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Abstract: There is a tendency, during the last years, to migrate from the traditional homogeneous
clouds and centralized provisioning of resources to heterogeneous clouds with specialized hardware
governed in a distributed and autonomous manner. The CloudLightning architecture proposed
recently introduced a dynamic way to provision heterogeneous cloud resources, by shifting the
selection of underlying resources from the end-user to the system in an efficient way. In this work,
an optimized Suitability Index and assessment function are proposed, along with their theoretical
analysis, for improving the computational efficiency, energy consumption, service delivery and
scalability of the distributed orchestration. The effectiveness of the proposed scheme is being
evaluated with the use of simulation, by comparing the optimized methods with the original approach
and the traditional centralized resource management, on real and synthetic High Performance
Computing applications. Finally, numerical results are presented and discussed regarding the
improvements over the defined evaluation criteria.

Keywords: simulation; optimization; high performance computing; heterogeneity; cloud computing

1. Introduction

Cloud Computing has evolved into the main computing paradigm nowadays, usually
coupled with edge and fog layers formulating the Edge to Cloud Continuum (E2C) [1]. The
need for edge, fog and cloud computing paradigms relies on the fact that the processing
of big data produced from various application domains caused a complexity explosion
and pushed existing infrastructures to the limits. The capabilities and characteristics of
this distributed and heterogeneous paradigm enabled the efficient deployment of real-
world applications, such as smart grids [2], predictive maintenance [3], connected and
autonomous vehicles [4], augmented/virtual reality [5], smart cities [6] and smart facto-
ries [7], among others. Typically, data are being generated and filtered/pre-processed on
the edge layer, while the fog layer aggregates and further processes data stemming from
distributed edge devices. Then, the cloud layer is subject to performing computationally
intensive operations and storing of large amount of aggregated data, for supporting such
complex applications.

Due to the constantly increasing demand of computational power and, consequently,
of computational resources, cloud data centers have integrated hardware accelerators
capable of performing computations efficiently with reduced energy requirements. This
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specialized hardware, originally stemming from High Performance Computing (HPC)
infrastructures, may contain Graphics Processing Units (GPUs), Field Programmable Gate
Arrays (FPGAs) and Many Integrated Cores (MICs) in a heterogeneous manner (at the
level of computing racks). Nowadays, almost all cloud providers offer many types of
accelerator-enabled hardware instances for the execution of computationally demanding
applications.

The imposed heterogeneity in the hardware resources installed on large-scale cloud
data centers adds an additional layer of complexity for the efficient management of the
underlying resources, as well as reliability and security challenges [8]. The efficient man-
agement of the hardware resources is essential, since it determines how efficiently the
resources are being utilized with respect to Quality of Service (QoS) and energy efficiency.

In the traditional centralized cloud management, the end-user is responsible for se-
lecting the resources to be utilized for the execution of the application and the cloud broker
offloads the executables on the available virtualized hardware. Several approaches have
been proposed for the dynamic allocation of resources based on application characteristics,
such as techniques based on machine learning or optimization. Autonomic computing
approaches, offer promising solutions with the absence of external control or interference
from outside the boundaries of the system [9–12].

Recently, through the CloudLightning (CL) EU project, a Self-Organization and Self-
Management (SOSM) resource allocation scheme has been proposed, targeting improved
service delivery, computational efficiency, power consumption, scalability and management
of heterogeneous cloud resources [13]. This scheme allows the decentralized and dynamic
provisioning of heterogeneous resources towards local or global goals. For achieving
this, the Suitability Index (SI) term was introduced for characterising in real-time how
suitable the hardware is for fulfilling the incoming task requests. SI has been formulated
according to the local and global goals of each cloud infrastructure, that is, reduce energy
consumption, improve computational efficiency and so forth [14].

In this work, an improved assessment function is proposed for formulating the Suit-
ability Index of heterogeneous clouds, by taking into account the performance per unit of
consumed power. The new function is expected to provision resources considering the
efficiency of the hardware to perform computations with the lowest energy footprint in
the hierarchical CloudLightning architecture. The theoretical formulation of the Assess-
ment Function is described in detail, enabling the definition of a new Suitability Index for
guiding the task over the most efficient, in terms of energy resources. For evaluating the
efficiency of the new proposed schemes, a discrete-event simulation framework is utilized
that allows the efficient experimentation at large-scale. The evaluation framework is being
presented, and numerical results, using real-world application traces and synthetic data,
indicate that the improved SOSM allocation scheme can provide better energy efficiency
by retaining the same levels of computational efficiency, service delivery and scalability.

The remainder of this paper is organised as follows. Section 2 presents the architectural
overview of the heterogeneous cloud system considered and the simulation framework
utilized for the evaluation of the proposed schemes at a large-scale. Section 3 introduces
the theoretical background for the derivation of the improved assessment function and
Suitability Index, while Section 4 presents the evaluation framework and results of the
proposed schemes. This includes numerical results from real-world applications along
with synthetic ones at a large scale. Concluding remarks and discussion are then presented
in Section 5.

2. Background

This Section delineates the research area of resource management in cloud comput-
ing and presents the CloudLightning architecture along with the Self-Organization and
Self-Management resource allocation schemes. The discrete-event simulation framework
utilized for the large-scale evaluation of the proposed schemes is also briefly presented.
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2.1. Resource Management in Cloud Computing

The categorization of resource allocation techniques has been the main research effort
of many studies [15–17]. Different taxonomies have been proposed, with respect to schedul-
ing criteria, specifically designed for specific purposes such as cost, energy consumption,
utilization and SLA violations. In general, resource allocation and the scheduling of tasks
and hardware resources can be considered an optimization problem, whose complexity
increases as the number of cloud nodes increases. By also adopting heterogeneity and
specialized hardware (accelerators) for supporting computations, the efficient scheduling
of resources is very important. Resource allocation research has been mainly based on sim-
ulation frameworks that provide artificial infrastructures to assess resource management
scenarios, while also enabling resource modelling.

