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Abstract: Acne vulgaris is the common form of acne that primarily affects adolescents, characterised
by an eruption of inflammatory and/or non-inflammatory skin lesions. Accurate evaluation and
severity grading of acne play a significant role in precise treatment for patients. Manual acne
examination is typically conducted by dermatologists through visual inspection of the patient skin
and counting the number of acne lesions. However, this task costs time and requires excessive
effort by dermatologists. This paper presents automated acne counting and severity grading method
from facial images. To this end, we develop a multi-scale dilated fully convolutional regressor for
density map generation integrated with an attention mechanism. The proposed fully convolutional
regressor module adapts UNet with dilated convolution filters to systematically aggregate multi-
scale contextual information for density maps generation. We incorporate an attention mechanism
represented by prior knowledge of bounding boxes generated by Faster R-CNN into the regressor
model. This attention mechanism guides the regressor model on where to look for the acne lesions by
locating the most salient features related to the understudied acne lesions, therefore improving its
robustness to diverse facial acne lesion distributions in sparse and dense regions. Finally, integrating
over the generated density maps yields the count of acne lesions within an image, and subsequently
the acne count indicates the level of acne severity. The obtained results demonstrate improved
performance compared to the state-of-the-art methods in terms of regression and classification
metrics. The developed computer-based diagnosis tool would greatly benefit and support automated
acne lesion severity grading, significantly reducing the manual assessment and evaluation workload.

Keywords: acne diagnosis; deep learning; density map generation; attention network; regression
models; Faster-RCNN

1. Introduction

Acne vulgaris, or acne, is a skin condition in which dead skin cells and oil from the skin
block hair follicles. This skin condition is clinically featured by blackheads and whiteheads
(open and closed comedones), small and tender red bumps (papules), white or yellow
squeezable spots (pustules), cyst-like fluctuant swellings (cysts), and large painful red
lumps (nodules). It usually affects areas of skin with a high number of oil glands, such as
the face, chest, back and shoulders [1,2]. Facial acne is most common during adolescence,
but it can persist into adulthood. After severe inflammatory acne, scarring inevitably occurs.
The scarring might lead to significant psychosocial consequences and potential risk factors
for serious mental health issues. The resultant facial appearance can cause anxiety, low
self-esteem, and, in the worst-case scenario, depression or suicidal thoughts [3,4].

Acne vulgaris is simple to diagnose; however, its polymorphic structure makes it
difficult to assess its severity. As the number of acne lesions varies during the course of
the condition, numerous evaluation criteria based on clinical screening and photographic
documentation have been established. Grading based on clinical examination, lesion count-
ing, and approaches requiring instruments, such as photography, fluorescent photography,
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polarised light photography, video microscopy, and sebum production measurement, are
developed to assess the severity of acne vulgaris. Clinical examination (grading) and
lesion counting are two widely used methods for acne severity assessment [2,5]. Clinical
grading is a subjective approach that entails analysing the dominating lesions, assessing the
occurrences of inflammation, and measuring the degree of involvement to determine the
severity of acne. On the other hand, acne lesion counting-based method involves counting
the number of a certain kind of acne lesion and then evaluating the overall severity [5].

Acne severity has also been measured via photography, which involves comparing
patients to a photographic standard. This method has many disadvantages, including the
inability to palpate the depth of involvement and the difficulty to visualise small lesions.
When it comes to determining the density of comedones, fluorescence and polarised light
photography can offer some advantages over standard photography. However, there are
some shortcomings, such as a substantial time commitment and the necessity for more
complicated types of equipment [6]. In 2008, Hayashi et al. [7] presented a grading method
to classify acne lesions into four types using standard photographs and lesion counting. On
half of each patient’s face, they counted the number of open and closed comedones, papules,
pustules, cysts, and nodules. They categorised the eruptions into three groups: comedones,
inflammatory eruptions (including papules and pustules), and severe eruptions (including
cysts and nodules). They graded the severity of acne as (i) mild when the acne count
is (0–5), (ii) moderate when the acne count is (6–20), (iii) severe when the acne count is
(21–50), and (iv) very severe when the acne count is more than 50, based on the number of
inflammatory eruptions (papules, pustules) or lesions on half of the face.

