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Abstract: Sensors and other Internet of Things (IoT) technologies are increasingly finding applica-

tion in various fields, such as air quality monitoring, weather alerts monitoring, water quality mon-

itoring, healthcare monitoring, etc. IoT sensors continuously generate large volumes of observed 

stream data; therefore, processing requires a special approach. Extracting the contextual infor-

mation essential for situational knowledge from sensor stream data is very difficult, especially when 

processing and interpretation of these data are required in real time. This paper focuses on pro-

cessing and interpreting sensor stream data in real time by integrating different semantic annota-

tions. In this context, a system named IoT Semantic Annotations System (IoTSAS) is developed. 

Furthermore, the performance of the IoTSAS System is presented by testing air quality and weather 

alerts monitoring IoT domains by extending the Open Geospatial Consortium (OGC) standards and 

the Sensor Observations Service (SOS) standards, respectively. The developed system provides in-

formation in real time to citizens about the health implications from air pollution and weather con-

ditions, e.g., blizzard, flurry, etc. 

Keywords: sensor stream data; semantic annotation and interpretation; real-time systems; Internet 

of Things (IoT) 

 

1. Introduction 

The IoT is the network of objects or things containing technologies embedded with 

electronics, software, and sensors in order to enable these objects to be sensitive to the 

environment in which they are placed and to collect observed data and to transmit it to a 

centralized server in the form of streaming data, called sensor stream data [1]. Further-

more, sensors are accessible, discoverable, and controllable via the web, which is enabled 

by the Sensor Web. The standardization for the Sensor Web is defined by the Open Geo-

spatial Consortium (OGC), named Sensor Web Enablement (SWE), which is divided into 

two parts: SWE information model (which includes Observations & Measurements 

(O&M), Transducer Model Language (TransducerML or TML), and Sensor Model Lan-

guage (SensorML)); and SWE service model (which includes Sensor Observations Service 

(SOS), Web Notification Services (WNS), Sensor Alert Service (SAS), and Sensor Planning 

Service (SPS)) [2,3]. 

Complexity, dynamicity, standardization, generalization, and the large volume of 

unstructured sensor data streams are the major challenges for processing in real time. In 

addition, heterogeneous, distributed, and non-standard infrastructure and poor data rep-

resentation have resulted in many sensor data streams being locked inside specific pro-

prietary applications that are inaccessible to the wider community. Therefore, extracting 

contextual information essential for situational knowledge from the sensor stream data is 

very difficult (remains a significant burden for the IoT), especially when processing and 
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interpretation of these data are required in real time [4–7]. Therefore, the objective of this 

research paper is the development of techniques for integration and interpretation of the 

semantic annotations into sensor stream data in real time.  

In this context, adding semantic annotations into sensor stream data is expected to 

provide a better understanding and more meaningful descriptions to enable application 

areas of IoT to become much more intelligent [8]. Thus, what has been performed in this 

research paper is the development of several different annotations that are integrated in 

real time into the sensor stream data (in two IoT domains: air quality monitoring and 

weather alerts) and their interpretation in real time, informing citizens about the health 

implications of air pollution and weather conditions, e.g., blizzard, flurry, etc. 

The main contributions of this paper are as follows: 

1. Developed annotation techniques for real-time integration of semantic into heteroge-

neous sensor stream data within the context of IoT.  

2. Developed techniques to enable interpreting semantically annotated of the context. 

3. An integrated system named IoTSAS that demonstrates the utility of the proposed 

research idea, which is tested in two IoT domains, such as air quality monitoring and 

weather alerts monitoring.  

4. The validity of IoTSAS and the proposed system architecture through the real sensor 

stream data from the World Air Quality Index is proved. Moreover, the performance 

of the system has been tested by 1,000,000 sensors observations at the same time. 

The remainder of the paper is organized as follows. Section 2 introduces the pro-

posed system: an overview of the system architecture, system implementation (including 

six modules of the system, such as real-time processing of integration and interpretation 

of semantics into sensor stream data module, data modeling module, IoT management 

metadata module, weather alerts and air quality monitoring modules, and Application 

Programming Interface (API) for external systems module), system network architecture, 

system security, and a sensor stream data simulator. Section 3 presents system testing 

results focused on system performance testing. Finally, Section 4 summarizes the paper 

and describes future research directions. 

Related Work 

The IoT represents an active scientific research field due to its importance in different 

domain applications. Sensors are one of the most important components of the IoT. Raw 

sensor stream data are useless unless properly annotated. Therefore, by adding semantic 

annotations with concept definitions from ontologies, the interpretations and understand-

ing of sensor stream data are possible [8]. Sensor stream data that are stored in the repos-

itory (data store) as static data and then integrated with semantics are defined as non-real-

time semantic annotation, while the real-time integration of sensor data as dynamic data 

with semantics is defined as real-time semantic annotation [1]. Our IoTSAS system works 

based on real-time semantic annotation. 

Based on several literature reviews [1,9–11] for semantic sensor technologies in the 

IoT, there are still gaps in extracting new knowledge from sensor stream data, especially 

in the annotation of IoT heterogeneous sensor stream data with semantic in real time, 

which is the main objective of this paper. 

In the following, some works are presented that address the issue of IoT semantics. 

In paper [12], the integrations and analyzation of multiple heterogeneous streams of 

sensor data are explained with the goal of creating meaningful abstractions or features. 

They have implemented a framework, based on Semantic Web technologies, that creates 

annotations (e.g., blizzard, flurry, rain shower, and rain storm) from sensor steam data in 

real time. In this paper, the SPARQL rule is used to integrate semantic annotations into 

sensor stream data, while Spark Streaming is used for this purpose in our paper, which 

has shown better results, as observed in Section 3 “System Testing Results”. Furthermore, 

in our research paper and the annotations considered in the paper [12] also include other 
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annotations from air quality monitoring of the IoT domain, such as AQI index, air pollu-

tion level, and health implications, and their interpretation is performed in real time.  