The research effort for addressing the challenges of resource management of cloud
computing is increasing. Agent-based solutions have been proposed in the literature [18],
that aim to develop an explicit resource allocation model to adaptively distribute workflow
jobs to the different data centers in the cloud environment, based on network delay and
workload evaluation criteria. The approach of [19] proposes an Autonomous Agent Based
Load Balancing Algorithm (A2LB) to address the common problem of load balancing in
cloud computing data centers, by dynamically reallocating the virtual machines from one
data center to another when overloading is detected.

Machine learning algorithms have also been proposed to model and analyze the multi-
dimensional resource allocation problems that deal with multiple resource types including
multi-processor, memory and storage [20]. A Reinforcement Learning (RL) based allocation
framework has been proposed [21] to develop an optimal allocation policy and employ
Fuzzy Logic for the design of a decision support methodology based on the criterion of
energy efficiency in the cloud infrastructure. Deep Reinforcement Learning (DRL) has
been proposed for developing DERP [22], a resource provisioning system that combines
the capability of Deep Learning (DL) to learn multi-dimensional representations of the
states of the cloud computing system, with the dynamic adaptation capability of RL to
workload demand changes, with the aim of finding the optimal resource management
policy. A hierarchical DRL approach [23] is used that deals with the minimization of
power consumption while controlling performance degradation by finding an effective
dynamic power management policy. The work of [24] investigates DRL-based resource
allocation combining the Deep Deterministic Policy Gradient (DDPG) method with Long
Short-Term memory (LSTM) network units, towards maximizing the cloud provider’s
profit and evaluate the methodology on real-world datasets addressing both resource
allocation and pricing on the online user arrival time-variant patterns.

Other research works focused mainly on applying optimization based techniques for
addressing the resource allocation challenges. Such techniques include the use of non dom-
inated sorting genetic algorithms [25] and artificial bee colonies with a crossover mutation
genetic algorithm [26], amongst others. The list of research works is not exhaustive, but
are characteristic of how optimization algorithms can support this challenge. A review of
optimization-based resource scheduling algorithms is given by [27].

The research works presented consider the centralized management of resources,
where an entity, usually called a broker, is responsible for allocating the resources according
to the corresponding technique implemented. The limitations of traditional centralized
management lead to increased deployment and discovery times due to the increased
search space of the hardware resources, especially for large-scale hardware deployments.
Decentralization on hardware orchestration has recently been introduced [13] through
a hierarchical architecture that enables the distributed management of the underlying
resources. Each decentralized entity does not need to obtain knowledge about the status
of the whole data center, and instead utilizes aggregate information from other resources.
This substantially reduces the amount of transmitted information about the state of the
resources, and allows the cloud provider to set global and local goals to the underlying
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resources. This framework has been designed and evaluated through simulation at a
large-scale and is briefly discussed in Sections 2.2 and 2.3 respectively.

2.2. Resource Management with Self-Organization and Self-Management Strategies

Self-Organization and Self-Management (SOSM) strategies, targeting the optimal
hardware resource allocation taking into consideration the computational efficiency, energy
consumption, service delivery and scalability, have recently been proposed [13,28]. The
developed framework is applicable to cloud architectures that follow the Warehouse Scale
Computer (WSC) architectural model [29]. In this model, the cloud computing nodes are
grouped into cells and are managed by the cell brokers. Each cell can contain various
homogeneous racks of computational servers. Heterogeneity is realized in the rack level,
where cells may contain racks of different CPU types or CPU–accelerators pairs [29,30].
The abstract architecture of the Warehouse Scale Computer model is depicted in Figure 1.

Figure 1. Warehouse scale computer abstract architecture [30].

The SOSM framework was developed and deployed on the CloudLightning (CL)
system, as illustrated in Figure 2, and consists of three virtual hierarchical levels for
managing the underlying resources.

Figure 2. Abstract architecture of the CloudLightning system [31,32].

This tree-structured virtual consideration of the architecture enables the efficient man-
agement of the heterogeneous resources. The root management entity of this architecture
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is the cell manager, which is responsible for the management of the pRouters. There are
different pRouters according to the distinct hardware resource type. pSwitches partition
the Virtual Rack Managers (vRMs), managing the same resource type into groups. The
number of pSwitches per pRouter and the size of the vRMs managed by each pSwitch can
be changed over time. In order to minimise potential administrative overheads and to
simplify the coalition formation process for serving tasks, vRMs cannot span pSwitches.
As the system evolves, the number of pSwitches connected to a pRouter and the number
of vRMs connected to a pSwitch will change and will converge to some optimal number
according to the global or local goals defined by the Suitability Index (SI).

The assessment functions defined in the CL architecture mathematically express the
state of the cloud components by considering functional and non-functional characteristics,
namely: task throughput, energy efficiency, computational efficiency, resource management
efficiency and memory consumption. The formulation and description of the assessment
functions have been proposed in [31]. Additionally, any component in the architecture is
associated with a Suitability Index, a metric for expressing how suitable the component is
for contributing to the global goal of the system. SI can be expressed as a weighted sum of
the assessment functions, with weights defined by the cloud providers representing the
global goals.

2.3. Simulation Framework

For examining the effectiveness of the traditional centralized and SOSM clouds at a
large scale, a software simulation has been adopted. Despite the fact that a variety of simu-
lation frameworks already exists [33,34], their scalability and support for heteroneneous
hardware is limited [32]. For this reason, the discrete-time CloudLightning Simulation
Framework has been designed and developed, allowing the experimentation of dynamic re-
source allocation schemes along with the traditional centralized management of resources.