A physician’s validated assessment generally determines the effectiveness of acne
treatment. For assessment by the physician, the different acne lesion types involve being
counted independently. Acne affects about 80% of adolescents [8], with 3% of men and 12%
of women experiencing symptoms even through adulthood [9]. As a result, there are a large
number of acne patients who require immediate treatment, as acne can cause scars and
pigmentation as well as a sense of inferiority and depression [10]. Dermatologists need to
know the severity of acne to make a precise and appropriate treatment selection [7]. How-
ever, due to the limited time available for consultation, the manual validated evaluation of
acne might be difficult and time-consuming. Additionally, junior dermatologists need a
reference diagnosis that is objective and trustworthy. With the development of imaging
modalities, widespread availability of digital cameras, and deep learning (DL) techniques,
automatic acne detection and severity evaluation systems from photographs would help
dermatologists attain a more reliable and consistent assessment of acne in clinical practice
trials. Recently, deep learning (DL), especially Convolutional Neural Networks (CNN)
algorithms, leveraging its hierarchical feature learning ability, have made a significant
breakthrough in medical imaging. With adequate training data, representation learning
may potentially outperform hand-designed features [11–13].

The remainder of this paper is presented as follows: following the short clinical
overview of acne vulgaris, related work is given in Section 2. The description of the
dataset used in this study and the proposed methodology are described in Section 3. The
experimental results and findings are reported and discussed in Section 4. Finally, the
proposed work is concluded in Section 5.

2. Related Work

Remarkable progress has been made for automated acne lesion analysis in recent years
covering several acne lesion analysis tasks such as acne classification [14–17], segmenta-
tion [18–21], detection and localisation [16,19,20,22,23], and severity grading [20,24–28].
The analysis of acne lesions was accomplished by image processing techniques [19,21],
extracting hand-crafted features and passing them into a classier model [16,20], and auto-
mated feature learning using CNNs [15,23,26]. In this work, we address the problem of
acne severity grading from facial images.
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Several methods have been proposed in the literature targeting the automated severity
grading of acne lesions. In [20], hand-engineered features were extracted from segmented
acne areas and passed into an SVM model to classify the severity of acne lesions into
four levels following the criteria established by Ramli [29]. Their method was assessed
on a private dataset composed of 35 images. Alternatively, the authors in [24–26,28]
exploited CNNs to extract the features automatically and subsequently, graded the severity
of acne lesions following the criteria established by IGA (three levels) [30], Hayashi (four
levels) [7], GEA (five levels) [31], and IGA (five levels) [30], respectively. Those developed
systems were trained and evaluated on private datasets consisting of 472, 4700, 5972,
and 479 images, respectively. The authors in [27] presented acne counting and grading
method based on label distribution learning paradigm (LDL) with CNN to classify the
acne severity into four levels following Hayashi assessment criteria [7]. They evaluated the
performance of the developed method on a public dataset of 1457 images. However, the
performance of these developed approaches has limitations and experiences challenges.
The performance of handcrafted feature regression-based methods highly depends on the
type of features extracted from a specific dataset. Furthermore, those features might be
applicable in a particular dataset but may not generalise well on other datasets. On the
other hand, CNN regression-based methods globally estimate outcomes from features
without concerning the detailed location of understudied acnes that should be considered
following the grading criteria.

