks and SQL-injections, where
91%, 74% and 75% of all affected sessions are detected. Detection rates are lowest for XSS
and infiltration attacks. The overall detection rates we achieve are in a similar range as
most unsupervised methods in Nisioti et al.’s evaluation [3], but with significantly better
false positive rates.
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Table 4. Anomaly score distributions and detection rates at threshold T for known malicious sessions
in the CICIDS-17 dataset, as well as detection rates for a less complex benchmark model described in
Section 8.3.

Anomaly Scores (T = 0.77) Detection Shallow
min max Median Rates [%] LSTM

Brute-force Web 0.50 0.92 0.80 0.66 0.28
FTP-Patator 0.28 1.00 0.82 0.91 0.38
Heartbleed 0.89 0.89 0.89 1.00 0.0
Infiltration 0.57 0.97 0.75 0.41 0.0
SQL-injection 0.67 1.00 0.84 0.75 2 0.21
SSH-Patator 0.47 0.86 0.80 0.74 0.67
XSS 0.06 0.75 0.20 0.00 0.0

XSS and infiltration attacks cause the victim to execute malicious code locally. Heart-
bleed and SQL injections, on the other hand, exploit vulnerabilities in the communication
protocol to exfiltrate information, and are thus more likely to exhibit unusual traffic pat-
terns, visible as excessively long SQL-connections or completely isolated TCP-80 flows for
SQL-attacks, or unusual sequences of connections initiated by the attacked server during
heartbleed attacks.

Brute-force attacks on the other hand cause longer sequences of incoming connections
to the same port of a server, in this case to port 21 for FTP, 22 for SSH, and 80 for web brute-
force. Especially for port 80, such sequences are not necessarily unusual, which explains
the difference in detection rates between web brute-force, which CBAM does not detect
reliably, and FTP and SSH brute-force, which are detected at a higher rate. Depending
on how much benign traffic the particular sessions are overlayed, the estimated anomaly
scores can vary. Brute-force attacks are not low in volume and spread over many sessions
since we introduced a maximum session length. For these types of attack, CBAM therefore
only has to flag a smaller percentage of malicious sessions than the attack generates to
detect anomalous behaviour.

Figure 7 provides ROC (receiver operating characteristic) curves for each attack type.
As seen, for heartbleed, FTP brute-force, SQL injection, and infiltration attacks, CBAM
starts detecting attacks with close to zero false positives.
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Figure 7. ROC curves for different attack types in the CICIDS-17 dataset.

5.3. LANL Results

We now examine whether CBAM is able to detect actual attacks in real-life traffic from
the LANL-15 dataset.
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As described in Section 4.1, we did not have labels for malicious flows in the LANL-15
data. Instead, attacks are described by narrow intervals surrounding conducted malicious
activity. These intervals inevitably contain benign activity too. However, as the intervals
are narrow and we saw that benign sessions only rarely receive high anomaly scores, a
session with a high anomaly score is likely to be associated with a malicious event. Of the
hosts in the dataset we selected for evaluation, hosts C2519 and C754 are subject to the red
team attacks. The red team activity is spread over three attack intervals A1, A2, and A3.

Sessions in A1 and A2 have similar scores as other benign traffic, with no sessions
receiving remarkably high scores. It is both possible that CBAM did not identify the
malicious traffic, or that the activity in these intervals was purely host-based and did not
generate any traffic.

Interval A3 is more interesting, containing 15 sessions for host C2519 and five sessions
for host C754 that have high anomaly scores, as depicted in Figure 8.

Figure 8. Computed scores for the third attack interval in the LANL data, along with our detec-
tion threshold.

For host C2519, each session with a high anomaly score consists of a single TCP-
flow on port 445, which is usually reserved for a Microsoft SMB service. The anomaly of
these sessions becomes apparent when we compare them to other sessions that contain
TCP-flows on port 445, as depicted in Table 5.

Table 5. Exemplary session with SMB-traffic, host C2519, along with the estimated probability of the
session to end.

Proto SrcAddr Sport DstAddr Dport Prob_End

1 tcp C20473 N345 C2519 445 0.03
2 tcp C2519 445 C20473 N345 0.55

All other sessions contain at least two subsequent flows. The model, in expectation of
other following flows, assigns a very low probability to the sessions ending after a single
flow. Since the analysis of the identified sessions supports their anomaly score, we believe
it is very likely that these events correspond to the conducted malicious activity.