The main difference between the two provisioning methods is that in the traditional
cloud the end-user is responsible for selecting the application and its implementation
that will be deployed and executed, while in the SOSM cloud, the user is responsible
for selecting the type of application and then the SOSM mechanism selects the most
appropriate implementation according to the status of the system. This was simulated for
the traditional cloud by randomly generating application implementations that serve as
user inputs, and for the SOSM cloud by randomly generating applications. In both cases,
the uniform random distribution was used for the generation of simulation inputs. For the
traditional cloud, a sequential search is being performed for the first available resources
that can serve an incoming application implementation, while for the SOSM cloud, the
selection of resources for serving each incoming application depend on the Suitability Index
of each Cell per time step. These algorithmic procedures have been proposed in [30,32].

The simulation framework has been implemented in C++, coupled with the Message
Passing Interface (MPI) and OpenMP, for the parallelization of the workload in multi-computer
and multi-processor modern computing infrastructures. The framework is extensible, al-
lowing a variety of resource allocation schemes and models to be adopted. It has been
experimentally proven that it can achieve the same level of accuracy as most of the well-
known simulation frameworks in the literature, while achieving high levels of scalability by
simulating millions of cloud nodes [32]. The CloudLightning simulation platform is open-
sourced at https://bitbucket.org/cloudlightning/cloudlightning-simulator (accessed on 3
November 2021).

3. Improved Assessment Function and Suitability Index

The motivation for proposing an improved assessment function was derived from the
need to reflect the capability of the cloud resources to perform computations efficiently with
the minimum energy consumption. This section presents the mathematical formulation
of the new assessment function that leads to a new Suitability Index for the allocation of

https://bitbucket.org/cloudlightning/cloudlightning-simulator
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heterogeneous cloud resources. Table 1 summarizes the mathematical notations utilized in
this section.

Table 1. Mathematical notations utilized for the formulation of the improved Assessment Function
and SI.

Notation Description

CpRouter Total MIPS of a pRouter

CvCore Computational capability of a computational virtual core in MIPS

NvCores
Total number of virtual cores of all servers hosted under a

pRouter
Cacc The computational capability of an accelerator in MIPS

Nacc The number of accelerators of all hosted under a pRouter

PpRouter The power consumption of all servers hosted by a pRouter

Pidle
vCores The idle power consumption of a virtual core

Pmax
vCores The maximum power consumption of a virtual core

Pidle
acc The idle power consumption of an accelerator

Pmax
acc The maximum power consumption of an accelerator

Navail
vCores The available virtual cores

Navail
acc The available accelerators

f1 The assessment function describing performance per Watt

SI The Suitability Index

δNavail
vCores The number of virtual cores required by an incoming task

δNavail
acc The number of accelerators required by an incoming task

Tcpu The performance of a CPU based implementation

Tacc The performance of the accelerator based implementation

Ecpu The energy consumption of a CPU based implementation

Eacc The energy consumption of an accelerator based implementation

Pcpu(t)
The power consumption of the CPU based implementation at

time t

Pacc(t)
The power consumption of the accelerator based implementation

at time t
P̂cpu The average power consumption of Pcpu(t)

P̂acc The average power consumption of Pacc(t)

ψ
The benefit on the execution time of application by utilizing

accelerators
Nr

Cores The total number of requested cores

Nr
acc The total number of requested accelerators

The five assessment functions presented in Section 2 and in [31], can be replaced by
a single assessment function depicting the performance per unit of consumed power, for
example, Million Instructions per Second (MIPS) per Watt [14]. This can be achieved by
calculating the potential performance of all the hardware hosted under a pRouter. The
total MIPS CpRouter of a pRouter hosting CPU based servers is computed as follows:

CpRouter = CvCoreNvCores, (1)

where CvCore is the computational capability of a computational core in MIPS and NvCores
is the total number of virtual cores of all servers hosted under a pRouter. In the case of
pRouters composed of CPU-Accelerator pair based servers, the total MIPS CpRouter of a
pRouter are defined as follows:

CpRouter(NvCores, Nacc) = CvCoresNvCores + CaccNacc, (2)
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where Cacc is the computational capability of an accelerator and Nacc is the number of
accelerators of all hosted by the pRouter. Similarly, the power consumption of all servers
hosted by a pRouter can be estimated using a linear model [35], for all the CPU or CPU-
Accelerator pair based servers:

PpRouter(NvCores, Nacc) = Pidle
vCoresNvCores +

(
Pmax

vCores − Pidle
vCores

)(
NvCores − Navail

vCores

)
+Pidle

acc Nacc +
(

Pmax
acc − Pidle

acc

)(
Nacc − Navail

acc

)
, (3)

where Pidle
vCores, Pmax

vCores is the idle and maximum power consumption of a virtual core,
respectively. These metrics can be computed by dividing the idle and maximum power
consumption of a CPU by the total number of virtual cores it can host. The Pidle

acc , Pmax
acc is the

idle and maximum power consumption of an accelerator. The superscript avail denotes
the available resources.

The assessment function describing performance per Watt is then defined as follows:

f1

(
Navail

vCores, Navail
acc

)
=

CpRouter

PpRouter
(

Navail
vCores, Navail

acc
) . (4)

The function f1 is hyperbolic and strictly monotonically decreasing for both input
arguments. The Suitability Index has the same value as the assessment function, since
SI = f1

(
Navail

vCores, Navail
acc

)
. In order to compute the change in the Suitability Index when a

task passes from a logical component of the hierarchy such as a pRouter, a pSwitch or a
vRM the multi-variate Taylor expansion is required, since the assessment functions are
always evaluated at the vRM level. The Taylor expansion of Equation (4) is as follows:

SI = f1

(
Navail

vCores ± δNavail
vCores, Navail

acc ± δNavail
acc

)
= f1

(
Navail

vCores, Navail
acc

)
±δNavail

vCores

∂ f1

(
Navail

vCores, Navail
acc

)
∂Navail

vCores
± δNavail

acc

∂ f1

(
Navail

vCores, Navail
acc

)
∂Navail

acc

+O
((

δNavail
vCores

)2
+
(

δNavail
acc

)2
)

