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Abstract: For public safety and physical security, currently more than a billion closed-circuit televi-
sion (CCTV) cameras are in use around the world. Proliferation of artificial intelligence (AI) and
machine/deep learning (M/DL) technologies have gained significant applications including crowd
surveillance. The state-of-the-art distance and area estimation algorithms either need multiple cam-
eras or a reference object as a ground truth. It is an open question to obtain an estimation using a
single camera without a scale reference. In this paper, we propose a novel solution called E-SEC,
which estimates interpersonal distance between a pair of dynamic human objects, area occupied by
a dynamic crowd, and density using a single edge camera. The E-SEC framework comprises edge
CCTV cameras responsible for capturing a crowd on video frames leveraging a customized YOLOv3
model for human detection. E-SEC contributes an interpersonal distance estimation algorithm vital
for monitoring the social distancing of a crowd, and an area estimation algorithm for dynamically
determining an area occupied by a crowd with changing size and position. A unified output module
generates the crowd size, interpersonal distances, social distancing violations, area, and density per
every frame. Experimental results validate the accuracy and efficiency of E-SEC with a range of
different video datasets.

Keywords: area estimation; crowd management; COVID-19; edge camera; interpersonal distance;
social distancing

1. Introduction

The closed circuit television (CCTV) is a closed-loop television system where the
CCTV pictures or video streams are only available to those connected directly into the loop
unlike the broadcast television system which is available to anyone with an appropriate
receiver. The loop refers to a physical link or a cable that carries the picture from the
camera(s) to surveillance operation centers (SOC) or the viewer(s) or storage site. Since its
first use in the 1950s, it has become an indispensable element of any professional physical
security system. It creates a scenario where both premises and the people within them are
constantly surveyed. This provides the security teams and property managers a tighter
control over accesses to properties and facilities [1–3]. It is one of the important means
of meeting the challenges posed by the rising crime rate. Today, with the main goals of
ensuring physical security and public safety, there are more than a billion CCTV cameras
in use around the globe enabling the law enforcers and security personnel to collect huge
amount of information about individuals and follow their activities live [4–8]. It helps to
identify law breaking individuals and deters crimes. In addition, with the aid of CCTV
cameras, managers and supervisors can control risks and minimise costs efficiently and
with the minimum of disruption [8–11]. They could also be employed to contain contagious
diseases, like COVID-19, by providing data useful for faster interpersonal gap and crowd
density determinations and alerting people to maintain the minimum required social
distance between them.
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With the increasing change in the flexibility and capability of CCTV systems due to
rapid advancement of electronic technologies and physical links like microwave, laser,
or other connections, the application of CCTV cameras has dramatically peaked. They
offer plenty of benefits like assisting Police authorities in the monitoring of traffic flows
and the implementation of prompt action in the case of accidents and other emergencies.
Besides they greatly enable process industry managers to control the flow of work, identify
bottlenecks and take corrective action timely. They also play vital roles in the monitoring of
hostile environments that are not accessible to man, such as nuclear reactors and furnaces.
Comparatively speaking, security and surveillance are the most accepted applications for
the CCTV systems [8,12–15]. As effective crime deterrents, the CCTV cameras can provide
such security applications as monitoring access to secure or private areas, unauthorised
activities, theft or criminal damage, and personal safety. The surveillance applications of
CCTV cameras include the monitoring of changing conditions and deciding on corrective
action in crowd control, traffic control, industrial process control, public access, staff control,
car park security, and shopping precinct security.

Earlier we proposed and built privacy-conscious surveillance models that identify
individuals with aggressive and suspicious behavioral patterns, like gun brandishing
or/and fist-raising, in a crowd [9,10]. Following the detection, the models are capable
of sending alerting messages to law enforcers for immediate intervention. This is an
example of a crowd control process. Generally, crowd control refers to a public security
practice where crowds are managed and controlled to deter the outbreak of crowd affray,
crushes, fights involving drunk and disorderly people or riots. Through time, mechanical
surveillance systems like CCTV cameras have proved to be useful in overtly or covertly
gathering audio-visual information about crowds’ characteristics, and access to some items.
These activities are said to be vital for immediate actions of law enforcers to ensure the safety
of crowds. This paper is, however, specifically motivated by the way COVID-19 spreads.
We all have witnessed how the COVID-19 since its outbreak just before the dawning of
the 2020 has tremendously affected more than 180 millions of people worldwide. Hence,
in the effort to curb the dissemination of the virus, a number of different measures were
adopted by a multitude of countries. Well, social distancing (SD) has been one of the
most crucial practices to contain the virus. Therefore, introducing effective algorithms and
unified models that make CCTV cameras more intelligent and useful in controlling crowds
by estimating interpersonal distances and occupied areas is of paramount importance. This
way cautioning messages can be generated to alert individuals in a crowd to maintain
the minimum social distance required to eschew the spread of the virus in real-time.
These algorithms and unified models are deployed on a cloud environment connected to
edge CCTV cameras which are either wall-mounted or perched on poles three or more
meters high.

The state-of-the-art distance and area estimation algorithms either need multiple
cameras or a reference scale as a ground truth. Unfortunately, it is not realistic to have
every site monitored under multiple cameras due to the cost. Neither is there always
an object in a scenario that provides a scale factor. It is an open question to obtain an
estimation using a single camera without a scale reference. To enable a good crowd control
vis-à-vis containing contagious disease like COVID-19, we propose a novel solution called
E-SEC, which estimates interpersonal distance between a pair of dynamic human objects,
area occupied by a dynamic crowd, and density using a single edge camera. We built and
tested E-SEC models and algorithms. The major contributions are briefly enumerated in
what ensues:

• Design of algorithms for estimating the minimum social distance between two people
in a crowd captured by a single edge camera.

• Design of an algorithm for estimating an area occupied by people in a video frame
created by a single edge camera.

• Design of an algorithm that determines the number of people in a crowd caught on
camera violating the minimum social distance.
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• Design of a unified model capable of generating reports of the count of people in
a video frame, the tuples of interpersonal distances, area occupied or density, and
number of violations. Besides, the model generates messages that alerts individuals
to take corrective actions.

• Extensive experimental analyses on stream of real videos created on a calibrated
environment and publicly available pertinent video datasets corroborate applicability
of the algorithms and models proposed in E-SEC.