In paper [13], a generic window-based IoT streaming data integration (ISDI) ap-

proach is proposed to deal with IoT data in different formats and subsequently introduced 

the algorithms to integrate IoT streaming data obtained from multiple sources. The ISDI 

is developed in Java on NetBeans IDE and is used as a time-based library, named Joda-

Time. Unlike our approach, no stream processing system (such as Spark Streaming, Storm, 

Kafka, etc.) to support real-time and near real-time analytics for the streaming data sets is 

used. Therefore, our system has shown better performance, as presented in the Section 3. 

“System Testing Results”. 

In paper [14], an IoT-Stream system for semantically annotating streams is presented. 

IoT-Stream is a lightweight semantic model, fully compatible and as an extension of the 

well-known SSN ontology (Semantic Sensor Network ontology), for stream annotations 

which facilitates the implementation of IoT applications dealing with stream sensory data. 

In paper [15], a dynamic dashboarding platform for continuous monitoring of indus-

trial fleets tackled both aforementioned problems by adopting Semantic Web of Things 

technologies. Aggregations, visualizations, and sensors can be discovered automatically, 

since they are provided as Representational State Transfer (RESTful) web services on a 

Web Thing Model compliant gateway. The gateway is designed to provide semantic an-

notations of the Web Things, which describes what their abilities are. 

In paper [16], the applicability of semantic technologies in the IoT is presented for ad 

hoc integration and processing of heterogeneous data sources for static and streaming 

data, providing more flexible and efficient processing techniques. The conceptual archi-

tecture is based on the OpenIoT framework, extended with continuous query processing 

and IoT intelligence. In paper [17], a new Purpose-Oriented Situation-Aware Access Con-

trol (PO-SAAC) framework for software services is presented. The practical applicability 

of the PO-SAAC framework is demonstrated by the implementation of a software in the 

healthcare domain. 

2. Proposed System 

2.1. System Architecture—An Overview 

In Figure 1, an overview of the system architecture for real-time integration and in-

terpretation of semantics into heterogeneous sensor stream data within the context of the 

Internet of Things is presented. The proposed real-time semantic annotation system uti-

lizes Spark Streaming, Apache Kafka, Apache Cassandra database, and SOS O&M stand-

ards. 

The heterogeneous sensor stream data forming the IoT-based sensor device is wire-

lessly transmitted to serve as the “producer” for the Kafka server. The “producer” client 

publishes streams of data to Kafka “topics” distributed across one or more cluster 

nodes/servers called “brokers”. The published streams of data from Kafka are then pro-

cessed by Apache Spark Streaming in parallel and real time. 

The Kafka server is utilized to receive various formats of sensor data streams (e.g., 

text, binary, JavaScript Object Notation (JSON), Extensible Markup Language (XML), etc.) 

and to transform them in a particular format that will be processed by Spark Streaming. 

The transformed sensor data stream will relay real-time detection process of outliers, 

which is implemented inside Spark Streaming. A data stream object is considered an out-

lier if it does not conform to the expected behavior, which corresponds to either noise or 

anomaly. Outliers can arise due to different reasons such as mechanical faults, other 

changes in the system, fraudulent behavior, instrument error, human error, or natural de-

viation. 
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Figure 1. An overview of the system architecture. 

The sensor data streams that are not identified as outliers for further semantic anno-

tations processing pass to the Real-Time Semantic Annotation (RTSA) component, which is 

developed inside Spark Streaming. Next, the interpretation of the semantic annotations is 

performed by the other component called Real-Time Interpreting Semantically Annotated 

(RTISA), which additionally is developed inside Sparking Streaming. 

The explanation of these two components is as follows: 

• Real-Time Semantic Annotation (RTSA) enables real-time integration of semantics into 

heterogeneous sensor stream data within the context of the Internet of Things. RTSA 

uses sensor metadata, archival data streams, and mining data streams for adding se-

mantic annotations with concept definitions from ontologies or other semantic 

sources, which allows the understanding of senor data and metadata elements. The 

semantic annotations are implemented into SOS O&M by using stakes, such as Ex-

ternal XML Linking Language (XLink) or Embedded to add annotations in XML files. 

External annotations can point to extra sources of information (e.g., a file) or to Uni-

form Resource Name (URN), while Embedded annotations are only a single value-

scalar of semantic annotation. 

• Real-Time Interpreting Semantically Annotated (RTISA) enables real-time interpretation 

of semantics from heterogeneous sensor observation data and sensor metadata 

within the context of the Internet of Things. In other words, it executes and interprets 

stake annotated expressions, such as External (XLink) or Embedded. 

The enriched sensor data stream with the semantic annotations results are stored in 

the database (in our case Cassandra database) and are displayed in IoT Real-Time Moni-

toring Systems. It is worth mentioning that Spark Streaming will process sensor data 

stream in the format of OGC standards such as SWE, respectively, version 2.0 of the SOS 

standard (SOS 2.0 relies on the OGC O&M) to encode semantic annotations and data gath-

ered by sensors [2]. 

Furthermore, as shown in Figure 1, our system architecture supports ad hoc requests 

(queries executed ad hoc from users). An ad hoc request is a question asked once about 

the current state of a stream or streams. 

The real-time processing aspects that characterize the IoTSAS system involves a con-

tinual input of heterogeneous sensor stream data, processed with semantic annotations and 

interpretations, and output of data in format of SOS O&M standards and served to IoT real-

time monitoring systems, with very short latency requirements for processing.  



Computers 2021, 10, 127 5 of 24 
 

2.2. Implementation 

To validate the proposed model and techniques for integration and interpretation of 

the semantic annotation in real time into heterogeneous sensor observation data and 

metadata with context in the IoT, a prototype system named IoT Semantic Annotations 

System (IoTSAS) is implemented, which contains modules, as shown in Figure 2: real-time 

processing of integration semantics into sensor stream data module, metadata manage-

ment module, air quality and weather alerts monitoring module, data modelling module, 

and APIs module (for external systems). 

 

Figure 2. IoTSAS (IoT Semantic Annotations System) modules. 