5.4. Runtime Performance

CBAM contains around 35,000 parameters, which is relatively lightweight for deep
learning models. The processing of a session of ten flows takes around 23 ms on our setup,
which is far shorter than the average length of 5.6 s of a session. In a similar comparison,
our setup can process one day of activity (≈15,000 sessions) of a web server in the UGR-16
dataset in 95 s.

Considering these runtime numbers, the necessary rate of recorded flows to over-
whelm our setup would need to exceed 434 flows/second. The largest rate observed for
brute-force attacks in the CICIDS-17 dataset is 23 flows/second.
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6. Benign Traffic and Longterm Stability
6.1. UGR-16 Data

We conducted the main validation of the long-term stability of CBAM on benign traffic
in the UGR-16 dataset, which contains real-world traffic and spans several months. For
this, we split the test data into two disjoint sets that span May–July and August–September
while being separated by one month. We then look at the quantiles and visual distribution
of session scores in each test set and assess whether the score distributions and number of
false positives changed as evidence on concept drift in the traffic. Figure 9 depicts the score
distribution of benign sessions for each dataset in the corresponding test sets.

As visible in the plot, the centre of the score distribution is concentrated very well
in the lower region of the [0, 1] interval, with about 50% of all sessions receiving scores in
the region between 0.1 and 0.25. High scores are rare, with only very small percentages
exceeding our chosen detection threshold of T = 0.76.

This is also reflected by the corresponding table that describes score distributions
for all five hosts in the UGR-16 data. On average, less than 0.15% of all assumed-benign
sessions exceed the threshold, which would translate to fewer than ten false-alerts over the
span of four months on a host with similar activity rates.

Differences in the score distributions for the two test sets are quasi non-existent. The
core of the distributions are very stable, with the score quantiles differences being less than
0.03. There are some differences in the observed false positives, but the available sample
size is not large enough to make any statements on any systematic differences.

A clear banding structure is visible in the plotted distributions, with most session
scores being very concentrated on narrow intervals. These scores represent frequently
reoccurring activities that generate very similar traffic sequences. Figure 9 shows that these
banding structures remain virtually unchanged over several months and carry over from
test set 1 to test set 2.

test set 1 test set 2
50% 90% Pr(>T) 50% 90% Pr(>T))

42.219.153.32 0.21 0.39 0.01% 0.22 0.38 0.01%
42.219.155.189 0.12 0.20 0.01% 0.10 0.21 0.03%
42.219.155.128 0.24 0.44 0.63% 0.19 0.43 0.41%
42.219.155.4 0.13 0.34 0.10% 0.17 0.39 0.23%
42.219.154.44 0.11 0.32 0.13% 0.11 0.28 0.11%

Figure 9. Anomaly score distributions for benign traffic in the UGR-16 data, along with an exemplary
distribution plot for a selected host.
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6.2. CICIDS-17 and LANL-15 Results

We now look at the structure and stability of anomaly scores for benign traffic in
the LANL-15 and CICIDS-17 datasets. The plots and tables in Figure 10 depict the score
distribution of presumably benign sessions in both datasets as well as describe the 50%
and 90% quantiles and false-positive rates for each host. Again, score distributions for both
datasets are well concentrated in the lower region of the [0, 1] interval. For both datasets,
the median lies between 0.06 and and 0.29.

For the LANL-15 data, we observe the same banding structure as in the UGR-15 data,
with most sessions being concentrated in these bands. This banding is, however, far less
pronounced in the CICIDS-17 data, with the majority of session scores here being dispersed
to a greater extent. This suggests that the traffic generation process for this dataset relies
far less on reoccurring rigid activities than we observe in real-life data, which, however,
does not seem to deteriorate the prediction performance of CBAM.

50%q 90%q Pr(>T)
C10047 0.06 0.34 0.053%
C443 0.06 0.33 0.119%
C2519 0.19 0.25 0.064%
C13845 0.38 0.63 0.40%
C486 0.12 0.48 0.16%
C7379 0.09 0.38 0.11%
C754 0.22 0.40 0.08%
C7564 0.06 0.38 0.11%
C9020 0.10 0.43 0.19%
C9676 0.29 0.51 0.19%

50%q 90%q Pr(>T)
10.25 0.25 0.49 0.09%
10.50 0.11 0.50 0.17%
10.51 0.38 0.63 0.42%
10.8 0.25 0.56 0.064%

Figure 10. Anomaly score distributions for benign traffic in the LANL-15 and CICIDS-17 datasets.