The remainder of this paper is organized as follows: the related work is tersely
presented in Section 2 ensued by the description of the overall system architecture of
E-SEC in Section 3. In Sections 4 and 5, the Distance Estimation and Area Estimation
Algorithms are portrayed and explained. The experimental analyses, results and discussion
are presented in Section 6. At last, the conclusions are presented in Section 7.

2. Related Work
2.1. Social Distancing

Following the advent of the COVID-19 pandemic just before the dawning of the
new year of 2020, numerous efforts were done around the world to at least alleviate or
fully stop the spread of the contagious viral disease. Then, social distancing (SD) was
recommended as the best practice to curb the transmission of the infectious virus by many
an expert following its initial practice and success story in China [16]. Later, international
organizations like world health organization (WHO) and national organizations like the
Centers for Disease Control and Prevention (CDC) of the United States deemed SD as the
utmost reliable practice to contain the communicable virus and advised people to stay at
least two meter or 6 feet apart from each other. Some researchers timely carried out a study
on the social distancing impacts on controlling the spread of the COVID-19 outbreak and
found out very encouraging results and ended up corroborating the recommendations of
WHO and CDC [17].

As the number of COVID-19 cases and death rates had kept on sky-rocketing, some
countries have resorted to adopting and employing technology-based solutions to monitor
the movements of people who contracted the virus and to make sure that people are
observing the social distancing requirements. The important technologies that could
be employed to ensure the correct and consistent practice of social distancing include
Surveillance Cameras, GPS, Computer Vision, Wi-Fi, Bluetooth, Deep Learning, Positioning
or localization techniques, and smart phones. A survey [18] shows the attempts made to
make use of some of the aforementioned technologies; they lack clear methods for precisely
determining the distance between people in a crowd, though. Besides, previous works
that focus on selective surveillance [6,9] and crowd surveillance using drones [13,19–21]
could be further developed to be employed for social distance determination, monitoring,
and alerting. The machine learning technology has a wide range of applications [22,23];
as a result, it can be adopted to design and build models useful for crowd control, like
monitoring social distancing.

Given the pervasive existence of surveillance CCTV cameras in a myriad of suburban
and urban areas around the world, many researchers have tried to develop solutions for
social distance monitoring by leveraging these surveillance edge cameras, edge computing
paradigm [24], and trending technologies like computer vision and deep learning. Based
on an open image frontal-view dataset (OID) trained using YOLOv3 [25], a framework
was developed to track people using the bounding boxes generated by the detection
model coupled with a deep-sort [26]. Besides, a comparison between the use of YOLOv3,
faster-RCNN [27] and SSD [28] for object detection and classification were performed
in this paper [26] where the YOLOv3 was selected eventually. In the same year (2020),
an autonomous drone-based model for social distancing monitoring was built [29]. The
YOLOv3 was trained with limited custom dataset comprising few frontal and side view
images of limited people, which was later extended for monitoring people whether they
are wearing masks or not. Another framework [30] for physical distancing and crowd
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management was also developed in that very same year. After thoroughly investigating
all these works, we have identified some gaps. All these papers primarily focus on
the detection of people by adopting and improving existing deep-learning models like
YOLOv3. However, they do not provide methods for determining or estimating the
distance between two people, which is vital for monitoring the social distancing using
surveillance cameras. For example, in a paper titled “A deep learning-based social distance
monitoring framework for COVID-19” [31], a deep learning platform for social distance
tracking using an overhead perspective is proposed. It mainly focused on improving
the YOLOv3 through transfer-learning to add the capability of detecting people from an
overhead perspective; it, however, gives no method or algorithm how the distance between
people was determined. It simply uses an assumed pixels. This has served as a motivation
for us to carry out extensive investigations and experiments to come up with some efficient
mechanisms and algorithms for measuring the interpersonal distance in a crowd using a
single camera.

2.2. Distance Estimation Using a Single Camera

To date, there is no established method for determining the distance between two
dynamic objects using a single camera. It is possible to measure the distance between a
fixed reference object of precisely known size and other objects on an image using a variant
of the Thin-Lens Equation stated in Equation (1) [32,33], but not the distance between two
dynamic objects. According to the principle of optics, ray tracing can be used to construct
an image from the light rays originating from an object that pass through a lens. The image
is located at the point where the rays cross. By choosing several points from an object the
entire image can be constructed. Let do be the object distance, the distance of an object from
the center of a lens, di be distance of the image from the center of a lens. The height of
the object and height of the image are given by the symbols ho and hi, respectively. The
thin lens equation quickly provides the relation between di, do, and the focal length f . It
can be derived from a geometric analysis of ray tracing for thin lenses and is given by
Equation (1).

1
do

+
1
di

=
1
f

(1)

The magnification m of an image is the ratio between the image and object height ( hi
ho

).
The magnification is related to do, di, ho, & hi by the relation stated in Equation (2).

m = − di
do

=
hi
ho

(2)

Equation (1) cannot, however, be employed to accurately determine the distance
between two moving objects or people captured by a single camera. Normally, to precisely
determine the location of an object in space, for example using GPS systems, the triangula-
tion or trilateration technique is employed where at least three GPS satellites are needed.
Likewise, to determine the distance of an object, two cameras (stereo-system) with exactly
known distance from each other are required. Hence, the concept of triangulation can
be employed to approximately determine the distance between a camera and an object.
Here trigonometric techniques can be used to estimate the distance based on the known
distance between the cameras, and their respective field of visions. This approach even
would have limitations when an object is situated on the side of one of the cameras but
far away from the other one. Then, in this work, we came up with an approach that can
measure interpersonal distance and occupied areas relatively more accurately than existing
methods using a single camera.
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3. E-SEC: Unified Model for Distance and Density Estimation

E-SEC leverages pervasively deployed surveillance cameras to enable easy crowd
monitoring in relation to containing a contagious disease. Larger information technology
(IT) services providers usually make use of hierarchical computing paradigms depending
on data size, computational needs, and applications they run. The hierarchical computing
architectures enable organizations or applications like the Industrial Internet of Things
(IIoT) and CCTV-based surveillance to take advantage of a variety of computing and data
storage resources. Cloud computing paradigm frees organizations from the requirement
to keep expensive data-center infrastructure on site. It allows data to be collected from
multiple distant sites and devices. It is accessible from anywhere around the globe. Fog
computing and edge computing look similar for they both bring the intelligence and
processing power closer to the point of data creation and collection. However, a fog
environment places intelligence at the enterprise campus area network (CAN) where data
is transmitted from endpoints to a gateway for processing. The edge computing places
intelligence and processing power in devices such as embedded automation controllers,
CCTV cameras, and smart meters. It allows the processing of data to be performed locally
at multiple decision points for the purpose of enabling real-time communication and
decision making by reducing network traffic, response time, and risk of security and
privacy breaches.