The real-time processing of integration and interpretation of semantics into sensor 

stream data is the core module that is developed in Spark Streaming. Since the Spark 

Streaming programs can be written in one of the following languages, such as Java, Scala, 

or Python (introduced in Spark 1.2), we have chosen the Java language using Eclipse. As 

shown in Figure 3a, the Java packages of this module include the following: 

• iot.core: Input IoT Data Stream, IoT Data Stream Decoder, IoT Domain, Query Pro-

cessor, and Real Time Outlier Detection; 

• iot.data.annotations.plugins: Air Quality Annotations and Weather Alerts Annota-

tions; 

• iot.data.repository: Archival IoT Data Stream Annotation Repository, Archival IoT 

Data Stream Repository, Cassandra Utils, Cassandra Connector, Processor IoT Data 

Stream Repository, Working IoT Data Stream Annotation Repository, and Working 

IoT Data Stream Repository; 

• iot.datamodeling: Data Modeling, Create Keyspace, Create Processor IoT Data 

Streams Model, Create Working IoT Data Streams Model, Create Working IoT Data 

Stream Annotations Model, Create Archival IoT Data Streams Model, Create Ar-

chival IoT Data Stream Annotations Model, and Create Invalid IoT Data Stream; 

• iot.sos: Get Observation Response, and Register Sensor; 

• iot.spark.entity: Archival IoT Data Stream, Archival IoT Data Stream Annotation, In-

valid IoT Data Stream, IoT Annotation, IoT Data Stream, IoT Sensing Node Device, 

IoT Sensor, Ontology Classes, Ontology Source, Parameters, Processor IoT Data 

Stream, Sensing Node, Sensing Node Device, Working IoT Data Stream, and Work-

ing IoT Data Stream Annotation; 

• iot.spark.processor: IoT Spark Processor, RTISAE Engine, and RTSAE Engine. 
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(a) (b) 

Figure 3. IoTSAS Solution workspaces: (a) Java packages of core module; and (b) .Net C# projects 

of other modules. 

The development of other modules is performed in .Net Core C# based on the per-

formance [18] and our long experience in .Net C# technology. As shown in Figure 3.b, the 

.NET C# contains the following solutions: 

• IoTSAS.AirQualityAndWeatherAlertsMonitoring; 

• IoTSAS.API; 

• IoTSAS.APIExternalSystems; 

• IoTSAS.Core; 

• IoTSAS.MetadataManagment; 

• IoTSAS.SensorSimulator. 

In the following, each of the modules are described. 

2.2.1. Real-Time Processing of Integration and Interpretation of Semantics into Sensor 

Stream Data Module 

Real-time processing of integration and interpretation semantics into sensor stream 

data module is the core component that provides the functionality of the system. As men-

tion in Section 2.1 “System Architecture”, it utilizes Apache Kafka, Spark Streaming, 

Apache Casandra database, and SOS O&M standards. 

Figure 4 illustrates the high-level view of architectural components of the system.  

The heterogeneous sensors observed data are sent in different formats in Apache Kafka. 

In Apache Kafka, a Kafka Producer is implemented that consumes different format of 

sensor data and converts them into a suitable format and then publishes them to Kafka 

topics. A Kafka topic is identified by its name, which is part of a global namespace of that 

Kafka cluster. A topic in Kafka represents a queue or a logical collection of messages writ-

ten by one more Kafka producers and read by one or more Kafka consumers. Kafka con-

verts all messages into byte arrays. The communications between the producers, consum-

ers, and clusters in Kafka use the Transmission Control Protocol (TCP). A Kafka broker 

contains one or more topics that are in turn divided into one or more partitions.  

Kafka cluster transformed sensor data stream transmitted to Spark Streaming for fur-

ther processing. Spark Streaming divides the sensor data stream into batches of 50 milli-

seconds called Discretized Stream (DStreams), which internally is a sequence of Resilient 

Distributed Datasets (RDDs), one for each batch interval. 
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Figure 4. Real-time processing of integration and interpretation of semantics into sensor stream data. 

Spark Streaming divides the sensor data stream into batches of 50 milliseconds called 

DStreams, which internally is a sequence of RDDs, one for each batch interval. Each RDD 

contains the sensor stream data received during the batch interval. The sensor stream data 

contained in RDD are partitioned, and operations are performed in parallel on the data 

cashed in memory by providing high performance at scale in partitioning and minimizing 

disk I/O. The RDD sensor stream data by using the filter function are filtered to remove 

outliers. Then, by using the transform function, RDD sensor stream data are transformed 

to WorkingIoTDataStream by adding an identifier that uniquely identifies the observation 

(sensor stream data) and an entry timestamp that notes that the sensor stream data have 

arrived at the Stream Processor. After that, RDDs are mapped to the IoT domain (air qual-

ity monitoring or water quality monitoring) and by using developed plugins through the 

RTSA (Real-Time Semantic Annotation) component, the RDD sensor stream data are en-

riched with semantic annotations from Web Ontology Language (OWL) source. Then, by 

using RTISA (Real-Time Interpreting Semantically Annotated), the components are exe-

cuted, and stake annotated expressions are interpreted. Finally, by using the transform 

function, RDDs annotated with semantic are transformed to SOS O&M standards and 

serve IoT real-time monitoring systems and are stored in the Cassandra database, as 

shown in Figure 4. 

A SOS O&M observation comprises zero or multiple OM_Observation entries, and 

each store an instance of an observation. In our solution, a complex observation SOS O&M 

is implemented. In the following, common complex observation properties are presented: 

• gml:identifier (mandatory): This identifies or refers to a specific observation. In our 

case, it is a generated by the Universally Unique Identifier (UUID), e.g., 69822a61-

5490-47b4-aaf4-b282b6df7824), of observation; 

• om:phenomenonTime (mandatory): This describes the time instant or time period for 

which the observation contains sensor data; 
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• om:resultTime (mandatory): This provides the time when the result became available 

(often, this is identical to the phenomenonTime); 

• om:procedure (mandatory): The identifier of the sensing node instance that has gen-

erated the observation; 

• om:observedProperty (mandatory): The IoT domain of phenomenon that was ob-

served; 

• om:featureOfInterest (mandatory): An identifier of the geometric feature (e.g., sensor 

station) to which the observation is associated; 

• om:result (mandatory): The observed values. The type of the result is swe:Data-

RecordPropertyType. 