6.3. Importance of Training Data Size

Host C13845 in the LANL-15 and host 192.168.10.51 in the CICIDS-17 data are excep-
tions among the above observations, with their median anomaly score each being 0.38 and
their estimated false-positive rates being 0.4% and 0.42%, which significantly exceeds the
average of 0.1%.

When examining host 192.168.10.51, we noticed that it produced less traffic than
other hosts in the CICIDS-17 data. Due to this fact, the training dataset only contains
3096 sessions or 36,989 flows for this host, compared to about 10,000 sessions or 115,000 for
host 192.168.10.25.

For host C13845, we observe a similar picture. Since the host is less active than others
in the dataset, the training data only contain 728 sessions or 2423 flows for this host,
compared to 6013 sessions for the host with the next fewest training sessions.

This suggests that traffic on these hosts is not necessarily harder to predict for CBAM,
but that the lack of sufficient training data prevents CBAM from learning traffic patterns for
these two hosts effectively. To verify this, we examined how many sessions are necessary
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in the training phase to achieve similar false positives at a given anomaly threshold. We
selected the hosts with the most sessions for each dataset and reduced the number of train-
ing sessions from 10,000 to 3000 and 1000. We then trained models with otherwise similar
settings and compared how many additional sessions exceeded the anomaly threshold. For
UGR-16 and LANL-15, we examined whether we could increase the number of training
sessions to 20,000, which was not possible for the CICIDS-17 data.

Figure 11 depicts the corresponding false-positive rates for each host. False-positive
rates for the UGR-16 and the CICIDS-17 hosts are already significantly affected when only
trained on 3000 sessions and increase further when only 1000 host sessions are available
during training. Increasing the number of sessions to 20,000, however, does not seem to
have an effect to further improve the model.

For the host in the LANL-data, this effect is far less pronounced, and false-positives
at 3000 sessions are similar to the ones at 10,000 and 20,000. CBAM is apparently able to
learn flow predictions sufficiently from similar hosts in the dataset without depending on
sessions specifically from the selected host. When we train CBAM exclusively on sessions
from host C2519 without data from other hosts, the same deterioration of model prediction
can be observed.

Figure 11. Influence of number of sessions in training data for benign traffic modelling accuracy.

7. Traffic Analysis
7.1. How Attacks Affect Flow Structures

We now examine in more detail why modelling sequences of flows is effective to
detect access attacks, and how these attacks alter common flow structures. Unfortunately,
the CICIDS-17 dataset—and to our knowledge, all other NID-datasets—do not contain
sufficient ground truth information about included attack traffic, so this analysis is based
on empirical domain-knowledge of similar attacks as well as the traffic itself.

Figure 12 shows a session in the CICIDS-17 data that corresponds to a SQL-injection
attack on host 172.16.0.1, a Ubuntu web server. Depicted below is the order of the flows
along with their direction, the destination port and the size of the flow. Dashed rectangles
indicate the most likely flow size as predicted by CBAM. Below are the likelihoods of
the actually observed flow sizes on a log-scale, which determine the anomaly-score of
the session.

SQL requests from a web-server typically consist of the verification of user credentials
or the retrieval of specific content on a webpage. In an SQL-injection, SQL-code is injected
into a HTTP-request that forces the server to retrieve, modify or forward additional content
from an SQL-database, which can significantly increase the size of the corresponding
SQL-request.
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Figure 12. Flow-sequence in an SQL-injection attack with predicted size likelihood (log-scale).
Arrows indicate flow directions (down = incoming; up = outgoing).

The sequence of flows in Figure 12 overall resembles regular incoming HTTP re-
quests accompanied by corresponding outgoing SQL-requests from the server. However,
Figure 12 clearly shows that the sizes of two of the SQL-connections on port 1433 are
magnitudes larger than predicted by CBAM based on the context of the surrounding flows,
which is likely caused by the injection attack. This results in a very low likelihood of the
observed flow sizes and a high anomaly score for the whole session.