, (5)

where δNavail
vCores, δNavail

acc are the number of virtual cores and accelerators required by a task.
In order to further improve guidance of tasks through the system, the characteristics

of the incoming tasks can be taken into account. This is required in cases where the
improvement in performance, from the use of accelerators, is less than the ratio of energy
consumed. Let us consider the performance of a CPU based implementation Tcpu and the
performance of the accelerator based implementation Tacc, then the energy consumption of
the two implementations can be computed as follows:

Ecpu =
∫ Tcpu

0
Pcpu(t)dt ≈ P̂cpuTcpu, (6)

Eacc =
∫ Tacc

0
Pacc(t)dt ≈ P̂accTacc, (7)

where Pcpu(t) is the power consumption corresponding to the CPU based implementation
at time t and Pacc(t) is the power consumption corresponding to the accelerator based
implementation at time t. The notations P̂cpu and P̂acc denote the average of Pcpu(t) and
Pacc(t), respectively. The efficient execution on accelerators requires:

Eacc ≤ Ecpu ⇔
P̂acc

P̂cpu
≤

Tcpu

Tacc
. (8)
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Equation (8) implies that the performance (execution time) is coupled with the relative
average power consumption of available implementations of an application. Thus, schedul-
ing applications, favorably, to accelerators as implied from Equation (4), might result in
increased power consumption, especially if the improvement in performance does not
satisfy Equation (8). The choice of hardware is performed on the Cell Manager level, where
the appropriate pRouter is chosen based on the Suitability Index. The Suitability Index
corresponding to hardware hosting accelerators can be modified using task information.
The SI of hardware hosting accelerators is reduced temporarily based on information
derived from incoming tasks. After the reduction, the hardware type with the maximum SI
is chosen. The benefit on the performance of application by utilizing accelerators, can be
computed as follows:

ψ =
CvCoresNr

Cores + ρCaccNr
acc

CvCoresNr
Cores + CaccNr

acc
, (9)

where Nr
cores and Nr

acc are the total number of requested cores and the total number of re-
quired accelerators, respectively. The ρ parameter denotes the percentage of an application
that is parallelized and executed on an accelerator [35,36]. When the full potential of an
accelerator is used then ρ = 1, while when no accelerator is used, ρ = 0. The mean value
of the parameter ρ can be computed as the ratio of the time that an accelerator is utilized
over the total execution time of the application. Using the mean value of ρ, the energy
consumption of the accelerator for an application can be computed (Eacc = (t2− t1) · Pacc(ρ)
for a time interval t1 to t2). Values of ψ close to 1 denote a high utilization of the accelerator
resources, while values close to 0 lead to under-utilization of the accelerators without a
significant reduction in processing. In the case where there are no accelerators, then ψ = 1.
It should be noted that the formulation of Equation (9) does not consider the effect of ρ on
CPUs, since the developed framework concerns scientific computing applications where
CPUs are occupied by managing operations related to the accelerators, such as memory
transfers, along with allocated computational work.

4. Numerical Results

For the evaluation of the proposed optimized scheme of assessment functions, an
evaluation framework has been setup, utilizing the simulation framework of Section 2 in
order to be able to scale up to millions of cloud nodes. The behavior of the new scheme over
specific criteria has been evaluated against the traditional centralized resource allocation
scheme and SOSM, by modeling three real-world HPC use cases and by synthetic HPC
applications. It should be noted that the evaluation of the SOSM resource allocation scheme
over the traditional one has been extensively presented in [32].

4.1. Evaluation Framework and Setup

For the direct comparison of the new proposed scheme, the evaluation framework
and setup utilized in [32] was also adopted in this study. This allows the identification of
potential improvements and optimizations concerning the evaluation criteria defined.

4.2. Real-World HPC Applications

The first set of simulation results was obtained from the modeling of three real-world
HPC applications: (i) Oil and Gas exploration, (ii) Ray Tracing, and (iii) Genomics, that
were executed, except from conventional CPUs, on GPU, MIC and FPGA environments,
respectively [37]. The characteristics of the simulated applications were extracted from real
execution traces on the various supported hardware platforms, and can be summarized
in Table 2. Each instance contains a CPU-only and a CPU-accelerator implementation,
where in the case of SOSM, it is selected according to the corresponding resource allocation
strategy and the available hardware resources [32].

In terms of the simulated hardware, it consisted of 13 data centers, each of them
containing 100,000 servers equally distributed to the different hardware types supported
(i.e., 25,000 servers per CPU, CPU + GPU, CPU + MIC or CPU + FPGA configuration). The
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hardware that has been modeled is summarized in Table 3. The distribution of incoming
simulated tasks was uniform and the simulation time was one day. Finally, the network
bandwidth was set to 20 Gbps.

Table 2. Simulated applications characteristics.

Instance No. Available Im-
plementations

Supported
vCPUs

Required
Memory (GB)

Required
Storage (GB)

1 CPU/CPU +
GPU 1, 2, 4, 8, 12 0.5 10

2 CPU/CPU +
FPGA 1, 2, 4, 8, 12 1.0 10

3 CPU/CPU +
MIC 1, 2, 4, 8, 12 2.0 10

4 CPU/CPU +
MIC 1, 2, 4, 8, 12 4.0 10

5 CPU/CPU +
MIC 1, 2, 4, 8, 12 8.0 10

Table 3. Heterogeneous hardware characteristics simulated for the real-world HPC applications.