Figure 5 shows the complex observation SOS O&M standard document, which con-

tains two extra elements, that we have developed: 

 

Figure 5. Complex observation SOS O&M standard document (with semantic annotations and 

interpretations). 
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• swe:sem-annotations: This element contains one or more annotation empty elements, 

which can be embedded or xlink. The annotation elements are created by Real-Time 

Semantic Annotation (RTSA) component; 

• swe:sem-interpretations: This element contains the interpretation of sensor observed 

data. The interpreted information is created by the Real-Time Interpreting Semantically 

Annotated (RTISA) component. 

2.2.2. Data Model Implementation 

The data model is developed in Apache Cassandra database and contains the following 

components: Processor Data Streams (stores a summary data of each sensor for Stream Pro-

cessor operations), Working Data Streams (a fixed sliding window that stores 15 last meas-

ured values for each sensor), Working Data Stream Annotations (stores semantic annotations 

of Working Data Streams observations data), Archival Data Streams (archives sensor stream 

data for generating reports and different statistics), Archival Data Stream Annotations (ar-

chives semantic annotations of sensor stream data), Invalid Data Streams (stores invalid 

sensor stream data that are classified as outlier), and WSNs Metadata (known as static data 

that store data and metadata about sensors, sensors types, sensing nodes, gateway nodes, 

central monitoring nodes, etc.).  

Data modeling diagram of each component is presented in Figure 6. Each component 

has its attributes, methods, and events. In order to explain more clearly how the data of 

the Archival Data Stream, Archival Data Stream Annotations, and Process Data Streams are 

stored in the Apache Cassandra database, their details are presented in Figure 7. 

 

Figure 6. Diagram of data modeling implementation. 
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Figure 7. Data of the Archival Data Streams, Archival Data Stream Annotations, and Process Data Streams. 

2.2.3. IoT Management Metadata Module 

The IoT management metadata module provides the management of data called 

static data, such as the following: 

• Devices metadata; 

• Nodes metadata;  

• Phenomenon (parameters) metadata. 

Devices metadata include data about device types, such as the following: sensor, serv-

ers, clusters, microcontrollers, cables, etc., and data about devices, as shown in Figure 8, 

such as name of device, a description, serial number of device, sensor ID (when device 

type is sensor), manufacturer, status of devices (active or passive), and parameters which 

the device measures, such as CO (ppm), Humidity (%), O3 (ppb), NO2 (ppb), Pressure 

(mb), PM10 (µg/m3), PM2.5 (µg/m3), SO2 (ppb), etc. 

Nodes metadata include data about WSN nodes, such as the following: 

• Sensing node types such as static sensor nodes to perform monitoring missions in the 

region of interest or mobile sensor nodes to perform monitoring in different locations;  

• Deployment sites include the name of deployment site, description, and municipality 

in which the sensors are deployed; 

• Sensing nodes include data of sensing nodes, as shown in Figure 9, such as the name 

of sensing node, description, RIFD, node type, municipality, deployment site, data 

rate (in minutes), node status as either active or passive, geographical position, and 

to which gateway node they sent data; 

• Gateway nodes include data such as name of gateway node, description, municipality, 

deployment site, status node, and geographical position and to which central moni-

toring node they sent data; 

• Central monitoring nodes include data such as the name of central monitoring node, 

description, status node, and geographical position; 

Phenomenon metadata include data about phenomenon, such as the following: 

• Parameter types include data about parameter types: hydro morphological, physico-

chemical, biological, specific synthetic, specific non synthetic, air quality, etc.; 
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Figure 8. IoTSAS Metadata Management module—adding new device. 

 

Figure 9. IoTSAS Metadata Management module—adding new sensing node. 
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• Sub parameter types include data about sub parameter types: hydrological regime, 

river continuity, morphological conditions, thermal conditions, oxygenation condi-

tions, salinity, acidification status, nutrient conditions, invertebrate fauna, fish, phy-

tobenthos, macrophytes, phytoplankton, air pollution, etc.; 

• Parameters includes data such as the following: name of parameter (e.g., Carbon Mon-

oxide (CO), Humidity, Ozone (O3), Nitrogen Dioxide (NO2), Pressure (p), pm10, 

pm25, Sulphur Dioxide (SO2), Temperature, Wind, Water Gauge, etc.), unit of phe-

nomenon (e.g., ppm, %, ppb, mb, µg/m3, °C, m/s, mm, etc.), and range of values. 

2.2.4. Weather Alerts and Air Quality Monitoring 

An IoT real-time air quality and weather alerts monitoring system is developed to 

visualize sensor stream data and their semantic annotations based on web platform. Sen-

sor data of Hydrometeorological Institute of Kosovo (HMIK), Pristina US Consulate, 

Rilindja-Pristina, and Peje are used through the World Air Quality Index API (AQI API). 

The AQI API can be used for advanced programmatic integration, such as the following: 

access to more than 11,000 station-level and 1000 city-level data, station name and coordi-

nates, search station by name, geo-location query based on latitude/longitude, individual 

Air Quality Index (AQI) for all pollutants, current weather conditions, etc. [19]. 

Input Different Format Sensor Stream Data 

The system receives raw sensor stream data from AQI API in JSON format, as pre-

sented in Figure 10, which supports measuring in real time the following parameters: 

PM10 (pm10), Nitrogen Dioxyde (no2), PM25 (pm25), Carbon Monoxide (co), Humidity 

(h), Sulphur Dioxide (so2), Ozone (o3), Pressure (p), Temperature (t), Water Gauge (wg), 

and Wind (w). JSON data contains also attributes such as the following: data (station data: 

idx—unique ID for the city monitoring station; aqi—real time air quality information; 

time—measurement time information; s—local measurement time; and tz—station time 

zone); city (information about the monitoring station: name—name of the monitoring sta-

tion; geo—latitude/longitude of the monitoring station; and url—url for the attribution 

link); attributions (EPA Attribution for the station); and iaqi (measurement time infor-

mation: pm25—individual AQI for the PM2.5; v—individual AQL for the PM2.5). 