Figure 13 depicts a session that corresponds to an infiltration attack on host 192.168.10.8
in the CICIDS-17 data. Again, the figure depicts the order, direction, size and destination
port of the flows, along with predictions of the most-likely sizes (dashed rectangles) and
the overall likelihood of the actually observed flows.

Figure 13. Flow-sequence in an infiltration attack with port-direction likelihood (log-scale).

This sequence does not resemble the regular behaviour typically encountered on this
host. DNS flows on port 53 are typically followed by HTTP flows on port 80 or 443, to
which the model assigns a very high likelihood after the first four flows. However, this
session contains many excessive consecutive DNS flows, which are interrupted by only
one HTTP flow. Correspondingly, the likelihood for the excessive DNS flows as well as the
overall session likelihood is low.

It is not completely clear how the infiltration attack triggers this abnormal behaviour.
Possibly, the infiltration software is trying to retrieve the current address of a C&C-server
via DNS.
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7.2. Benign Traffic Bands and Cause of False-Positives

Figure 9 displays how benign traffic is clustered into stable bands. We coloured three
of these bands at different levels as well as two of the observed false-positives, which we
are now examining closer. Figure 14 depicts the corresponding dominant session pattern
that is present in each band along with the predicted likelihood for each flow. Again, the
figure depicts the order, direction, size and destination port of the flows, along the overall
likelihood of observed flows. For clarity, we omitted the predictions of the most-likely flow
sizes (dashed rectangles).

The two lower bands, blue and red located at AS = 0.061 and AS = 0.18, represent
simple and frequent HTTP- as well as corresponding NoSQL-requests and SSH activity by
the server. These sessions are therefore predicted with high accuracy.

The green band at AS = 0.45 contains more complex and longer sessions that involve
both incoming and outgoing HTTP-connections as well as TelNet and RDP connections.
The size and order of the flows in these sessions is less deterministic than the activity in
the red and blue bands. This activity is also less frequent, which explains the less accurate
predictions by CBAM. The model, however, still recognises these sessions and is able
to predict flow state and size with a non-vanishing probability, which keeps the overall
session score bounded.

Figure 14. Sessions corresponding to score banding structures in Figure 9, with predicted likelihoods
(log-scale).

The two purple-coloured sessions likely represent server inspection activity, involving
activity on port 0, SSH-sessions and activity on uncommon ports. This type of activity is
very rare on this server and appears less deterministic than other more common activity.
CBAM therefore fails to recognise the session structure and is not able to assign non-
vanishing probabilities to several flows, which decreases the overall session likelihood
and results in a high anomaly-score. We are not aware of how often servers are subject
to inspections and whether this would present a problem in operational deployment.
However, it seems feasible that resulting false-alerts could be linked to this administrative
activity automatically or by a security analyst.
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8. Benefit of Specific Design Steps

A significant part of the conducted work was concerned with improving the given
network design to address insufficient predictions for several traffic phenomena and boost
overall model performance. We now outline several key-steps in the design process and
how they improve performance.

8.1. Bidirectionality for Better Session Context

The usage of bidirectional LSTM layers compared to unidirectional ones significantly
improved the prediction of events at the beginning of a session and consequently boosted
the detection rates within short sessions. Figure 15 demonstrates this in a detailed manner:
displayed is a short session of four flows containing FTP and HTTP activity on host
“42.219.153.32”. On the right side are the predicted likelihoods of FTP and HTTP states for
each flow in the session, with the blue bars corresponding to the predictions by the forward
layer, while the red bars display the backwards direction and the green bars display the
likelihoods after aggregating both predictions.

Figure 15. Common short session and the flow likelihoods predicted by each dirctional model.

Figure 15 demonstrates this in a detailed manner: Displayed is a short session of four
flows containing FTP and HTTP activity on host “42.219.153.32”. On the right side are the
predicted likelihoods of FTP and HTTP states for each flow in the session, with the blue bars
corresponding to predictions by the forward layer, while the red bars display the backwards
direction and the green bars display the likelihoods after aggregating both predictions.

When only relying on the forward direction, for the first two flows, the predicted
likelihoods are less than 0.07 each. The last two flows of the session are, however, well
predicted with high likelihoods over 0.3. Because the session is short, the inaccurate
predictions for the first two flows decrease the overall likelihood of the session to 0.18 and
the corresponding anomaly score to AS = 0.73, which is just below the anomaly threshold,
even though this type of flow sequence is quite common in the UGR-16-dataset. In a similar
manner, this applies to the backward direction with the likelihood of the last two observed
flows being 0.02 and 0.03, respectively.