To tackle the aforementioned limitations, we developed a new computer-assisted
image analysis approach to grade the severity of acne lesions called dilated UNet dense
regressor guided by attention mechanism. Inspired by the scenario of crowed counting
from kernel density maps [32,33], region of interest density maps for acne lesions are
generated to produce the count of lesions within a particular area of interest. Thus, we
propose a method to count objects of interest, represented by acne lesions, and subsequently
grading the severity of acne in facial images. Following [34], we adopt fully convolutional
UNet, which is originally used for segmentation, to construct the regressor responsible
for generating the density maps. In addition, following [35], we exploit the multi-scale
dilated filters to implement the bottleneck convolutional filters of UNet. Accordingly, we
developed multi-scale dilated UNet regressor for density map generation. The proposed
convolutional network module uses dilated convolution filters to systematically aggregate
multi-scale contextual information trying to mitigate the lose in resolution. On the top of
the multi-scale dilated UNet regressor, we embed the prior information of bounding boxes
as attention mechanism generated by Faster R-CNN [36], which is originally developed for
object detection. In this fashion, we merge the dilated UNet dense regressor with Faster
R-CNN network for density map regression allowing us to determine the count of acne
lesions and subsequently grade the severity.

Beyond the bounds of acne lesion counting, the concept of object counting has been
widely applied in a variety of scenarios, including cell counting in microscopic images [37],
tree counting [38], animal counting [39], vehicle counting [40], and crowd counting [41].
Generally, estimating the number of any objects in a still image or a video is typically
defined as a counting problem. The object counting methods can be broadly divided into
two categories: detection and regression-based techniques. The counting-by-detection
approaches, which use detectors to detect each object in an image or video, were widely
used in early efforts addressing the object counting topic. To extract low-level features, these
approaches require well-trained classifiers such as HOG, histogram-oriented gradients [42],
and Haar wavelets [43]. Recent approaches leveraging CNN-based object detectors to
achieve end-to-end learning paradigms, such as YOLO3 [44], SSD [45], and Faster R-
CNN [36], have considerably improved counting accuracy.

Different from counting by detection, regression-based approaches obtain the count
without explicitly detecting and localising each object. Global regression and density es-
timation are the two types of regression-based counting techniques. Global regression
methods [22,27] explicitly predict the final count from images by learning the mapping
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between image features. In contrast, density estimation-based methods [32,46] first estimate
a density map, which is then integrated (summed) to produce the final count. Density
estimation typically outperforms global regression because it makes use of more spatial
information of objects in an image. However, acne lesion counting based on either regres-
sion or detection approaches is insufficient to handle both high- and low-density regions
of acne lesions simultaneously. When counting using regression solely, there is a risk of
overestimation when there are low densities of objects (sparse regions). Similarly, counting
by purely detection methods would result in the underestimation problem on occasions
with high densities of objects (dense regions). Thus, counting by detection performs com-
parably better in the sparse regions; on the other hand, counting by regression performs
comparably better in the dense areas [47]. This motivated us to establish a system that takes
advantage of regression (Dilated UNet Regressor) potentials and impressing attention to
the acne lesion positions detected by the detecter (Faster R-CNN), inspired by [48,49].

In general, the contribution of the presented work can be described as follows:

• Inspired by the scenario of crowed counting from kernel density maps and leveraging
the advances of deep learning models, we propose a new method for acne count-
ing and severity grading called dilated UNet dense regressor guided by attention
mechanism.

• We modify the paths of contraction-expanding (encoder–decoder paths) in the UNet
segmentation model by introducing a bounding box encoder that incorporates the box
information generated by Faster R-CNN.

• This embedding adaptation helps to simultaneously handle high- and low-density
region of acne lesions.

• The proposed regressor exploits dilated convolutions to aggregate multi-scale contex-
tual details systematically.

• Experiments on public facial acne image datasets demonstrate the superiority of the
proposed method compared with the state-of-the-art techniques.

3. Materials and Methods
3.1. Materials

To conduct the experiments in this research work, a publicly available dataset named
ACNE04 is used [27]. The number of lesion and global acne severity are annotated in the
ACNE04 dataset by specialists. Images of acne lesions are collected using a digital camera
with patients’ consent when physicians are making a diagnosis. Images are taken at a
70-degree angle from the front of patients to meet the requirements of the Hayashi grading
criteria [7]. The specialists then manually annotate the images using the annotation tool
provided. The ACNE04 contains 1457 images of lesions with 18,983 bounding boxes.