Therefore, E-SEC adopts a hierarchical cloud/fog-based video surveillance system
(VSS) architecture as portrayed in Figure 1. It comprises edge CCTV cameras that capture
images and video frames, wide area network (WAN)/ campus area network (CAN) that
relays the video streams created by the edge-cameras to the storage or analytics centers,
powerful cloud/fog servers for processing videos and performing video analytics, and a
surveillance operation centers where security personnel or law enforcers sit to observe the
activities or behavioral patterns of individuals caught on those edge cameras. To prevent
the compromise of the privacy of individuals caught on the cameras, the video streams
are transmitted over the insecure channel in enciphered form to the remote storage and
processing sites. They are scrambled using a lightweight chaotic scheme [9,34].

Figure 1. Cloud-based Architecture of Video Surveillance System Comprising Cloud Servers, Surveillance Operation Center,
Communication Channel, and Edge-cameras.

Figure 2 portrays the high-level framework of the unified E-SEC model where CCTV
cameras function as edge devices for capturing crowds in streets and other designated
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places. The various components that constitute the proposed framework for crowd control
are briefly elucidated in what ensues.

Figure 2. Unified E-SEC Model for Human Detection and Estimation of Interpersonal Distance, Number of Social Distance
(SD) Violations, Area, and Crowd Density.

• Edge CCTV Cameras: they are placed at the edge of the network mounted on walls,
and perched on poles along streets, city corners, stores, etc as shown in Figure 1. In
the proposed framework, they are responsible for creating video frames of target
crowds which are transmitted to remote analytics centers on cloud servers over the
Internet. They are the eyes and ears of the proposed model. Besides, they are capable
of enforcing privacy measures, like encrypting video frames to ensure end-to-end
privacy (E2E).

• Human Detection in Video Frames: in order to determine the distance between
people and the area occupied by a crowd, the first step is accurately detecting the
people caught on a video frame by a camera. In E-SEC, however, the design of an
object detection model is not one of our prime goals. As a result, we adopted YOLOv3
model for human detection on video frames and modified it so as to fit our purpose.
It is able to detect people caught on camera with greater accuracy, which is vital for
computing their centroids which are in turn useful for estimating distance between
the people and their footage occupancy.

• Interpersonal Distance Estimator: this is an algorithm designed in this paper and
employed to estimate the distance b/n two dynamic people on a video frame. That is,
for tracking the distance between a pair of people in motion. The detailed description
of the distance estimation algorithm is provided in Section 4. Knowledge of the inter-
distance plays very crucial role in alerting people to maintain the minimum social
distance so as to cut down on the spread of a contagious viral disease like COVID-19.

• Area Estimator Algorithm: this is designed to estimate an area occupied by a crowd
caught on an edge camera using rectangular approximation explained in Section 5. It
is an integral component of an effective crowd surveillance, which helps ensure the
safety and security of a crowd. In a social or other form of gathering, it helps people in
the venue enjoy themselves without worrying about their safety and physical security.

• Outputs: at last, as illustrated on Figure 1, the proposed unified model outputs the
number of people caught on a frame, the tuples of distances between every pair of
people on the frame, the number of people violating the minimum social distancing
requirement, the area occupied by a crowd captured on a frame, and the crowd density
just computed by dividing the number of people detected on a frame by the estimated
rectangular area that they occupy.
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4. Distance Estimation Algorithm

It has been proved that technology-based crowd management plays very pronounced
roles in containing the spread of contagious viral diseases, especially when immunization
vaccine is not yet invented. The COVID-19 outbreak has caused a global disaster which has
infected more than 180 million people worldwide by spreading like a wild fire. Until the
development of vaccines, social distancing had been the sole means to stymie the spread
of the pandemic virus. Hence, in the face of a contagious pandemic, technology-based
crowd control mechanism is of paramount importance. In this section, we have introduced
mechanisms and techniques for estimating the distance between a pair of people in a crowd
using a single edge camera. There are no established methods for determining the distance
between two dynamic objects in a video stream created by using a single camera to date.
All that people are able to achieve so far is measuring the distance of an object of definitely
known size where the distance between the camera and the object is also known a priori,
often considered as a reference. However, there is no way we can tell these two parameters
from a video containing people who continuously change their positions. Then, following
a thorough investigation and extensive experimental analysis, we came up with certain
methods and algorithms for estimating the interpersonal distance, which is described in
the subsections that follows.

4.1. Triangle Similarity

The triangle similarity equation stated in Equation (3), derived from the Thin Lens
Equation provided by Equation (1), is often employed to determine a distance from a
camera to a known fixed object or marker. We are going to utilize triangle similarity with
some improvements in what fallows. The triangle similarity works in a such a way that a
marker or an object with a known width W is placed some distance D from the camera.
Then, the apparent width of the object in pixels (P) is measured from the picture of the
object caught by using the camera, which allows us to derive the perceived focal length F
of the camera using the triangle similarity equation given by Equation (3).

F =
D× P

W
(3)

To account the variations in height measurements of people’s height on video frames de-
pending on their distance from the camera, we derived a new relationship from Equation (3)
using the principles of geometric optics provided by Equation (4). As portrayed in Figure 3,
DCH is the distance between a camera and a human measured in millimeter (mm), Fl(mm)

is the focal length of the camera in mm, HH(mm) is height of human in mm, FrH(p) is height
of then video frames in pixels, SH(mm) is the height of the image sensor of the camera in
mm, and HH(p) is the human height on the frame in pixels.

DCH =
Fl(mm) × HH(mm) × FrH(p)

SH(mm) × HH(p)
(4)

To determine the distance between two people on a frame created by a camera, the
determination of their respective distances from the camera using Equation (4) and their
centroids are required. Here the average human height [35] is considered for dynamically
measuring the actual height of people in such setting is next to impossible. This approach
works fine as long as people are not underneath of an overhead camera. Under normal
circumstances, we expect the number of pixels used to represent a distance on an image
to decrease as the object moves away from the camera and conversely. However, the
number of pixels used to represent the height of a person caught right underneath a camera
is not correct. Besides, this approach needs the knowledge of the actual distances of
the objects under consideration at least at the beginning of the process which makes the
implementation very difficult.
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Figure 3. Geometrical relationship between actual and virtual human dimensions.