Data received by sensors every 60 minutes, through AQI API, are represented in cor-

responding numerical formats, e.g., in -3.8 (°C), for temperature parameter. 

 

Figure 10. Input sensor stream data—JSON format. 
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Integration and Interpretation of Semantic Annotations to the Sensor Stream Data 

In the developed system, different semantic annotations for sensor stream data are 

developed, such as the following: 

#Blizzard; 

#Flurry; 

#Rain_Storm; 

#Rain_Shower; 

#AQI_Index; 

#Air_Pollution_Level; 

#Health_Implications. 

#Blizzard annotation detecting a Blizzard requires the WindSpeed to be more than 

15.6 meter/second (high), visibility to be less than 400 meter (low), and snow precipitation 

for at least 4 hours, as presented Equation 1. 

BLIZZARD =  

 WindSpeed(a) ≥ 15.6 m/s (High) ꓥ Duration(a) > 4hours ꓥ 

 Precipitation(b) = Snow ꓥ Duration(b) > 4hours ꓥ 

 Visibility(c) < 400 meter (Low) ꓥ  Duration(c) > 4hours 

(1) 

#Flurry annotation: detecting a Flurry requires the WindSpeed to be less than 15.6  

meter/second (low), visibility to be less than 400 meter (low), and snow precipitation, for 

at least 4 hours, as presented Equation 2. 

FLURRY =  

WindSpeed(a) < 15.6 m/s (Low) ꓥ Duration(a) > 4hours ꓥ 

Precipitation (b) = Snow ꓥ Duration(a) > 4hours ꓥ 

Visibility(c) < 400 meter (Low) ꓥ  Duration(c) > 4hours 

(2) 

#Rain_Storm annotation: detecting a RainStorm requires the WindSpeed to be more 

than 15.6 meter/second (high), temperature greater than 0 °C, and rain precipitation, as 

presented Equation 3. 

RAIN STORM = 

WindSpeed(a) ≥ 15.6 m/s (High) ꓥ 

Precipitation(b) = Rain ꓥ 

Temperature (c) > 0 °C 

(3) 

#Rain_Shower annotation: detecting a RainShower requires the WindSpeed to be less 

than 15.6 meter/second (low), temperature greater than 0 °C and rain precipitation, as 

presented Equation 4. 

RAIN SHOWER =   

WindSpeed(a) < 15.6 m/s (Low) ꓥ 

Precipitation (b) = Rain ꓥ  

Temperature (c) > 0 °C 

(4) 

#AQI_Index annotation is an index for reporting daily air quality and informs us on 

how clean the air or how polluted the air is. The United States Environmental Protection 

Agency (EPA ) calculates the AQI for five major air pollutants regulated by the Clean Air 

Act: ground-level ozone, particle pollution (also known as particulate matter), carbon 

monoxide, sulfur dioxide, and nitrogen dioxide. The AQI range values is from 0 to 500. 
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According to EPA, the higher the AQI value, the greater the level of air pollution and the 

greater the health center (take the maximum of all individual AQI), as presented Equation 

5. 

AQI = max(AQIPM2.5, AQIPM10, AQIO3, ...) (5) 

#Air_Pollution_Level annotation is based on the AQI value. It is divided into six “Air 

Quality Index Levels of Health Concern” categories: Good (AQI is 0 to 50), Moderate (AQI is 

51 to 100), Unhealthy for Sensitive Groups (101 to 150), Unhealthy (AQI is 151 to 200), Very 

Unhealthy (AQI is 201 to 300), and Hazardous (AQI is 301 to 500). 

#Health_Implications annotation: Each of six categories described above corresponds 

to a different level of health concert. The #Health Implications annotation denotes what they 

mean, for example, the ”Unhealthy for Sensitive Groups” category means the following: 

“Although the general public is not likely to be affected at this AQI range, people with 

lung disease, older adults, and children are at a greater risk from exposure to ozone, 

whereas persons with heart and lung disease, older adults, and children are at greater risk 

from the presence of particles in the air.” The ”Moderate” category means the following: 

“Air quality is acceptable; however, for some pollutants there may be a moderate health 

concern for a very small number of people who are unusually sensitive to air pollution.”  

The above described annotations are developed into ontology named IoT semantic 

annotations ontology. Figure 11a presents air quality monitoring annotations, while Figure 

11b presents weather alerts monitoring. It is worth mentioning that for execution of the 

Simple Protocol and RDF Query Language (SPARQL) query over the IoT semantic annota-

tions ontology, the Java library called ‘Jena Ontology API’ has been used. 

  

(a) (b) 

Figure 11. IoT semantic annotations ontology for the following: (a) air quality monitoring and (b) 

weather alerts monitoring. 
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After the real-time integration of semantics into heterogeneous sensor stream data 

with context in the IoT, the real-time interpretation of the sensor stream data is performed 

through the RTISA (Real-Time Interpreting Semantically Annotated) component in order 

to provide better understanding and to infer new knowledge from the sensor stream data. 

In this study, by using the integrated semantic annotated stakes, the following interpreta-

tion pattern is developed: 
Now (@[#timestamp]) in location [#location(lat, long)] is detected [#AQI_index] with AQ index 

with primary pollutant [#MaxParam] [#MaxParamUnit] and [#Air_Pollution_Level] air pollution 

level with health implications [#Health_Implications]. Moreover, a [#HigherLevelFeature] higher 

level feature is happening, which manifests [#HigherLevelFeature_Indicates]. 