Hardware Type Model Characteristics MIPS

CPU Dell PowerEdge
C4120 [38]

2 Intel Xeon E5-2630
v4 Processors

(20 cores, 40 threads,
2.20 GHz), HT

disabled, 128GB
RAM, 1,024GB HDD

88,000.80 MIPS

GPU Nvidia Tesla
P100 [39] 3584 cores 587,505.34 MIPS

MIC Intel Xeon Phi
5110P [40] 4 Xeon Phi cards 507,494.40 MIPS

FPGA MPC-X [41] 8 MAX4 cards
295,959.30 MAOPS
(similarly treated to
MIPS for simplicity)

The simulation results of the improved SOSM for 13 Cells and for various numbers of
incoming tasks are given in Table 4. These results contain the metrics extracted from the
simulation framework considering the total number of submitted, accepted and rejected
tasks, the average utilization of the main hardware components, and the total energy con-
sumption for each execution. It should be noted that the utilization metrics are computed
both for the whole simulated infrastructure and for the servers that are not idle (using the
“over active servers” notation).

Compared to the corresponding results for traditional centralized and SOSM clouds [32],
there is a small improvement in the total energy consumption and the number of accepted
tasks, especially for the case of 640 incoming tasks per second. In this case, improved SOSM
managed to serve all incoming tasks (against SOSM that rejected 35 tasks [32]), while the
total energy consumption was slightly reduced by 3.76 MWh. The rest of the metrics were
kept at the same levels.

The optimized version of the SOSM implementation was also tested while increasing
the number of cloud nodes and the number of incoming tasks per second in order to stress
the system and evaluate its behavior in extreme conditions. This allowed us to examine the
behavior of the two resource allocation schemes at a large scale (up to 100 cells yielding
total 10,000,000 simulated servers) and a large number of incoming tasks per second (up
to 10,240 tasks per second for 100 cells). The results are depicted in Table 5, while the
percentage of accepted tasks over SOSM is shown in Table 6 and the energy consumption
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(in KWh) over the number of accepted tasks is shown in Table 7. The corresponding
diagrams, showing the improvement over SOSM, are depicted in Figure 3.

Table 4. Simulation results with the improved SOSM index for 13 Cells.

Maximum Tasks per Second

20 40 60 80 160 320 640

Total Energy
Consumption (MWh) 12,702.60 12,726.03 12,749.24 12,772.45 12,866.64 13,054.60 13,429.17

Total Number of
submitted Tasks 864,970 1,732,851 2,593,975 3,448,771 6,911,275 13,832,798 27,650,718

Total Number of
accepted Tasks 864,970 1,732,851 2,593,975 3,448,771 6,911,275 13,832,798 27,650,718

Total Number of
rejected Tasks 0 0 0 0 0 0 0

Average Processor
Utilization over active

servers
42% 43.30% 43.69% 43.95% 44.46% 44.86% 45.21%

Average Processor
Utilization 4.27 × 10−3% 8.57 × 10−3% 1.28% 1.71% 3.43% 6.90% 13.84%

Average Memory
Utilization over active

servers
5.08% 5.28% 5.33% 5.36% 5.43% 5.48% 5.52%

Average Memory
Utilization 5.17 × 10−4% 1.05 × 10−3% 1.57 × 10−3% 2.09 × 10−3% 4.20 × 10−3% 8.43 × 10−3% 1.69%

Average Network
Utilization 2.68 × 10−11% 5.36 × 10−11% 8.03 × 10−11% 1.07 × 10−10% 2.14 × 10−10% 4.30 × 10−10% 8.65 × 10−10%

Average Storage
Utilization over active

servers
1.47% 1.53% 1.54% 1.55% 1.57% 1.58% 1.59%

Average Storage
Utilization 1.50 × 10−4% 3.02 × 10−4% 4.52 × 10−4% 6.02 × 10−4% 1.21 × 10−3% 2.44 × 10−3% 4.90 × 10−3%

Average Accelerator
Utilization over active

servers
36.85% 38.13% 38.49% 38.73% 39.16% 36.63% 31.82%

Average Accelerator
Utilization 3.74 × 10−3% 7.55 × 10−3% 1.13% 1.50% 3.02% 5.63% 9.73%

Energy consumption
(KWh) over number of

accepted tasks
14.686 7.344 4.915 3.703 1.862 0.944 0.486

Table 5. Large scale simulation results with the improved SOSM.

Number of Cells

13 20 30 50 100

Number of
incoming tasks per

second
640 1280 2560 5120 10,240

Total Energy
Consumption

(MWh)
13,429.17 21,006.24 32,271.12 54,679.52 109,369.86

Total Number of
submitted Tasks 27,650,718 55,319,241 111,095,039 221,534,173 443,504,461

Total Number of
accepted Tasks 27,650,718 55,319,241 111,045,068 217,671,730 435,682,990

Total Number of
rejected Tasks 0 0 49,971 3,862,443 7,821,471

Average Processor
Utilization over

active servers
45.21% 45.33% 45.51% 47.13% 47.15%

Average Processor
Utilization 13.84% 18.01% 24.09% 27.03% 27.05%

Average Memory
Utilization over

active servers
5.52% 5.53% 5.55% 5.88% 5.89%
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Table 5. Cont.

Number of Cells

13 20 30 50 100

Average Memory
Utilization 1.69% 2.20% 2.94% 3.38% 3.38%

Average Network
Utilization 8.65 × 10−10% 1.13 × 10−9% 1.51 × 10−9% 1.62 × 10−9% 1.62 × 10−9%

Average Storage
Utilization over

active servers
1.59% 1.60% 1.60% 1.67% 1.67%

Average Storage
Utilization 4.90 × 10−3% 6.39 × 10−3% 8.56 × 10−3% 9.66 × 10−3% 9.67 × 10−3%

Average Accelerator
Utilization over

active servers
31.82% 30.71% 29.84% 31.80% 31.83%

Average Accelerator
Utilization 9.73% 12.19% 15.78% 18.23% 18.25%

Table 6. The percentage of accepted tasks for SOSM and Improved SOSM clouds while increasing
the number of cells.

Number of Cells

Resource Allocation 13 20 30 50 100

SOSM 100.000% 97.922% 94.655% 92.563% 92.604%
Improved SOSM 100.000% 100.000% 99.955% 98.257% 98.236%

Table 7. The energy consumption (KWh) over the number of accepted tasks for SOSM and Improved
SOSM clouds while increasing the number of cells.