4.2. Pixel Per Metric Method

Taking the upsides of the methods described in Section 4.1, we proposed a more
accurate and realistic method in this subsection. After a thorough analysis of the front,
back, and side views of people on an image and the variation of the number of pixels used
to represent apparent distances on a frame depending up on the position of the object
of interest, we designed a method described by Algorithm 1. The Central idea of this
algorithm is the establishment of a relationship between distances measured in pixels and
actual real-world units like feet or meter. Our experimental analyses proved that the use
of a human width in lieu of human height produces more consistent and accurate results
because the height is more sensitive to the camera position.

Using the foundations laid in the previous sections and subsections, the breadths of
people caught on a frame are grabbed and employed for estimating the social distance
between the people pairwise. The average human breadth from tricep-to-tricep considered
in this paper is 56 cm. As stated in Algorithm 1, the first task is detecting people in a frame
using a detection model which produces the bounding box of every person in a frame.
From every bounding box, the centroid (C) of a person is determined by using Equation (5),
where x and y represent the width and height of each bounding box in picture elements
(pixels). This way, a list of all centroids of people in the frame is created. Then, a 2D matrix
of interpersonal Euclidean distances of all pair-wise permutations of centroids, where
only its upper triangle is considered, is created. Here SciPy, a Python-based ecosystem of
open-source software for mathematics, science, and engineering, is employed to efficiently
compute the interpersonal distances between the centroids in parallel

C = (
x
2

,
y
2
) (5)

In Algorithm 1, once the tuples of centroids have been extracted and all interpersonal
euclidean distances have been computed, the pixel-distances are transformed to real-world
units using the pixel per metric (PPM) relationship established by means of the average
human breadth and the pixel width measurements grabbed from the people on the frame.
The relationship is stated in Equation (6).

MPP =
HUMAN_BREADTH (cm)

HUMAN_BREADTH (pixel)
(6)

The algorithm also compares every computed distance in the upper triangle of the
euclidean distance with the minimum social distance (2 m or 200 cm) and creates a set of the
people who happen to violate the minimum social distance. At last, the algorithm returns
the matrix of the interpersonal distances and the number of minimum distance violations.
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Algorithm 1 Interpersonal Distance Estimation

1: import numpy as np

2: from scipy.spatial import distance as dist

3: HUMAN_BREADTH ← 56 cm(average)

4: centroids← From Bounding Box

5: widths← From Bounding Box

6: procedure GET_DISTANCE(centroids, widths, HUMAN_BREADTH)

7: violations← set()

8: w_pixel ← 2D_array o f widths

9: for i in range(len(centroids)) do

10: for j in range(len(centroids)) do

11: w_pixel[i][j] = (widths[i] + widths[j])/2

12: dist_pixel = dist.cdist(centroids, centroids, metric = “euclidean′′)

13: for i in range(0, distance_pixel.shape[0]) do

14: for j in range(i + 1, dist_pixel.shape[1]) do

15: MPP = HUMAN_BREADTH(cm)
w_pixel[i,j]

16: if dist_pixel[i, j]×MPP < 200 cm then

17: violations.add(i)

18: violations.add(j)

19: return distance_pixel, violations

5. Area Estimation Algorithm

Crowd Counting and density calculation using an edge camera are part of crowd
management used in real-life for automated public monitoring such as surveillance and
traffic control. Besides, knowing how many people attend your event is an important input
into event planning and management processes. It plays a key role in the evaluation process.
However, the most important application of crowd control is in containing contagious
diseases by continuously monitoring the social distancing and density of a crowd coupled
with an alerting system.

Figure 4 portrays the area occupied by a crowd and estimated based on the the closest
and farthest positions of people on a frame with respect to the x and y axes. First, the tuples
of human centroids containing the minimum and maximum x and y values are efficiently
determined using an itemgetter method from the operator module of python. Then, two
new points with coordinates (xmin, ymin) and (xmax, ymax) are created, which are used to
draw a rectangle around the people.



Computers 2021, 10, 143 10 of 23

Figure 4. Rectangular estimation of an area occupied by a crowd.

As described in Algorithm 2, the minimum x and y values as well as the maximum
x and y are first obtained from the centroid tuples. Then, they are appropriately altered
as to include the entire people in the crowd. If only centroid points are considered for the
area estimations, half parts of the people at the peripheries would be counted out. For that
reason, a compensation is done by either subtracting or adding 0.5 times the width of the
person at the boundary. The subtraction is performed on the coordinate closer to the origin
and the addition operation on the coordinate farthest from the origin (the one closer to the
point (W,H) on the frame). Eventually, the algorithm converts the units of the dimensions
from pixel to centimeter (cm) using the PPM, where in this case the average of all widths of
detected people is employed. This algorithm returns coord1, coord2, the estimated area in
squared meter, and the crowd density computed as a ratio of the number of people in a
frame to the estimated area. The coord1, and coord2 are used for drawing the estimated
area on every video frame which continuously varies depending on the number of people
on each frame and their movements.
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Algorithm 2 Estimate Area & Compute Density

1: import numpy as np

2: import operatoraso

3: HUMAN_BREADTH ← 56 cm

4: centroids← From Bounding Box

5: widths← From Bounding Box

6: procedure ESTIMATE_AREA(centroids, widths, HUMAN_BREADTH)

7: cwdict← dictionary

8: censtr = [str(x) f or x in centroids]

9: for tup in list(zip(censtr, widths)) do

10: cwdct[tup[0]] = tup[1]

11: xmin = min(centroids, key = o.itemgetter(0))

12: ymin = min(centroids, key = o.itemgetter(1))

13: xmax = max(centroids, key = o.itemgetter(0))

14: ymax = max(centroids, key = o.itemgetter(1))

15: x1 = xmin[0]− int(0.5× cwdct[str(xmin)])

16: y1 = xmin[1] − int(0.5× cwdct[str(xmin)])

17: y11 = ymin[1]− int(0.5× cwdct[str(xmin)])

18: coord1 = (x1, y1 if xmin[1] < ymin[1] else y11)

19: x2 = xmax[0] + int(0.5× cwdict[str(xmax)])

20: y2 = xmax[1] + int(0.5× cwdict[str(xmax)])

21: y22 = ymax[1] + int(0.5× cwdict[str(xmax)])

22: coord2 = (x2, y2 if xmax[1] > ymax[1] else y22)

23: avgw = np.mean(widths)

24: a_pixel = coord2[0]− coord1[0]