The cause for these phenomena is that the start of a session can differ significantly
for different activities, and the LSTM-layer needs some context before recognising the
specific activity and make corresponding predictions. In short sessions, the lack of accurate
predictions in the first flows can then dominate the anomaly-score of the whole session.

By adding a bidirectional layer, we are able to provide context for these initial flows
in a session as well by looking at later flows first. The green bars in Figure 15 displays
this: by basing predictions both on the output of the forward- and the backward-layer, the
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bidirectional model is able to predict flow likelihoods significantly better and thus assign
the session a much lower anomaly score.

Table 6 displays how much we could decrease false-positive rates by replacing the
unidirectional LSTM layer with a bidirectional one. Overall, the false-positives decreased
by 61% for the CICIDS-17 dataset, and by 52% for the UGR-16 dataset. More strikingly,
when only looking at short sessions that contain less than five flows, we were able to reduce
false-positives by 94% and 87%, respectively.

Table 6. Average likelihood of first two flows in a session and false-positives for uni- and bidirec-
tional model.

Likelihood of FP Rate [%]Flows 1 and 2
Unidir Bidir Unidir Bidir

UGR-16 All sess. 0.13 0.27 0.31 0.12

sess. < 5 flows 0.19 0.41 1.6 0.09

CICIDS-17 All sess. 0.09 0.29 0.37 0.18

sess. < 5 flows 0.05 0.30 1.7 0.13

8.2. Additional Layers for Complex Session Modelling

The inclusion of a second LSTM-layer as well a subsequent linear layer allows CBAM
to capture more complex behaviour in long sessions as well as remember rare behaviour
more quickly. It also increased the average predicted likelihood for flows overall.

To examine the benefit of the described model depth, we compare it to a more shallow
version that lacks the second LSTM- and linear layer, as depicted in Figure 16, which was
trained under otherwise similar conditions. Here, we examine in detail how the increased
model depth allows better predictions for complex sessions.

Figure 16. Architecture of the shallow LSTM model.

Figure 17 displays two different types of activities, A and B, which are common in
the CICIDS-17 data. The structure in these sessions can be frequently observed with only
minor variations. Consequently, the sessions are predicted well by both the original and
the more shallow model.

However, traffic from two or more activities can sometimes occur simultaneously
and thus become grouped into the same session. Figure 17 shows how the traffic from
activities A and B are overlapping in a session, which makes the structure in the session
more complex to predict.
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The displayed likelihoods show that predictions by the shallow model are accurate for
flows at the beginning of the session, but these deteriorate once they encounter flows from
activity B. Prediction accuracy by the more complex model is also decreasing but remains
on a sufficient level to assign this session an anomaly score of AS = 0.51, compared to
ASS = 0.79 for the shallow model. When looking at the activation in the LSTM-memory
cell, we see that similar neurons as in activity A are activated at the beginning of the session,
which shifts during the course of the session and resembles a more similar activation as in
activity B at the end.

Figure 17. Predictions for two activities in isolated sessions and in a mixed session.

Overall detection rates for this model can be found in Table 4, while score distributions
can be found further down in Table 7.

Table 7. Score distributions for simpler models.

Shallow Markov NDFALSTM MC

Ben. 50%q 0.22 0.61 0.55
Ben. 90%q 0.55 0.81 0.86
Ben. 99%q 0.73 0.89 0.96
Mal. 50%q 0.70 0.60 0.68
Mal. 90%q 0.85 0.83 0.89
Mean AUC 0.86 0.53 0.64
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The improvements achieved by adding these additional layers could suggest that
increasing the number of layers even further will decrease false positive rates even further,
which we discuss in Section 10.

8.3. Comparison with Simpler Models

In this section, we aim at studying whether the higher complexity of an LSTM network
is necessary for the task of detecting contextual network anomalies, or whether simpler
baseline methods can achieve the same results. For comparison purposes, we implemented
a first-order Markov chain (MC) and a non-deterministic finite automata (NDFA) model.
Both methods are widely used in sequence modelling, and have been successfully applied
to security problems [30,31]. In contrast to LSTMs, Markov chains have no memory past
the last event while NDFAs can distinguish between different types of sequences via
state-merging, and give corresponding transition probabilities.