Number of Cells

Resource Allocation 13 20 30 50 100

SOSM 0.486 0.387 0.307 0.266 0.266
Improved SOSM 0.486 0.380 0.291 0.251 0.251

The numerical results indicate that the improved SOSM implementation further
boosted the performance of SOSM. The percentage of accepted tasks as the number of cells
and incoming tasks increases, is being maintained close to 100% for the improved SOSM,
while for SOSM, tasks start to be rejected even from 20 cells. Since the new Suitability
Index specifies the performance per unit of power consumption, it is expected that energy
efficiency will be improved. Indeed, the total energy consumption over the total number of
accepted tasks (Table 7) shows an improvement on the average required KWh of a task, as
the number of cells and incoming tasks increases. By comparing the ratio of total spent
KWh over the number of accepted tasks, improved SOSM delivers a better energy footprint
per task than SOSM (0.251 versus 0.266 in the case of 100 cells).

Additionally, from the metrics extracted, it can be observed that, with the use of
improved SOSM, utilization of the hardware resources (i.e., CPU processors, memory,
network and storage) has been increased, while the use of accelerators has been reduced.
Despite using fewer accelerators, this Suitability Index demonstrated a more efficient
solution for the cloud hardware resource allocation problem.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Scalability of the Improved SOSM over SOSM by increasing the number of cells and the number of incoming tasks:
(a) Average Processor Utilization over active servers, (b) Average Processor Utilization, (c) Average Memory Utilization
over active servers, (d) Average Memory Utilization, (e) Average Network Utilization, (f) Average Storage Utilization
over active servers, (g) Average Storage Utilization, (h) Average Accelerator Utilization over active servers, (i) Average
Accelerator Utilization.

4.3. Synthetic Applications

Supplementary results are given for estimating the behavior of the traditional cen-
tralized and Self-Organization and Self-Management mechanisms, using synthetic inputs.
Due to the limited CloudLightning use cases [13] and the low parallel performance of the
Oil and Gas use case on the accelerators [37], the synthetic set of inputs tries to define a
broader set of HPC applications that could be potentially executed on a cloud.

The requirements of the synthetic application tasks that were chosen to be used as
inputs in the supplementary experiments, were chosen arbitrarily to implement various
types of applications (i.e., CPU intensive applications, network intensive applications, etc.).
The selected applications’ characteristics are presented in Table 8. It should be noted that
ρ ∈ [0, 1] denotes the percentage of the application that is parallelized on an accelerator.

The distribution of the supplementary synthetic input tasks, as well as the distribution
of requirements for each task, were chosen to be uniform. The distribution of the tasks,
for an input size of 100,000 tasks, is depicted in Figure 4a. The distribution of Millions of
Instructions, vCPUs, Memory, storage and network with respect to input tasks is given in
Figure 4b–f, respectively.

The simulation results for the traditional, SOSM and improved SOSM clouds, using the
synthetic data presented, are given in Tables 9–11, respectively. The corresponding percentages
of accepted tasks for the three allocation mechanisms are given in Table 12, while in Table 13
the energy consumption over the number of accepted tasks is presented. The corresponding
diagrams, showing the three allocation mechanisms, are depicted in Figure 5. The total energy
consumption for the three approaches are given in Figure 6, while in Figure 7 the total number
of accepted and rejected tasks for the whole simulation time are depicted in Figure 7.
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Table 8. Requirements for the synthetic application tasks.

Application Implementation Min–Max MIPS Min–Max VMs vCPUs per VM Util. vCPU Min–Max Mem
per VM (GB) Util. Mem Min–Max Storage

per VM (GB)
Min–Max Network

per VM (GBps) Acc. per VM ρ

CPU 1,386,228,336.48–
5,544,913,345.92 1–16 4–8 1 4–8 1 20–40 0.0025–0.005 0 0

1 CPU–GPU 1,386,228,336.48–
5,544,913,345.92 1–16 4–8 0.5 4–8 1 20–40 0.0025–0.005 1 0.7

CPU–MIC 1,386,228,336.48–
5,544,913,345.92 1–16 4–8 0.5 4–8 1 20–40 0.0025–0.005 1 0.7

CPU 462,076,112.16–
2,772,456,672.96 1–8 8–16 1 6–10 1 10–20 0.0005–0.001 0 0

2 CPU–FPGA 462,076,112.16–
2,772,456,672.96 1–8 8–16 0.6 6–10 1 10–20 0.0005–0.001 1 0.8

CPU–GPU 462,076,112.16–
2,772,456,672.96 1–8 8–16 0.6 6–10 1 10–20 0.0005–0.001 1 0.8

CPU 693,114,168.24–
4,158,685,009.44 1–4 4–8 1 4–8 1 4–8 0.0025–0.005 0 0

3
CPU–FPGA 693,114,168.24–

4,158,685,009.44 1–4 4–8 0.7 4–8 1 4–8 0.0025–0.005 1 0.65

CPU–MIC 693,114,168.24–
4,158,685,009.44 1–4 4–8 0.7 4–8 1 4–8 0.0025–0.005 1 0.65

CPU -GPU 693,114,168.24–
4,158,685,009.44 1–4 4–8 0.7 4–8 1 4–8 0.0025–0.005 1 0.65

4
CPU 2,237,788.20–

392,963,271.76 1–8 12–12 1 0.5–8 0.47 10–10 4× 10−12 0 0

CPU–GPU 2,237,788.20–
392,963,271.76 1–8 12–12 0.51 0.5–8 0.47 10–10 4× 10−12 1 0.8

5
CPU 14,878,487.26–

119,027,898.08 1–8 1–8 1 8–8 0.81 10–10 0 0 0

CPU–FPGA 14,878,487.26–
119,027,898.08 1–8 1–8 1 8–8 0.81 10–10 0 1 0.85

6
CPU 2,202,965.68–

17,623,725.44 1–8 2–8 1 0.5–1 0.04 10–10 0 0 0

CPU–MIC 2,202,965.68–
17,623,725.44 1–8 2–8 0.046 0.5–1 0.04 10–10 0 1 0.55

CPU 3,125,137.36–
25,001,098.88 1–8 2–8 1 0.5–1 0.4652 10–10 0 0 0

7 CPU–MIC 3,125,137.36–
25,001,098.88 1–8 2–8 0.056 0.5–1 0.4652 10–10 0 1 0.6

CPU–FPGA 3,125,137.36–
25,001,098.88 1–8 2–8 0.056 0.5–1 0.4652 10–10 0 1 0.6
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Table 8. Cont.