25: a_cm = a_pixel × HUMAN_BREADTH
avgw

26: b_pixel = coord2[1]− coord1[1]

27: b_cm = b_pixel × HUMAN_BREADTH
avgw

28: est_area = round( a_cm
100 ×

b_cm
100 , 2)

29: crowd_density = round( len(centroids)
st_area , 2)

30: return coord1, coord2, est_area, crowd_density

6. Experimental Analysis, Results and Discussion
6.1. Experimental Setup

The explanations and analyses of the various experiments carried out in this work
are presented in this section. For real-time interpersonal distance estimation, crowd
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size determination, social distance monitoring, area estimation, and density calculation,
Logitech HD Webcam C615 type cameras were employed. The camera creates video
frames with a standard size of 720P (1280 × 720 Pixels) and it has a field of view (FOV) of
74 degrees. In an open field of view, a security camera can technically see forever. However,
what matters most here is how far away from the camera we can get usable video. Whether
or not an object on the frame is readily identifiable or just a featureless blob on the video
depends on the size of the subject on the recorded frame/image. The pixel per foot (PPF)
or pixel per meter (PPM) is a standard term used by security industry to measure the
size of an object on recorded video. It is a measurement of the quality of the final video
produced based on the size of the area the video is recording. There are some specifications
introduced by a European standard in accordance with the purpose of video surveillance
systems. They are known as the Detection, Observation, Recognition, Identification (DORI)
zones. In this paper, what we need is the detection and classification of objects. Hence,
a minimum of 40 PPF is recommended for this purpose. In order to reproduce results
generated in this work, videos must be recorded with any type of camera positioned at a
point at least 3 m higher from the ground with its PPF set to at least 40. This guarantees the
creation of frames with a quality sufficient for objects monitoring, detection, observation, and
classification. The 40 PPF is recommended for best and smooth experience of the output;
otherwise, we are also able to successfully process frames with PPF value as low as 25.

For meaningful video analytics in accordance with a predefined goal, the maximum
distance that an object (a human in our case) can be away from the camera depends on the
quality of frames the camera can produce. Besides, the height of camera position should
be adjusted in accordance with the maximum distance it can meaningfully see. In this
work, we employed a 720P camera and the maximum distance a person could be away and
classified as a person is 18 m; hence, the height at which this camera is installed should
be at least three meters. From a height of three meters, the camera is able to see objects as
far as 18 m meaningfully in relation to our goal. In general, cameras need to be installed
and configured according to the standard practices in the security industry. The camera
position is mostly dictated by the purpose it is expected to serve. If one wants to exclusively
surveil a single door, then the camera has to be directly focused close enough onto the
door. Likewise, if one’s surveillance purpose is the monitoring of pedestrians that pass
by a certain area, then, the camera has to be placed in a higher position so that it will be
able see every pedestrian within its meaningful (40 PPF, in our case) FOV, with minimum
occlusion. Yet, if one wants to capture an object 100 m away using a powerful camera,
they have to set its height so that it can see human objects at 100 m without substantial
occlusions. These are the rules of thumb that must be adhered to! Hence, in accordance
with standard practices, we carried out our experiments and testing based on the camera
setups portrayed in Figures 5 and 6. We employed the first step-up illustrated in Figure 5
when conducting a test on people very close to it, between the point underneath it and
about three to four meters forward of it. The farthest object that can be caught on the
camera in this configuration is one at 10.5 m from the camera; however, the camera cannot
capture the full size of all humans at positions between 4 m and 10.5 m due to their heights.
In the second setup shown in Figure 6, the camera is meant to capture any object positioned
forward of a point located at 2 m from the point directly below it. Beyond the 2 m-point
mark, the horizon is the limit for the camera’s sight in this configuration. It can see forever
or infinitely. However, it cannot see objects located behind the 2 m mark. In addition, due
to the PPF requirement set for successful object classification, we recorded our test videos
within 15 m from the camera without straying out of its FOV (74 degrees).
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Figure 5. A camera configured to see areas forward of the point directly below it up to a distance of 10.5 m.

Figure 6. A camera setup to see areas forward of a mark at 2 m from the point directly below it up to infinity.
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An example of one of our experimental setups is shown in Figure 7. It shows a C615
HD webcam perched on an about 3 m tall pole and seven marked rows within 15 m from
it. Every row is marked with three marks where the outermost two marks are two meters
apart from each other and the third is midway between them (just a meter away from
each side-mark). A virtual server (with 8 vCPUs, and 16 GB RAM) was employed for
the processing of the video frames by the using the algorithms proposed in this paper.
To successfully and meaningfully run, the proposed solution needs at least a quad-core
2.5 Ghz CPU or equivalent, a minimum memory size of 4 GB, and a minimum storage size
of 250 MB. A machine that has these computing resources can process about five frames
per second (FPS). However, for instance, if run on a powerful Predator Triton 700-A laptop
(has GPU) connected to the edge cameras, it produces an output (slightly greater than
20 FPS) that is as smooth as a fluid flow to our eyes. The implementation is done using
Python 3.9.0 multithreading and multiprocessing, where the global interpreter lock (GIL) is
disabled. Some of the input video datasets, the complete sets of python codes, and outputs
are provided on github [36]. So, anyone interested can download the codes along with
the essential files and input video files or they can use their own videos to verify or run
our works. The instructions and information provided in the readme file must be read
and followed to successfully re-run our work. In a scenario where there is no access to
a server, it is highly recommended to run it on a laptop with GPU for a smooth output.
The necessary file organization for the experimental analysis and testing of this work is
provided in Figure 8 with all details. It is also available on github [36].

Figure 7. Experimental Setup for obtaining relationship between widths of people and corresponding interpersonal
distances.
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Figure 8. File structure for Experimental Analysis and Testing of the Methods proposed in this paper.

6.2. Datasets

For the analysis and testing of the proposed algorithms, we have employed a number
of video datasets on top of the datasets we created ourselves. The video datasets we used
in this paper include Video Dataset for COVID-19 Social Distancing and Human Detection
Validation [37], Pedestrian overpass—original video (sample)—BriefCam Syndex [38], and
5GB videos from PETS 2009 Benchmark Data for crowd surveillance [39].