Outputs for Users 

To display the heterogeneous sensor stream data and their semantic annotations and 

interpretation, a real time IoT application in the ASP.NET Core Model View Controller 

(MVC) is developed. To read data from Apache Casandra database, the “DataStax C# for 

Apache Cassandra” is used, while Leaflet is used to display the data in the map. As shown 

in Figures 12a,b and 13, the users can observe the quality of air pollution for the chosen 

sensing node, including the latest measurement values obtained for that sensing node, 

such as PM2.5, PM10, O3, NO2, SO2, CO, Temperature, Pressure, Humidity, Wind, and 

Water Gauge; semantic annotations, such as #AQI Index, #Air Pollution Level, #Health 

Implications, #Higher Level Feature; and the interpretations of the semantic annotations, 

such as the following, are developed. 
Now (@2021-08-22 13:18:17) in location 'Pristina US Consulate (42.648872, 21.137121)' is detected 

'58' AQ index with primary pollutant 'PM2.5 µg/m3' and 'Moderate' air pollution level with health 

implications 'Air quality is acceptable; however, for some pollutants there may be a moderate 

health concern for a very small number of people who are unusually sensitive to air pollution'. 

Moreover, a 'Blizzard' higher level feature is happening which manifests 'A hazardous weather 

statement, which indicates a severe weather condition characterized by reduced visibility from fall-

ing and/or blowing snow and strong winds that may be accompanied by low temperatures. Detect-

ing a Blizzard requires the Wind Speed to be more than 15.6 meter/second (high), visibility to be 

less than 400 meters (low) and snow precipitation, for at least 4 hours.'  

  

(a) (b) 

Figure 12. System outputs: (a) monitoring air quality pollution; (b) map view. 
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Figure 13. System outputs: Real-time integration and interpretation of semantic annotations. 

2.2.5. APIs for External Systems 

To share sensor metadata and sensor observed data (with semantic annotations) with 

IoT real-time monitoring external systems, an ASP.NET Web API, named IoTSAS.API, is 

developed. ASP.NET Web API is an extensible framework for building Hypertext Trans-

fer Protocol (HTTP) services than can be accessed and consumed from any client including 

platforms such as desktop applications, console applications, web applications, mobile 

devices applications, etc. It is works similarly to the ASP.NET MVC web application ex-

cept that is sends data (in JSON, XML, Binary Javascript Object Notation (BSON), or other 

format) as a response instead of html view. 

2.3. System Network Architecture 

The overall design of the system network architecture is shown in Figure 14, which 

includes the following: 

• Apache Kafka Server: Apache Kafka operates and receives streaming observed data 

sent by sensors; 

• Spark Streaming Cluster Server: core system (developed in Apache Spark Streaming) 

is installed; 

• Apache Cassandra database Server: all data are stored; 

• IoT Real-Time Web Application Server. These are hosted in Internet Information Ser-

vices (IIS) modules such as the following: weather alerts monitoring module, air 

quality monitoring module, and metadata management module; 

• Web Services Server: these are deployed APIs for external systems. 



Computers 2021, 10, 127 17 of 24 
 

 

Figure 14. Network architecture of IoTSAS. 

2.4. IoTSAS System Security 

As for the security aspect of the IoTSAS system, in addition to the sensor metadata 

that are registered in the Metadata Management Module, each sensor is assigned a secret 

code. When sending the observed data, the sensor also sends this secret code as infor-

mation to be identified.  

To provide security in data encryption when communicating modules in networks, 

the Secure Sockets Layer (SSL) protocol is used. Users' access to Metadata management 

module, weather alerts monitoring modules, and air quality monitoring modules is pro-

vided by using credentials such as username and password. The password is encrypted 

by using the .NET System.Security.Cryptography.SHA512 library, respectively, and the 

Hash Based Message Authentication Code Secure Hashing Algorithm 512 (HMAC-

SHA512) hash function. A salt is added to the hashing process to force their uniqueness 

and to increase password complexity. To prevent Structured Query Language (SQL) in-

jection attacks, the Language Integrated Query (LINQ) to Entities .Net 5.0 is used because 

LINQ is not vulnerable to SQL injection. 

2.5. Sensor Stream Data Simulator 

To test the performance of the IoTSAS system, simulating a huge amount of sensor 

stream data was necessary. Therefore, to accomplish this, a sensor stream data simulator, 

is developed, as shown in Figure 15. The simulator generates pseudo-random sensor 

stream data by using Random C# class (https://docs.microsoft.com/en-us/dotnet/api/sys-

tem.random?view=net-5.0, accessed on 26 September 2021) in certain ranges that are de-

fined for each parameter (phenomenon) in the metadata module. For example, the range 

of possible temperature values generated by the simulator is from −25 °C to 45 °C, accord-

ing to [20]. As shown in Figure 15, the simulator can be configured to generate data at 

different intervals of milliseconds, seconds, or minutes. Moreover, specific sensor nodes 

can be selected to generate sensor stream data and higher level features, e.g., Blizzard can 

be selected to generate data from sensors that cause this phenomenon. The simulator is 

able to generate sensor stream data in batches and can send them for processing in the 

IoTSAS system. 
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Figure 15. Sensor stream data simulator. 

3. System Testing Results 

The testing of six modules, such as (a) real-time processing of integration semantics 

into sensor stream data module; (b) metadata management module; (c) air quality and (d) 

weather alerts monitoring module; (e) data modelling module; and (f) APIs module (for 

external systems) is performed on five testing phases. 

Unit test is based exactly on the system’s specification and has covered the results of 

errors made during the coding phase.  

Integration test is where the complete integration of the six modules is tested based 

on a prepared test scenario. Furthermore, Data Flow testing is performed in this phase, 

including each step-by-step process. 

System test: As in the previous phase, all modules are ensured to work together with-

out any errors. Furthermore, at this point the system is tested on whether it meets all the 

requirements and the security issues of the application, such as security level (encryption 

of modules communications, SQL Injections, and XSS—Cross Site Scripting), data confi-

dentiality, access controls, and immunity. 

Acceptance test (alpha and beta): in this phase, the system is tested with real data from 

sensors of the Hydrometeorological Institute of Kosovo (HMIK), Pristina US Consulate, 

Rilindja-Pristina, and Peje, as mentioned in Section 2.3. 

Performance testing: By using the simulator (described in Section 2.5), it was possible 

to test the performance of the IoTSAS system. Testing is performed in network architec-

ture, as shown in Figure 14. The technical specifications of the hardware environment, in 

which the test is performed, are presented in Table 1. 
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Table 1. Technical specifications of the hardware environment. 