Similar to our LSTM model, Markov Chains and Finite Automata predict state tran-
sition probabilities, which is why we can employ the same anomaly score computation.
However, computational costs increase quadratically with the number of states, and a
separation of state vocabularies is not possible. We restrict both comparison models to the
above-described port-direction states. Models and detection rates were determined on the
CICIDS-17 dataset.

Table 7 shows distribution characteristics of benign and malicious sessions for our
shallow LSTM-model, the Markov chain model and the NDFA. It shows that CBAM
outperforms these baseline methods, but also that the automata performs better than
Markov chains. While the Markov chain is practically not able to make any distinction
between malicious and benign traffic, the automata model shows some, albeit limited,
ability to identify anomalous sessions, mainly for the three types of brute-force attacks.
This order shows the importance of sequence memory for contextual anomaly detection,
and confirms our previous comparison of the suitability of Markov chains and NDFAs for
network intrusion detection [32].

9. Related Work

The application of recurrent neural networks to network intrusion detection has risen
in popularity recently. LSTM models for web attack detection, such as by Yu et al. [33],
improve the detection rates of simpler preceding models such as Song et al. [34]. They
rely on deep packet inspection and are often targeted at protecting selected web-servers
rather than network-wide, due to a lack of computational scalability and increasing traffic
encryption. Methodologically, vocabularies are created from string sequences with well-
known NLP methods, while CBAM provides a new vocabulary-construction method
suitable for traffic metadata.

The majority of LSTM-based metadata approaches rely on labelled attack data for
classification, and do not have the scope of anomaly-based models to detect previously
unseen attacks. A prominent example of this comes from Kim et al. [6], who classify flow
sequences based on 41 numeric input features. Anomaly-based approaches such as ours
mostly rely on iterative one-step-ahead forecasts, with the forecasting error acting as the
anomaly indicator. This was for instance done in GAMPAL by Wakui et al. [35], who used flow
data aggregation as numerical input features, which are computationally easier to process, but
cannot encapsulate high-level information such as the used protocol, port, or direction. These
models are best used for detecting high-volume attacks. Apart from our work, only Radford et
al. [7] created event vocabularies from flow protocols and sizes. We use a more sophisticated
model in terms of stacked recurrent layers and embeddings for more input features, which
results in higher detection rates, as demonstrated in see Section 8. The HCRNNIDS model by
Kahn provides an interesting adaption of hybrid convolutional recurrent networks typically
used in video modelling for intrusion detection [36] with promising results. In comparison to
CBAM, this model is applied to individual flow features rather than flow sequences, and is
trained as a classifier rather than an anomaly-detection model.
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Encoder–decoder models are increasingly used in combination with LSTM networks
to create the embeddings of packet or flow sequences, such as that done by Zhong et al. [37]
for anomaly detection. Zhou et al. [38] used embeddings to facilitate anomaly-detection
that is robust against dataset imbalances. Liu et al. [29] use embeddings to augment and
inflate minority class data samples for the same purpose.

Berman et al. [39] surveyed recent deep-learning techniques for network intrusion
detection as well as other cyber-security applications. They assess whether recurrent
methods are currently state-of-the-art, but do not reach a conclusion as to whether they
perform better than convolutional or generative methods.

Notable work outside of network traffic includes Tiresias [40], an LSTM model for
security event forecasting with great accuracy, and DeepLog [41], an LSTM network to
learn a system’s log patterns (e.g., log key patterns and parameter values) from normal
execution. The design of Tiresias has similarities to ours, but the scope of the model is attack
forecasting rather than intrusion detection and relies on both different input data in the
form of IDS logs as well as different evaluation metrics. DeepLog is combined with a novel
log parser to create a sequence of symbolic log keys, which is then also modelled using
one-step forecasting. The authors achieve good detection results in regulated environments
such as Hadoop with a limited variety of events (e.g., 29 events in Hadoop). Here, CBAM
goes further by being applied to a much more heterogeneous data source and creating a
more than 30 times larger vocabulary. Han et al. [42] recently proposed UNICORN, a deep
graph-net-based anomaly-detection method for provenance-based data that demonstrates
how effective neural anomaly-detection methods are at detecting unknown intrusions.