6.3. Distance Estimation

To experimentally prove that our distance estimation algorithm holds, we created
video frames using the setups in Figures 5–7. As depicted in Figure 7, we created seven
rows of marks with an interval of two meters that span from a point 2 m away from the
camera up to a point 15 m away from the camera based on the camera configuration
in Figure 6. Likewise, we created three rows of markers starting at the point directly
underneath the camera up to a point 6 m away in the forward direction based on the
configuration presented in Figure 5. Each row comprises three markers where the pair
of the outermost markers are 2 m meter apart from each other. As portrayed in Figure 9,
two people walked starting at a point 15 m away from camera to a point 2 m away from
the camera while maintaining a gap of at least 2 m. This is just one scenario, many more
experiments with scenarios where a pair of people walks with a varying interpersonal
distance (0 m to 5 m) were considered. Similar measurements and scenarios were also
considered with the camera FOV delimited between a point directly underneath it and a
farthest point at 10.5 m. Then, we made estimations of the social distance between the pair
of people based on data collected using a variety of scenarios. The average results show
that the gaps were found nearly equal to those physically measured ones. The algorithm
was able to compute the gaps with an average accuracy of 99.3% when the camera is
mounted at a point higher than the height of the people.
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Figure 9. Experimental Analysis: a pair of people at least 2 m apart from each other at a distance of (a) 15 m, (b) 13 m,
(c) 11 m, (d) 9 m, (e) 7 m, and (f) 5 m from the camera perched on a 3 m tall pole.

Hence, this algorithm is designed to work for a camera mounted at point at least 3 m
from the level ground and for video frames captured with at least 40 PPF. The accuracy
achieved in this work is based on videos captured by cameras with frame standard 720P.
However, it can definitely produce similar results for any camera with the proviso that the
videos are created in a scenario that meets the requirements (camera should be positioned
at least 3 m higher from the ground and the PPF should be at least 40) set. In most cases,
the vast majority of cameras (excluding thermal cameras) function like our eyes; if there is
an occlusion between them and the target object, they cannot see it. Hence, they have to
be positioned at strategic locations in order to gather maximum information about target
objects. Otherwise, the whole idea of surveillance and our work might not make any sense
at all. For instance, if you position the camera at a height of one meter and try to measure
the accuracy of our proposed solution, it will only give good results about the people at the
front. Those people behind them will not be clearly captured by the camera. Even if they
are captured, it would appear like they are all together; they are some distances away from
one another in reality, though. Our proposed solution can perform well on areas where the
camera of interest can see well. If the camera gives garbage to our proposed solution; it
surely outputs garbage, too.

In Table 1, column three shows the Social Distances between the pair of people at
distances 15 m, 13 m, 11 m, 9 m, 7 m, 5 m and 3 m as computed by using the proposed
algorithm. These results further validate the algorithm.
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Table 1. Social Distance Measurement.

Distance to Camera Actual Gap Calculated Gap

3 m 0.5 m 0.504 m

5 m 2 m 2.081 m

5 m 2 m 2.0 m

7 m 2 m 2.089 m

9 m 2 m 2.082 m

11 m 2 m 2.043 m

13 m 2 m 2 m

6.4. Area Estimation

Once again this algorithm holds for an overhead camera or a camera mounted on a
point at least 3 m higher from the ground. It can work well within a radius of 25 m (the
recommended one is 15 m, though) within its FOV. Figure 10 illustrates the estimation
of an area occupied by two people standing 15 m away from a camera. They physically
occupy an area of about 1.6 m2, which was accurately estimated by the area estimation
algorithm to be 1.61 m2 verifying the validity of the algorithm. In addition, the number
of people violating the minimum social distance (2 m or 200 cm), the total number of
people in the frame, and crowd density are accurately computed as displayed on the frame
shown on Figure 10. People violating the minimum social distance are identified with a
red target-symbol on the frames; whereas people obeying social distancing are marked
with a green target-symbol on their centroids.

Figures 11–13 also demonstrate the estimation of areas, detection and identification
of social distance violating people on a frame, counting of the total number of people
in a crowd caught by a camera in a frame, and the calculation of the crowd density. All
the results prove that the area estimation algorithm works well for cameras positioned at
points well taller than the height of people caught on camera. For instance, on Figure 11,
13 people are detected out of whom ten are violating the minimum social distance on an
estimated area of 92 squared meter, where the density is 0.14. On Figure 12, there are only
three people on a total estimated area of 10.62 m2, with a density of 0.28. Here, there is no
violation of minimum distances. Lastly, a total of seven people are detected on an estimated
area of 47.83 m2 (with a density of 0.15) as portrayed in Figure 13. Out of the seven people,
three are violating the minimum social distance. Those with red-target-symbol on their
centroid are the ones violating the minimum social distancing.



Computers 2021, 10, 143 18 of 23

Figure 10. Number of people violating social distancing: 0, Total number of people in the frame: 2, Estimated area: 1.61 m2,
& Density: 1.24.

Figure 11. Number of people violating social distancing: 10, Total number of people in a frame: 13, Estimated area: 92.01 m2,
& Density: 0.14.
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Figure 12. Number of people violating social distancing: 0, Total number of people in a frame: 3, Estimated area: 10.62 m2,
Density: 0.28.

6.5. Discussion

As clearly stated in the related works section, all researches on social distancing pub-
lished to-date focus on object detection with no regard to the major works of interpersonal
distance and area estimation. In this work, we put in a lot of efforts and focus on the design,
development and implementation of corroborated distance and area estimation algorithms
using a single-edge camera. The results of analyses of experiments that we carried out
on live video streams caught by our lab cameras and on a number of preexisting video
datasets including 1 m and 2 m videos [37], Pedestrian overpass dataset [38], and 5 GB
videos from PETS [39] solidly verify our proposed algorithms for distance and area esti-
mation. Especially when the CCTV cameras are mounted on walls or perched on poles at
least three meters tall, E-SEC scheme is able to estimate distance and area with an accuracy
greater than 99%. These E-SEC algorithms play very pronounced roles in improving crowd
surveillance. On top of enabling easier management of social distancing and crowd density
to contain the spread of a contagious disease, E-SEC scheme could be employed for people
traffic management and evaluation processes. For example, the unified model can count
the number of people entering a room and it can recommend newly arriving people to
move to another room once the maximum occupancy is reached.
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Figure 13. Number of people violating social distancing: 4, Total number of people in a frame: 7, Estimated area: 47.83 m2,
Density: 0.15.

For better performance and more accurate results, the CCTV cameras must be mounted
or perched at points well higher than the heights of humans in accordance with the good
practices of video surveillance systems. They should be deployed at least at a height of
3 m from the ground for a 720P camera for the purpose of classification of objects on
video frames. The height should be proportional to the farthest object the camera can
meaningfully see. Otherwise, the accuracy of the proposed scheme will deteriorate. Besides,
all objects on a frame should be caught with an image quality of 40 PPF.