Server Processor RAM Memory OS 

Spark Streaming 

Cluster Server 

Intel® Xeon® CPU x5570 

@ 2.93GHz (4 CPUs), 

~2.9GHz 

32GB 

Windows Server 2016 

Datacenter 64-bit (10.0, 

Build 14393) 

Apache Cassandra 

database Server 

Intel® Xeon® CPU x5570 

@ 2.93GHz (4 CPUs), 

~2.9GHz 

32GB 

Windows Server 2016 

Datacenter 64-bit (10.0, 

Build 14393) 

Apache Kafka Server 

Intel® Core™ i5-4200M 

CPU @ 2.50GHz (4 

CPUs), ~2.5GHz 

8GB 

Windows 10 Pro 64-bit 

(10.0, Build 19042) 

IoT Real-Time Web 

Application Server 

Intel® Core™ 2 Duo CPU 

e7500 @ 2.93GHz (2 

CPUs), ~2.9GHz 

16GB 

Windows Server 2019 

Datacenter 64-bit(10.0, 

Build 17763) 

Web Services Server 

Intel® Xeon® CPU E5-

2650 v4 @ 2.20GHz (4 

CPUs), ~2.2GHz 

6GB 

Windows Server 2012 

Standard 64-bit (6.3, 

Build 9600) 

Table 2 shows the results of the IoTSAS system performance test. The tests are per-

formed for different generated sensors observations data and are repeated three times to 

obtain more accurate averages considering the current load of the processor, memory in 

use by active processes, network, etc. 

Table 2. Results of the IoTSAS system performance test. 

No. of Observa-

tions 

Test 1  

(Second) 

Test 2  

(Second) 

Test 3  

(Second) 

AVG  

(Second) 

100 0.122 0.118 0.128 0.123 

500 0.184 0.154 0.207 0.182 

1000 0.287 0.281 0.269 0.279 

5000 0.901 0.909 0.897 0.902 

10,000 1.417 1.372 1.329 1.373 

20,000 2.587 2.558 2.807 2.65 

50,000 6.634 6.698 6.511 6.61 

100,000 14.257 14.443 14.257 14.32 

150,000 21.376 21.317 21.749 21.48 

250,000 35.245 36.131 34.508 35.29 

500,000 67.934 66.927 68.029 67.63 

1,000,000 141.07 139.33 134.18 138.20 

Figure 16a presents the test performance of 100 to 10,000 generated sensors observa-

tion data. The average time required for real-time processing of 100 observations by an-

notating with semantics and interpreting them is 0.123 seconds, while the average time 

required for processing of 10,000 observations is 1.37 seconds. 
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(a) (b) 

Figure 16. Test performance of (a) 100–10,000 sensors observations data and (b) 20,000–1,000,000 sensors observations 

data. 

In Figure 16b, the volume testing is presented, which determines the efficiency of the 

IoTSAS system performance with large volume of generated sensors observations data. 

The average time required for real-time processing of 500,000 observations by annotating 

with semantics and interpreting them is 67.63 s, while the average time required for pro-

cessing of 1,000,000 observations is 138 s. 

Based on the World Air Quality Index database, the statistics of monitoring stations 

in different European countries by area have been obtained and analyzed. As shown in 

Table 3, there are a total of 2,510 monitoring stations in European countries which contin-

uously send hourly observed data to the World Air Quality Index database. The maxi-

mum number of observed phenomena (parameters) for monitoring station is 13, which 

means that we have a maximum of 13 sensors observations data for one monitoring sta-

tion. Therefore, this means that we have a maximum of 32,630 sensors observation data 

in Europe with 2510 monitoring stations. If these sensors observation data are sent to the 

server at the same time, the IoTSAS system will process, annotate, and interpret in real-

time in less than 50 seconds. 

If we calculate for 76,923 monitoring stations with 13 parameters for each monitoring 

station (1,000,000 sensors observations/13 parameters per station), which send observed 

data at the same time (all at once), then it means that the IoTSAS system will be able to 

process, annotate, and interpret within 138 seconds based on the test results, which indi-

cates good system performance. 

Table 3. Statistics of monitoring stations in different European countries by area. 

# Country No. of Monitoring Stations 

1  Albania (https://aqicn.org/map/albania/) 

2 

2  Andorra (https://aqicn.org/map/andorra/) 1 

3  Armenia (https://aqicn.org/map/armenia/) 1 

4  Austria (https://aqicn.org/map/austria/) 82 

5 
 Azerbaijan (https://aqicn.org/map/azerbai-

jan/) 

3 

6  Belarus (https://aqicn.org/map/belarus/) 16 

7  Belgium (https://aqicn.org/map/belgium/) 63 

8 
 Bosnia and Herzegovina 

(https://aqicn.org/map/bosnia-herzegovina/) 

19 

9  Bulgaria (https://aqicn.org/map/bulgaria/) 24 
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10  Croatia (https://aqicn.org/map/croatia/) 23 

11  Cyprus (https://aqicn.org/map/cyprus/) 9 

12 
 Czechia (https://aqicn.org/map/czechrepub-

lic/) 

131 

13  Denmark (https://aqicn.org/map/denmark/ 8 

14  Estonia (https://aqicn.org/map/estonia/) 12 

15  Finland (https://aqicn.org/map/finland/) 55 

16  France (https://aqicn.org/map/france/) 158 

17  Georgia (https://aqicn.org/map/georgia/) 6 

18  Germany (https://aqicn.org/map/germany/) 162 

19  Greece (https://aqicn.org/map/greece/) 28 

20  Hungary (https://aqicn.org/map/hungary/) 46 

21  Iceland (https://aqicn.org/map/iceland/) 9 

22  Ireland (https://aqicn.org/map/ireland/) 87 

23  Italy (https://aqicn.org/map/italy/) 130 

24 
 Kazakhstan (https://aqicn.org/map/kazakh-

stan/) 

47 

25  Latvia (https://aqicn.org/map/latvia/) 23 

26  Lithuania (https://aqicn.org/map/lithuania/) 7 

27 
 Luxembourg (https://aqicn.org/map/luxem-

bourg/) 