3.2. Methods

In this section, we describe the proposed attention guided UNet dense regressor
for addressing the task of acne counting and severity grading in detail. The developed
architecture incorporates dilated UNet dense regressor for density regression with the
information of bounding boxes generated from Faster R-CNN network, producing a hybrid
detection–regression framework. Figure 1 presents the abstract level of the proposed
architecture for acne severity grading. We will first describe the ground truth generation of
kernel density maps in Section 3.2.1, then we will illustrate the architecture of the proposed
system in Section 3.2.2.
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Figure 1. Block diagram of proposed acne counting and grading system.

3.2.1. Generation of Ground Truth Kernel Density Maps

Due to severe overlapping and variation in the size of the acne, individual acne
detectors might encounter problems in locating facial skin lesions in dense regions. Hence,
the challenge of acne counting is handled as estimating a kernel density function whose
integral over each image region yields the number of acne in that image. Thus, the resulted
density map would preserve information indicating the presence of lesions in a specific
area. To estimate the acne density map from an input facial image, the UNet density
map regressor is first trained on training facial images along with their ground truth
density maps. The quality of generated ground truth density map for a given training
image determines the performance of the developed method. To generate a map of acne
density for training data, it is required to provide point-annotations for acne lesions. As
the data used in this study were provided with bounding boxes around each acne, we first
determined the centre point value of each bounding box around acne lesions producing
pixels dot-annotation. To generate the density map F(x) given a point at pixel xi from
total R acne lesions, the method for generating density maps used in [32] is followed by
convolving δ(x− xi) with Gaussian kernel Gσ. The Gaussian kernel is set with fixed spread
parameter σ of 4 and kernel size of 15 by blurring each acne annotation point as follows:

F(x) =
R

∑
i=1

δ(x− xi) ∗ Gσ(x) (1)

3.2.2. Dilated UNet Dense Regressor Guided by Attention Mechanism

The overall structure of the proposed dilated UNet dense regressor architecture with
attention module is shown in Figure 2. We adapt the UNet encoder–decoder segmentation
model by integrating bounding box information at the level of the skip connections. The
outcome of the bounding boxes acts as an attention assistant module. Using element-wise
multiplication, feature maps extracted at different scales from the contraction path are
fused with features extracted from bounding boxes, then passed to the expanding path.

When it comes to adding attention blocks at the skip connection level, the Attention-
UNet developed in [50] is similar to our model by inserting convolutional filters in the
middle of the encoder and decoder paths. However, the structure of attention models used
to focus on relevant features as well as the strategies to which each model establishes the
constraints differ considerably. While we utilise bounding boxes to guide the network
on where to seek through the network until reaching the bottleneck, Attention-UNet [50]
employs inputs provided by the bottleneck output and moves upward through the skip-
connections. Inserting the convolutional filters in the middle of the encoder and decoder
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paths in our model helps the model to adjust what it learns by concentrating on the attention
areas. This results in the enhancement of feature detection within specific regions of the
facial image.

UNet [34] is a segmentation network architecture built upon fully convolutional
neural networks (FCNs). Unlike FCNs, UNet adopts the symmetry structure of encoder
and decoder (contraction and expanding paths). The UNet architecture consists of three
sections: the contraction, the bottleneck, and the expansion section. UNet’s contracting path
(shown on the left in Figure 2) is similar to that of a standard CNN, with a combination of
convolutional and max-pooling layers. It gradually decreases the size of feature maps while
increasing the number of feature channels, allowing the model to learn both global and local
features. The output size of the encoder path (contracting path) passing to the bottleneck is
1/16 of the original input size. If we keep adding convolutional and pooling layers to the
bottleneck, the output size would be further downsized, making it difficult to produce high-
quality density maps. Inspired by the work [35], dilated convolutional layers is deployed in
the bottleneck to extract more saliency information while preserving the output resolution.
A small-size kernel with a k × k filter is typically enlarged to k + (k − 1)(r − 1) with a
dilated stride parameter r in dilated convolution scheme. As a result, it enables flexible
aggregation of multi-scale contextual information while maintaining the same resolution.
A 2-D dilated convolution can be formulated as follows:

y(m, n) =
M

∑
i=1

N

∑
j=1

x(m + r× i, n + r× j)w(i, j) (2)

where y(m, n) is the resulted dilated convolution from input x(m, n) and filter weights
w(i, j) with the dimensions M and N, respectively. The parameter r represents the dilation
rate. If the dilation rate r = 1, a dilated convolution returns back into a standard convolu-
tion. The third section of UNet, the expanding path (the right part in Figure 2), contains a
succession of convolution and deconvolution components that can step-wise up-sample the
feature maps to their original size and minimise the feature channels. The skip connections
between the contracting and expanding paths combine and concatenate features from both
sides, forcing the model to collect both local and global information.

This dilated UNet dense regressor is augmented with features of the parallel bounding
boxes generated by Faster R-CNN in the skip connections between the encoder and decoder
segmentation model. This helps to embed bounding box information as an attention
mechanism for acne lesions at different scales in the model. The regression-based model
(UNet) works well on dense acne lesions on the facial images, whereas the detection-based
model (Faster R-CNN) provides better detection on sparse acne lesions. Thus, integrating
the detection attention model in one framework with a regression model helps guide and
bring the attention of the regressor to the sparse acne lesions that could be missed by dense
regressor. The bounding boxes are fed independently to two convolutional layers (attention
module) for location feature extraction. The bounding boxes provided to the attention
model is a binary map representing the attention region that corresponds to the location of
the acne lesions. The intersection of the un-pooled map from a level contracting layer and
the feature map of acne lesions from the attention module is produced and concatenated
with the features from the up-sampling layers within each skip connection. Finally, a 1× 1
convolutional layer is applied to map the resultant feature vector to the density maps. The
difference between the predicted density map and the ground truth is estimated using
Euclidean distance. The following is the definition of the loss function:

L(Θ) =
1

2B

B

∑
i=1
‖Z(Xi; Θ)− ZGT

i ‖
2
2 (3)
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where B refers to the training batch size and Z(Xi; Θ) refers to the output produced in our
model with Θ learnable parameters. Xi denotes the input image, and ZGT

i is the ground
truth of the input image Xi.

Figure 2. Block diagram of proposed dilated UNet dense regressor with attention module.

4. Results and Discussion

In this section, we present and discuss the experimental results of the proposed acne
severity grading method. The public dataset used for assessment of our model [27] is
split into 80% for training and validation (1165 images) and 20% for testing (292 images).
The resolution of the facial images are fixed with 512× 512 pixels. The best performance
of the proposed attention guided regressor was obtained after training the network for
200 epochs using the Adam optimisation method on a batch size of 4 and the learning rate
0.0001. The data augmentation is applied to avoid over-fitting. The learning curves during
the learning phase depicting the training and validation loss in terms of MSE are shown in
Figure 3. Our developed model was run on an NVIDIA GTX TITAN X 12GB GPU card.
The proposed algorithm is implemented based on the Tensorflow framework.
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(a)

(b)
Figure 3. Learning curves of the proposed attention guided dilated UNet dense regressor. (a) Training
loss in terms of MSE. (b) Validation loss in terms of MSE.

Table 1 presents the resulted confusion matrix from the proposed model architecture,
where L0, L1, L2, and L3 refer to the four severity grading levels introduced as mild,
moderate, severe, and very severe labels, respectively, based on the number of inflammatory
eruptions (papules, pustules) and lesions. It can be noticed that images with L0, i.e., acne
count is ≤5, are accurately diagnosed and graded. The remaining grading levels, L1
(6–20), L2 (21–50), and L3 (>50), show that the misclassification in the label prediction
always occurs between two successive labels. For instance, L1 is only falsely predicted as
L0. Similarly, L2 is falsely predicted L1, and L3 is misclassified as L2. This is a foreseen
prediction due to the overlapping and similarity of appearance of acne lesions with a close
severity level [27].