7. Conclusions

Crowd management through the determination of their size, interpersonal distance,
occupied area, and density play very important role in stymieing the spread of infec-
tious viral diseases, automated surveillance and traffic control, and event planning and
management processes. Therefore, this paper proposes a unified E-SEC framework for
the the estimation of interpersonal distances and area occupied by a crowd caught on a
single camera. The unified model is capable of estimating the distance between a pair
of people, approximating the area occupied by a crowd, determining people violating
social distancing, counting the total number of people in a frame, and computing the
crowd density. To the best of our knowledge, E-SEC is the first of its kind that proposes
algorithms for the estimation of interpersonal distance between two dynamic people and
an area occupied by a crowd that varies both in size and movement dynamically using a
single camera. The extensive experimental analyses carried out based on a wide range of
video datasets prove the validity and accuracy of E-SEC framework for videos captured by
edge-cameras mounted at points three or more meters higher from the ground. All camera
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installations and configurations are performed in accordance with the standard security
industry practices.
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CDC Centers for Disease Control
COVID-19 Coronavirus Disease of 2019
DML Deep Machine Learning
DORI Detection, Observation, Monitoring, and Identification
E2E End-to-End
GIL Global Interpreter Lock (python)
GPS Global Positioning System
HD High Definition
IIoT Internet of Industrial of Things
IT Information Technology
OID Open Image frontal view Dataset
PPF Pixel Per Foot
PPM Pixel Per Meter
PPM Pixel Per Metric
RCNN Region Based Convolutional Neural Networks
SD Social Distancing
SSD Single-Shot Detection
VSS Video Surveillance Systems
WAN Wide Area Network
YOLOv3 You Look Only Once version 03

References
1. Altawy, R.; Youssef, A.M. Security, privacy, and safety aspects of civilian drones: A survey. ACM Trans. Cyber-Phys. Syst. 2017,

1, 7. [CrossRef]
2. Birnstill, P. Privacy-Respecting Smart Video Surveillance Based on Usage Control Enforcement; KIT Scientific Publishing: Karlsruhe,

Germany, 2016; Volume 25.
3. Cavallaro, A. Privacy in video surveillance [in the spotlight]. IEEE Signal Process. Mag. 2007, 2, 166–168. [CrossRef]
4. Fitwi, A.; Chen, Y. Secure and Privacy-Preserving Stored Surveillance Video Sharing atop Permissioned Blockchain. arXiv 2021,

arXiv:2104.05617.
5. Fitwi, A.; Chen, Y.; Zhu, S. No peeking through my windows: Conserving privacy in personal drones. In Proceedings of the 2019

IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019; pp. 199–204.
6. Fitwi, A.; Chen, Y.; Zhu, S.; Blasch, E.; Chen, G. Privacy-Preserving Surveillance as an Edge Service Based on Lightweight Video

Protection Schemes Using Face De-Identification and Window Masking. Electronics 2021, 10, 236. [CrossRef]

http://doi.org/10.1145/3001836
http://dx.doi.org/10.1109/MSP.2007.323270
http://dx.doi.org/10.3390/electronics10030236


Computers 2021, 10, 143 22 of 23

7. Lin, L.; Purnell, N. A World With a Billion Cameras Watching You Is Just Around the Corner. Wall Str. J. 2019. Available
online: https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
(accessed on 10 May 2021).

8. Xu, R.; Nikouei, S.Y.; Nagothu, D.; Fitwi, A.; Chen, Y. Blendsps: A blockchain-enabled decentralized smart public safety system.
Smart Cities 2020, 3, 47. [CrossRef]

9. Fitwi, A.; Chen, Y. Privacy-Preserving Selective Video Surveillance. In Proceedings of the 2020 29th International Conference on
Computer Communications and Networks (ICCCN), Honolulu, HI, USA, 3–6 August 2020; pp. 1–10.

10. Fitwi, A.; Chen, Y.; Zhu, S. PriSE: Slenderized Privacy-Preserving Surveillance as an Edge Service. In Proceedings of the 2020
IEEE 6th International Conference on Collaboration and Internet Computing (CIC), Virtual Conference, Atlanta, GA, USA, 1–3
December 2020; pp. 125–134.

11. Fitwi, A.; Yuan, M.; Nikouei, S.Y.; Chen, Y. Minor privacy protection by real-time children identification and face scrambling at
the edge. EAI Endorsed Trans. Secur. Saf. 2020, submitted. [CrossRef]

12. Fitwi, A.; Chen, Y.; Zhu, S. A lightweight blockchain-based privacy protection for smart surveillance at the edge. In Proceedings
of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 552–555.

13. Fitwi, A.H.; Nagothu, D.; Chen, Y.; Blasch, E. A distributed agent-based framework for a constellation of drones in a military
operation. In Proceedings of the 2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December 2019;
pp. 2548–2559.

14. Mali, D.; Hadush, A. Home Monitoring System using wireless Sensor Network via Internet. Technia 2014, 7, 11014.
15. Yuan, M.; Nikouei, S.Y.; Fitwi, A.; Chen, Y.; Dong, Y. Minor Privacy Protection Through Real-time Video Processing at the Edge.

arXiv 2020, arXiv:2005.01178.
16. Ainslie, K.E.; Walters, C.E.; Fu, H.; Bhatia, S.; Wang, H.; Xi, X.; Baguelin, M.; Bhatt, S.; Boonyasiri, A.; Boyd, O.; et al. Evidence

of initial success for China exiting COVID-19 social distancing policy after achieving containment. Wellcome Open Res. 2020, 5.
[CrossRef]

17. Prem, K.; Liu, Y.; Russell, T.W.; Kucharski, A.J.; Eggo, R.M.; Davies, N.; Flasche, S.; Clifford, S.; Pearson, C.A.; Munday, J.D.; et al.
The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling
study. Lancet Public Health 2020, 5, e261–e270. [CrossRef]

18. Nguyen, C.T.; Saputra, Y.M.; Van Huynh, N.; Nguyen, N.T.; Khoa, T.V.; Tuan, B.M.; Nguyen, D.N.; Hoang, D.T.; Vu, T.X.;
Dutkiewicz, E.; et al. Enabling and emerging technologies for social distancing: A comprehensive survey and open problems.
arXiv 2020, arXiv:2005.02816.