10. Limitations and Evasion
10.1. Limitations

CBAM is an initial application of short-term contextual modelling on network traffic
that demonstrates the potential of contextual traffic models for intrusion detection. Al-
though we used a relatively simple model with few but carefully selected input features, we
outperformed sophisticated methods while retaining low false positive rates. The detection
rates are to be taken with care as the available access attack data are small, synthetic and
contain only a limited number of attack classes. The detection rates in the cross-evaluation
on a real-world access attack in the LANL-15 data gives us confidence that CBAM’s per-
formance is reproducible in real-world scenarios, but additional data are required for an
ultimate conclusion.

A frequently asked question concerns whether low false-positive rates carry over from
the synthetic background traffic in datasets such as CICIDS-17 to real-world scenarios [43].
We believe that this was sufficiently demonstrated in the long-term evaluation and the
observed score stability on the UGR-16 real-world dataset.

The improvements achieved by adding additional layers could suggest that increasing
the number of layers will even further decrease false positive rates, which is certainly worth
exploring in future work. However, as discussed in Section 6.1, the current main source
for false positives are rare activity events which are not contained in the training data and
are therefore not be recognised by the model. To make a significant reduction in the false
positive rate, we would need to train on datasets spanning more computers or over longer
time periods. We are, however, aware of the difficulties involved in creating datasets for
NIDS evaluation.

10.2. Evasion and Resilience

Evasion tactics and corresponding model resilience against them have been a concern
in the development of NIDS. We specifically focused on short-term sequential anomalies as
they are often an unavoidable by-product of attack sequences, and it is thus very difficult for
an attacker to perturb attack sequences that rely on a specific exploit without pre-existing
control over the victim device or other network devices. We therefore believe that CBAM



Computers 2021, 10, 79 26 of 28

is relatively robust against evasion. However, we identified potential improvements for
future work.

A specific evasion tactic that has been discussed extensively in the context of machine
learning is model poisoning in the training/retraining phase. A great difficulty for the
attacker is the fact that CBAM uses sequences of symbolic events rather than continuous
parameters. The introduction of a gradual shift is therefore not possible in a direct way as
the alteration of individual events would look anomalous straight away. Furthermore, it is
normally not possible for an attacker to alter individual events significantly without pre-
existing control over network devices or specific exploits, i.e., the change of the port or size
would normally cause an error in the communication. It is thinkable that an attacker could
increase the predicted probability of specific events patterns more gradually by overlaying
traffic stemming from third party devices. However, the attacker would either need control
of these devices or the ability to monitor traffic to the victim device in real-time, neither of
which are usually available. We also showed in Section 6 that short-term contextual traffic
patterns remain stable over several months, which means that retraining CBAM is only
necessary at a low rate and attackers will have to wait for a long time to execute successful
model poisoning.

An issue we encountered is the overlay of malicious and benign traffic. Currently,
the existence of known traffic patterns in a session can deplete the overall anomaly score
of a session. A potential evasion tactic could therefore try to conceal an attack behind
benign communication on the victim device, an already common approach for C&C
communication. Possible improvements for this issue are a refined notion of a session that
groups related traffic better, and a better scoring method that identifies smaller anomalous
sequences in an otherwise normal sequence of flows. Additionally, developing more
sophisticated detection methods from the computed scores may boost detection rates.

11. Conclusions

CBAM presents a new and promising angle to anomaly-based intrusion detection
that significantly improves detection rates on the types of network attacks with the lowest
detection rates. We use an anomaly-based approach that does not rely on specific notions
of attack behaviours and is therefore better suited at detecting unknown attacks rather
than regular misuse- or signature-based systems. By assigning contextual probabilities to
network events, CBAM improves the detection rates of low-volume remote access attacks
and outperforms current state-of-the-art anomaly-based models in the detection of several
attacks while retaining significantly lower false positive rates. Furthermore, CBAM retains
low false positive rates for periods stretching several months. Our results provide good
evidence that using contextual anomaly detection may in the future help decrease the
threat of previously unseen vulnerabilities and malware aimed at acquiring unauthorised
access on a host. We specifically focused on short-term anomalies as they are often an
unavoidable by-product of an attack and thus very difficult for an attacker to avoid without
pre-existing control over the victim device or other network devices.
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