Application Implementation Min–Max MIPS Min–Max VMs vCPUs per VM Util. vCPU Min–Max Mem
per VM (GB) Util. Mem Min–Max Storage

per VM (GB)
Min–Max Network

per VM (GBps) Acc. per VM ρ

CPU 18,545,897.12–
148,367,176.96 1–8 2–8 1 0.8–1.5 0.5858 10–10 0 0 0

8
CPU–GPU 18,545,897.12–

148,367,176.96 1–8 2–8 1 0.8–1.5 0.5858 10–10 0 1 0.8

CPU–FPGA 18,545,897.12–
148,367,176.96 1–8 2–8 1 0.8–1.5 0.5858 10–10 0 1 0.8

CPU–MIC 18,545,897.12–
148,367,176.96 1–8 2–8 1 0.8–1.5 0.5858 10–10 0 1 0.8

9
CPU 17,091,794.24–

370,917,942.4 8–10 4–8 1 8–10 0.4 10–10 0.0008–0.003 0 0

CPU–MIC 17,091,794.24–
370,917,942.4 8–10 4–8 1 8–10 0.4 10–10 0.0008–0.003 1 0.7

CPU 693,114,168.24–
4,990,422,011.32 8–12 2–6 1 4–8 1 10–20 0.0005–0.001 0 0

10 CPU–GPU 693,114,168.24–
4,990,422,011.32 8–12 2–6 0.6 4–8 1 10–20 0.0005–0.001 1 0.7

CPU–FPGA 693,114,168.24–
4,990,422,011.32 8–12 2–6 0.6 4–8 1 10–20 0.0005–0.001 1 0.7
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It is noted that the simulation parameters, except for the application configurations,
were the same as in Section 4.2.

,

,

,

,

,

,

(a) (b) (c)

(d) (e) (f)

Figure 4. Distribution of task characteristics for the synthetic applications: (a) Distribution of tasks with respect to their
application type, (b) Distribution of the number of MIs required by tasks, (c) Distribution of the number of vCPUs required
by tasks, (d) Distribution of the required Memory with respect to tasks, (e) Distribution of the required Storage with respect
to tasks, (f) Distribution of the required Network with respect to tasks.

Table 9. Large scale simulation results with the traditional cloud on synthetic inputs.

Number of Cells

13 20 30 50 100

Number of incoming
tasks per second 640 1280 2560 5120 10,240

Total Energy
Consumption (MWh) 13,618.62 21,036.18 31,722.35 53,096.19 106,198.41

Total Number of
submitted Tasks 27,657,065 55,285,417 110,788,761 222,018,105 441,713,374

Total Number of
accepted Tasks 15,819,349 30,673,819 59,717,240 116,985,184 232,979,319

Total Number of
rejected Tasks 11,837,716 24,611,598 51,071,521 105,032,921 208,734,055

Average Processor
Utilization over active

servers
62.92% 63.83% 65.48% 65.43% 65.32%

Average Processor
Utilization 14.42% 15.71% 17.57% 18.78% 18.73%

Average Memory
Utilization over active

servers
11.48% 11.03% 10.56% 10.16% 10.16%

Average Memory
Utilization 2.63% 2.72% 2.84% 2.92% 2.92%

Average Network
Utilization 97.76% 97.78% 97.71% 97.68% 97.69%

Average Storage
Utilization over active

servers
5.96% 5.69% 5.41% 5.18% 5.18%

Average Storage
Utilization 1.39% 1.42% 1.47% 1.51% 1.51%

Average Accelerator
Utilization over active

servers
11.76% 11.08% 10% 9.30% 9.33%

Average Accelerator
Utilization 2.69% 2.74% 2.70% 2.69% 2.70%
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Table 10. Large scale simulation results with the SOSM cloud on synthetic inputs.

Number of Cells

13 20 30 50 100

Number of incoming
tasks per second 640 1280 2560 5120 10,240

Total Energy
Consumption (MWh) 16,721.63 25,748.30 39,017.29 64,757.92 129,530.38

Total Number of
submitted Tasks 27,592,651 55,308,306 110,558,115 221,602,170 443,542,128

Total Number of
accepted Tasks 20,351,196 38,014,662 71,577,179 137,561,406 275,404,788

Total Number of
rejected Tasks 7,241,455 17,293,644 38,980,936 84,040,764 168,137,340

Average Processor
Utilization over active

servers
49.70% 48.53% 45.42% 44.29% 44.22%

Average Processor
Utilization 8.25% 8.75% 9.53% 10.16% 10.20%

Average Memory
Utilization over active

servers
10.37% 9.94% 8.88% 8.35% 8.33%

Average Memory
Utilization 1.72% 1.79% 1.86% 1.91% 1.92%

Average Network
Utilization 93.73% 94.05% 93.62% 93.16% 93.11%

Average Storage
Utilization over active

servers
6.56% 6.17% 5.50% 5.17% 5.15%

Average Storage
Utilization 1.10% 1.13% 1.17% 1.20% 1.20%

Average Accelerator
Utilization over active

servers
51.32% 49.26% 43.35% 40.37% 40.26%

Average Accelerator
Utilization 8.53% 8.89% 9.10% 9.26% 9.28%

Table 11. Large scale simulation results with the Improved SOSM cloud on synthetic inputs.