19. Fitwi, A.; Chen, Y.; Zhou, N. An agent-administrator-based security mechanism for distributed sensors and drones for smart grid
monitoring. In Proceedings of the Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII. International
Society for Optics and Photonics, Baltimore, MD, USA, 14–18 April 2019; Volume 11018, p. 110180L.

20. Harvey, A.; LaPlace, J. MegaPixels: Origins, ethics, and privacy implications of publicly available face recognition image datasets.
Megapixels 2019.

21. Robakowska, M.; Tyranska-Fobke, A.; Nowak, J.; Slezak, D.; Zuratynski, P.; Robakowski, P.; Nadolny, K.; Ładny, J.R. The use of
drones during mass events. Disaster Emerg. Med. J. 2017, 2, 129–134. [CrossRef]

22. Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al.
Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [CrossRef]

23. Yekun, E.A.; Fitwi, A.H.; Selvi, S.K.; Kumar, A. Short-term Wind Speed Forecasting based on LSSVM Optimized by Elitist QPSO.
arXiv 2020, arXiv:2010.07757.

24. Fitwi, A.; Yang, Z.; Chen, Y.; Lin, X. Smart grids enabled by edge computing. In Edge Computing: Models, Technologies and
Applications; Taheri, J., Deng, S., Eds.; The Institution of Engineering and Technology (IET): London, UK, 2020; e-ISBN 978-
1785619410.

25. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
26. Punn, N.S.; Sonbhadra, S.K.; Agarwal, S. COVID-19 epidemic analysis using machine learning and deep learning algorithms.

MedRxiv 2020. [CrossRef]
27. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]
28. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 21–37.

29. Ramadass, L.; Arunachalam, S.; Sagayasree, Z. Applying deep learning algorithm to maintain social distance in public place
through drone technology. Int. J. Pervasive Comput. Commun. 2020, 16, 223–234. [CrossRef]

30. Sathyamoorthy, A.J.; Patel, U.; Savle, Y.A.; Paul, M.; Manocha, D. COVID-robot: Monitoring social distancing constraints in
crowded scenarios. arXiv 2020, arXiv:2008.06585.

31. Ahmed, I.; Ahmad, M.; Rodrigues, J.J.; Jeon, G.; Din, S. A deep learning-based social distance monitoring framework for
COVID-19. Sustain. Cities Soc. 2021, 65, 102571. [CrossRef] [PubMed]

32. Candela, L. Geometric Optics: Thin Lenses and Ray Tracing. 2021. Available online: ttps://courses.lumenlearning.com/
boundless-physics/chapter/lenses/ (accessed on 10 May 2021).

https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
http://dx.doi.org/10.3390/smartcities3030047
http://dx.doi.org/10.4108/eai.13-7-2018.164560
http://dx.doi.org/10.12688/wellcomeopenres.15843.2
http://dx.doi.org/10.1016/S2468-2667(20)30073-6
http://dx.doi.org/10.5603/DEMJ.2017.0028
http://dx.doi.org/10.1038/s41573-019-0024-5
http://dx.doi.org/10.1101/2020.04.08.20057679
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1108/IJPCC-05-2020-0046
http://dx.doi.org/10.1016/j.scs.2020.102571
http://www.ncbi.nlm.nih.gov/pubmed/33163330
ttps://courses.lumenlearning.com/boundless-physics/chapter/lenses/
ttps://courses.lumenlearning.com/boundless-physics/chapter/lenses/


Computers 2021, 10, 143 23 of 23

33. Fulton, W. Calculate Distance or Size of an Object in a Photo Image. 2021. Available online: https://www.scantips.com/lights/
subjectdistance.html (accessed on 10 May 2021).

34. Fitwi, A.; Chen, Y.; Zhu, S. Lightweight Frame Scrambling Mechanisms for End-to-End Privacy in Edge Smart Surveillance.
TechRxiv. 2021. Available online: https://www.techrxiv.org/articles/preprint/Lightweight_Frame_Scrambling_Mechanisms_
for_End-to-End_Privacy_in_Edge_Smart_Surveillance/14402504 (accessed on 10 May 2021).

35. Max Roser, C.A.; Ritchie, H. Human Height. Our World in Data. 2013. Available online: https://ourworldindata.org/human-
height (accessed on 10 May 2021).

36. Fitwi, A. A Unified Model for Estimating Interpersonal Distance and Crowd Density Using an Edge Camera. github. 2021.
https://github.com/ahfitwi/SDProject2021 (accessed on 20 September 2021).

37. Khan, W.; Nawaz, F.; Hussain, A. Video Dataset for COVID-19 Social Distancing and Human Detection Validation. ELSEVIER.
2020. Available online: https://data.mendeley.com/datasets/xh6m6gxhvj/1 (accessed on 20 April 2021).

38. BriefCam. Pedestrian Overpass-Original Video (Sample)-BriefCam Syndex. Youtube 2014. Available online: https://www.
youtube.com/watch?v=aUdKzb4LGJI (accessed on 3 May 2021).

39. Ferryman, J.; Shahrokni, A. Pets2009: Dataset and challenge. In Proceedings of the 2009 Twelfth IEEE International Workshop on
Performance Evaluation of Tracking and Surveillance, Snowbird, UT, USA, 7–9 December 2009; pp. 1–6.

https://www.scantips.com/lights/subjectdistance.html
https://www.scantips.com/lights/subjectdistance.html
https://www.techrxiv.org/articles/preprint/Lightweight_Frame_Scrambling_Mechanisms_for_End-to-End_Privacy_in_Edge_Smart_Surveillance/14402504
https://www.techrxiv.org/articles/preprint/Lightweight_Frame_Scrambling_Mechanisms_for_End-to-End_Privacy_in_Edge_Smart_Surveillance/14402504
https://ourworldindata.org/human-height
https://ourworldindata.org/human-height
https://github.com/ahfitwi/SDProject2021
https://data.mendeley.com/datasets/xh6m6gxhvj/1
https://www.youtube.com/watch?v=aUdKzb4LGJI
https://www.youtube.com/watch?v=aUdKzb4LGJI

	Introduction
	Related Work
	Social Distancing
	Distance Estimation Using a Single Camera

	E-SEC: Unified Model for Distance and Density Estimation
	Distance Estimation Algorithm
	Triangle Similarity
	Pixel Per Metric Method

	Area Estimation Algorithm
	Experimental Analysis, Results and Discussion
	Experimental Setup
	Datasets
	Distance Estimation
	Area Estimation
	Discussion

	Conclusions
	References