4 

28  Malta (https://aqicn.org/map/malta/) 4 

29  Moldova (https://aqicn.org/map/malta/) 7 

30 
 Montenegro (https://aqicn.org/map/monte-

negro/) 

6 

31 
 Netherlands (https://aqicn.org/map/nether-

lands/) 

98 

32 
 North Macedonia 

(https://aqicn.org/map/macedonia/) 

19 

33  Norway (https://aqicn.org/map/norway/) 56 

34  Poland (https://aqicn.org/map/poland/) 78 

35  Portugal (https://aqicn.org/map/portugal/) 17 

36 
 Republic of Kosovo 

(https://aqicn.org/map/kosovo/) 

8 

37  Romania (https://aqicn.org/map/romania/) 165 

38  Russia (https://aqicn.org/map/russia/) 41 

39  Serbia (https://aqicn.org/map/serbia/) 118 

40  Slovakia (https://aqicn.org/map/slovakia/) 37 

41  Slovenia (https://aqicn.org/map/slovenia/) 12 

42  Spain (https://aqicn.org/map/spain/) 184 

43  Sweden (https://aqicn.org/map/sweden/) 27 

44 
 Switzerland (https://aqicn.org/map/switzer-

land/) 

29 

45  Turkey (https://aqicn.org/map/turkey/) 152 

46  Ukraine (https://aqicn.org/map/ukraine/) 134 

47 
 United Kingdom 

(https://aqicn.org/map/united-kingdom/) 

162 

Total monitoring stations   2510 
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A comparative analysis of IoTSAS system performance and the existing systems is 

presented in Table 4. In paper [12], in which hardware is not specified, the required time 

to process 1,104 observations is over 200 seconds, while the IoTSAS system requires only 

0.35 seconds for the same number of observations in our environment. In paper [16], the 

required time to process 10,000 sensor observations is over 2.5 seconds, and our system 

processes sensor observations in 1.37 seconds. In paper [13], the required time to process 

56,570 records is approximately 60 seconds, while our system takes approximately 7 sec-

onds for the same number of observations. Based on these results, we can say that the 

developed IoTSAS system provides good performance. 

Table 4. Performance comparison of existing systems vs. IoTSAS system. 

 Paper [12] Paper [16] Paper [13] 

Hardware N/A 
8-cores of 2.13 GHz processor 

and 64 GB RAM 

3.4 GHz CPU, 4 Core(s) and 8 logical 

processors with 16GB RAM 

Number of Sensors/Observations 1104 10,000 56,570 

Average processing time (sec-

onds) 
> 200 s > 2.5 s ~ 60 s 

Our IoTSAS system (average pro-

cessing time in environment, pre-

sented in Table 1) 

0.35 s 1.37 s ~7 s 

4. Conclusion and Future Research 

In the IoT technologies, Wireless Sensor Networks (WSNs) have a key role in contin-

uously producing and transmitting data in the stream format to the central server for fur-

ther processing. Recently, semantics are becoming a key component in different IoT do-

mains to annotate sensor stream data and to provide a better understanding, interpreta-

tion, and more meaningful descriptions that enable IoT application areas to become much 

more intelligent. 

In this paper, an integrated system of real-time semantic annotated and interpreted 

IoT sensor stream data, named IoTSAS, is presented. First, an overview of the system ar-

chitecture composed by two main components is given: (a) Real-Time Semantic Annotation 

(RTSA) component, which enables a real-time integration of semantics into heterogeneous 

sensor stream data with context in the IoT, and (b) Real-Time Interpreting Semantically An-

notated (RTISA) component, which enables real-time interpretation of semantics from het-

erogeneous sensor observation data. Next, the technologies such as Apache Kafka, Spark 

Streaming, Apache Cassandra database, and standards such as OGC Sensor Web Enable-

ment, which are utilized to build the IoTSAS system, are described. Then, the implemen-

tation of the six system modules is provided: (1) real-time processing of integration and 

interpretation of semantics into sensor stream data module; (2) data modelling module; 

(3) IoT management metadata module; (4) weather alerts and (5) air quality monitoring 

modules; and (6) APIs for external systems module. The validity of IoTSAS and the pro-

posed system architecture through the real sensor stream data from the World Air Quality 

Index API is provided as well. Finally, to test the IoTSAS performance, a sensor stream 

data simulator is developed. Based on the performance testing results of the 1,000,000 

sensors observations data, the IoTSAS system processed real-time by annotating with se-

mantics and interpreting the semantic annotations only for 138 seconds, which proves the 

validity of high system performance. 

The contributions of this paper in the context of semantic annotations and interpre-

tations, sensor stream data, and IoT scientific research are as follows: The SOS O&M 

standards are extended by adding two extra elements, swe:sem-annoations and swe:sem-

intepretations; different semantic annotations such as #Blizzard, #Flurry, #Rain_Storm, 

#Rain_Shower, #AQI_Index, #Air_Pollution_Level, and #Health_Implications in weather alerts 

and air quality monitoring IoT domains are developed; a semantic annotated data stream 
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management model is developed which can be used by other IoT scientific researcher to 

store their IoT sensor data; the developed system provides information in real-time to cit-

izens about the health implications from air pollution and weather conditions, e.g., bliz-

zard, flurry, etc. As of now, these are the contributions of this paper, but the research can 

progress as in the following directions in the future: 

• To more advanced annotation techniques for integration and interpretation of the 

semantic annotations in real time into heterogeneous sensor observation data and 

metadata within the context of the Internet of Things, such as XPath annotations;  

• To implement a module illustrating a healthcare monitoring use case through which 

it will be possible to monitor patients in real time and will notify doctors about 

changes in their patients’ health condition; 

• To extend the proposed system architecture for supporting insert sensor with XML 

request by using standards of Sensor Web Enablement (SWE), respectively; version 

2.0 of the Sensor Observations Service (SOS) standard relies on the Open Geospatial 

Consortium (OGC); 

• To advance the components Outlier Stream Validator and Stream Classificator of the 

proposed model by implementing some advanced outlier detection algorithms for 

real time unsupervised anomaly detection. 
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