To elaborate the performance of our method in terms of the identification of each
severity level, Table 2 exhibits the performance evaluation in terms of precision, recall
(sensitivity), specificity, and accuracy. The last column shows the number of existing
examples per each class label. In terms of precision, L3 attains the best performance
achieving precision of 100%, followed by L1, L2, and L0, respectively. The images with
severity level L0 are identified with 100% sensitivity, proving the superiority of detection
in terms of true positive detection over other severity levels. Otherwise, L1 is predicted
with the lowest sensitivity, reporting only 69%. According to the true negative rate, the
severity level L3 yields the best performance with specificity 100%, whereas the severity
level L0 produces the lowest results achieving specificity of 79%. The images with severity
level L3 (26 images) gain accuracy of 99%, whereas the images with severity level L1 show
accuracy of 84% (127 images). However, due to the imbalanced label distribution, the
accuracy metric solely could be misleading in measuring the model performance [51].
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Table 1. Confusion matrix of the proposed attention mechanism guided dilated UNet dense regressor.

Predicted

L0 L1 L2 L3

L0 103 0 0 0
L1 39 88 0 0
L2 0 8 28 0
L3 0 0 4 22

Table 2. Performance evaluation of each class detection in the proposed attention mechanism guided
dilated UNet dense regressor.

Class Pre Sen Spe Acc Support

L0 0.73 1 0.79 0.87 103
L1 0.92 0.69 0.95 0.84 127
L2 0.88 0.78 0.98 0.96 36
L3 1 0.85 1 0.99 26

Table 3 displays a comparison of the performance of the proposed acne grading
method against methods existing in the literature. In addition to precision, sensitivity,
specificity, and accuracy evaluation metrics, Mean Absolute Error (MAE) and Mean Square
Error (MSE) are also used. These metrics can be defined as follows:

MAE =
1
K

K

∑
i=1

∣∣∣Ci − CGT
i

∣∣∣ (4)

MSE =

√√√√ 1
K

K

∑
i=1

∣∣Ci − CGT
i

∣∣2 (5)

where K refers to the number of testing images, CGT
i represents the ground truth count of

acne lesions, and Ci is the estimated count of acne, which is resulted from calculating the
total pixel values corresponding to acne lesions in the density map. The number of acne
lesions in an image can be counted by integrating the densities over the image region [52].
The concept of object counting from density map was originally introduced in [52], where
the integral (sum) over a region yields the number of objects in that region. This can be
defined using the following formula:

Ci =
L

∑
l=1

W

∑
w=1

Zl,w (6)

where Zl,w refer to the pixel values of density map; L and W are the dimensions of
density map.

For comparison purposes, results reported from state-of-the-art acne grading models
summarised in Table 3 are broadly classified into regression-based machine learning ap-
proaches [42,53,54], regression-based deep learning approaches [55–57], detection-based
approaches [36,44], and label distribution learning approach [27]. In the regression-based
machine learning approaches including SIFT-Hand Crafted Features [53], HOG-Hand
Crafted Features [42], and GABOR-Hand Crafted Features [54], the features SIFT, HOG,
and GABOR, respectively, are extracted manually from facial images and classified by an
SVM model into four severity levels. Regression-based machine learning approaches show
poor performance in all evaluation metrics. In regression-based deep learning approaches
including VGGNet [55], Inceptionv3 [56], and ResNet [57], the features are extracted auto-
matically and fed to a fully connected neural network for classifying the severity into four
levels. Contrary to the regression-based machine learning approaches, regression-based
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deep learning approaches achieve substantially improved performance, where ResNet [57]
attains precision of 75.81%, specificity of 91.85%, sensitivity of 75.35%, and accuracy of
78.42%. MAE and MSE metrics do not apply to regression-based methods because they
use a classifier to identify the levels of acne lesion severity rather than grading based on
counting the acne lesions.