Number of Cells

13 20 30 50 100

Number of incoming
tasks per second 640 1280 2560 5120 10,240

Total Energy
Consumption (MWh) 14,712.09 22,792.32 34,427.73 57,691.08 115,366.41

Total Number of
submitted Tasks 27,662,402 55,364,650 110,774,898 220,868,089 440,603,473

Total Number of
accepted Tasks 18,950,384 35,895,402 67,665,969 130,788,600 261,030,054

Total Number of
rejected Tasks 8,712,018 19,469,248 43,108,929 90,079,489 179,573,419

Average Processor
Utilization over active

servers
47.51% 46.90% 47.03% 47.22% 47.25%

Average Processor
Utilization 7.97% 8.24% 8.59% 8.86% 8.85%

Average Memory
Utilization over active

servers
10.98% 10.65% 10.30% 10.06% 10.07%

Average Memory
Utilization 1.84% 1.87% 1.88% 1.89% 1.89%

Average Network
Utilization 95.65% 95.12% 94.55% 94.21% 94.21%

Average Storage
Utilization over active

servers
6.65% 6.38% 6.16% 6.02% 6.03%

Average Storage
Utilization 1.13% 1.13% 1.14% 1.14% 1.14%

Average Accelerator
Utilization over active

servers
54.31% 53.05% 52.14% 51.59% 51.64%

Average Accelerator
Utilization 9.12% 9.33% 9.52% 9.68% 9.68%

Table 12. The percentage of accepted tasks for traditional, SOSM and Improved SOSM clouds for the
synthetic inputs.

Number of Cells

Resource Allocation 13 20 30 50 100

Traditional 57.1982% 55.4827% 53.9019% 52.6917% 52.7445%
SOSM 73.7559% 68.7323% 64.7417% 62.0758% 62.0921%

Improved SOSM 68.5059% 64.8345% 61.0842% 59.2157% 59.2438%
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Table 13. The energy consumption (KWh) over the number of accepted tasks for SOSM and Improved
SOSM clouds while increasing the number of cells for the synthetic inputs.

Number of Cells

Resource Allocation 13 20 30 50 100

Traditional 0.861 0.686 0.531 0.454 0.456
SOSM 0.822 0.677 0.545 0.471 0.470

Improved SOSM 0.776 0.635 0.509 0.441 0.442

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Scalability of the three allocation mechanisms by increasing the number of cells and number of incoming tasks, for
the synthetic inputs: (a) Average Processor Utilization over active servers, (b) Average Processor Utilization, (c) Average
Memory Utilization over active servers, (d) Average Memory Utilization, (e) Average Network Utilization, (f) Average
Storage Utilization over active servers, (g) Average Storage Utilization, (h) Average Accelerator Utilization over active
servers, (i) Average Accelerator Utilization.

Figure 6. Total energy consumption in MWh for traditional centralized and SOSM clouds, for the
synthetic inputs.
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The results confirm the improvement of the SOSM variants over the traditional re-
source allocation system in all sizes of the cloud. This can be derived by the fact that
both SOSM clouds managed to serve more tasks for the different sizes of clouds and the
number of incoming tasks per second. The improved SOSM variant rejected slightly more
tasks than the SOSM cloud, but managed to keep the consumed energy at lower levels.
Thus, the ratio of total energy consumption over the number of accepted tasks of improved
SOSM (Table 13) was 0.442 (versus 0.470 of SOSM), validating the fact that the proposed
Assessment Function and Suitability Index can achieve an improved management of energy
consumption required for each task to be executed. Finally, it can be observed that this was
achieved due to the higher utilization of the energy efficient accelerators. The utilization of
the rest of the hardware resources remained at the same level.

(a) (b)

Figure 7. The number of accepted and rejected tasks for traditional centralized and SOSM clouds, for the synthetic inputs:
(a) Total Number of accepted Tasks, (b) Total Number of rejected Tasks.

5. Discussion and Conclusions

The recently proposed Self-Organization and Self-Management resource allocation
scheme for heterogeneous HPC clouds was recently proposed and evaluated at a large scale
through simulation. This scheme was proven to be more efficient in terms of computational
efficiency, energy consumption, service delivery and scalability, compared to the traditional
centralized cloud orchestration. The numerical results indicated that, as the number of
simulated cloud nodes and incoming tasks increase, the improvement is further extended.

In this work, a new Assessment Function and Suitability Index are being proposed
for further optimizing the behavior of the SOSM system. The proposed schemes target
improved energy consumption as a global goal of the cloud infrastructure, by reflecting the
capability of the hardware resources to perform computations with the minimum energy
consumption. This is expected to further utilize resources with a higher performance
per unit of consumed power, thus achieving an efficient decentralized resource allocation
scheme with a lower energy footprint.

The evaluation of the improved SOSM was performed through simulation, and more
specifically with the use of the efficient CloudLightning discrete-time simulator, which
is capable of scaling up to millions of cloud nodes. The simulated applications arose
from traces of three real world HPC applications, while extended benchmarking was
performed by generating synthetic HPC applications. The numerical results indicated
that the Improved SOSM cloud performs equivalently to the SOSM cloud in terms of
computational efficiency, service delivery and scalability, while outperforming on the
required average energy consumption used by the served tasks. Both SOSM variants
outperform the traditional centralised recourse allocation scheme in all cases and metrics
utilized. The use of synthetic application inputs confirmed the tendency of the SOSM
clouds.
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Future work will include the adaptation of distributed machine learning techniques
for enhancing the framework with predictive capabilities that will guide the incoming
tasks more efficiently onto the hardware resources. Additionally, new assessment functions
and the Suitability Index will be proposed for improving the utilization of the resources.
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