Table 3. Comparison with the existing acne lesion detection and grading methods on the same
dataset. NA: Not Applicable, R-ML: Regression based Machine Learning (SVM), Regression-DL:
Regression based Deep Learning, D: Detection, and LD: Label Distribution.

Method/Criteria Method Description MAE MSE Pre Spe Sen Acc

SIFT-Hand Crafted
Features [53] R-ML NA NA 42.59 78.44 39.09 45.89

HOG-Hand Crafted
Features [42] R-ML NA NA 39.1 77.91 38.1 41.3

GABOR-Hand Crafted
Features [54] R-ML NA NA 45.35 79.89 41.78 48.22

VGGNet [55] R-DL NA NA 72.65 90.6 72.71 75.17
Inceptionv3 [56] R-DL NA NA 74.26 90.95 72.77 76.44

ResNet [57] R-DL NA NA 75.81 91.85 75.35 78.42
YOLOv3 [44] D 6.69 11.35 67.01 85.96 51.68 63.7
F-RCNN [36] D 6.7 11.51 56.91 90.32 61.01 73.97

LDL [27] LD 2.93 5.42 84.37 93.8 81.52 84.11

Proposed Method Attention Guided
Regressor 1.76 3.57 88.25 93 83 91.5

Moreover, detection-based methods including YOLOv3 [44] and F-RCNN [36] per-
form well in a sparse region where the acne lesions are not dense. However, they fail
in the detection when the size of the acne lesions is small and overlapped. For instance,
F-RCNN [36] yields MAE of 6.7, MSE of 11.51, precision of 56.91%, specificity of 90.32%,
sensitivity of 61.01%, and accuracy of 73.97%. In the most recent acne severity grading
method named LDL [27], the acne severity grading was realised following the scheme of
label distribution learning (LDL) that considers the ambiguous information among levels
of acne severity. The authors reported MAE, MSE, precision, specificity, sensitivity, and
accuracy of 2.93, 5.42, 84.37%, 93.8%, 81.52%, and 84.11%, respectively. Our proposed atten-
tion guided regressor model surpasses the state-of-the-art methods in all evaluation metrics
except specificity, where LDL [27] achieved better performance. The developed method
shows MAE of 1.76, MSE of 3.57, precision of 88.35%, specificity of 93%, sensitivity of 83%,
and accuracy of 91.5%. In terms of subjective evaluation, an example of images shown in
Figure 4 illustrates the correct acne lesion detection and severity grading in the resulted
attention density maps using the attention mechanism guided regression model, whereas
Figure 5 depicts the misprediction of acne lesions in the resulted attention density maps.

The Figures illustrate the attention density maps through the four levels of acne
severity. These results show that our model contributes to significantly estimating improved
density and localisation maps. It can also be noticed the misprediction that occurred in the
resulted maps is not substantial and can be tolerated. The misprediction in the density maps
could be improved when training the model on a larger dataset. The presented objective
and subjective performance indicate the importance of properly integrating regression and
detection methods in one framework. It also reveals the significance of embedding the
prior knowledge onto the model architecture while training. Hence, the proposed attention
mechanism incorporated into regressor architecture would help to highlight salient features
that are passed through the skip connections. This leads us to believe that the proposed
model is a viable solution when dealing with diverse object distribution in specific regions.
Furthermore, the dilated convolution is shown to be a good choice, which uses sparse
kernels to replace implementing several layers of the pooling and convolutional filters. In
summary, this paper presents an improved deep learning method based on integrating
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regression and detection-based approaches for acne severity grading from facial images.
As a result, the acne lesions are correctly counted, and the severity is accurately graded by
the proposed method.

(a)

(b)

(c)

(d)
Figure 4. Cont.
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(e)

(f)

(g)

(h)
Figure 4. Image examples show correctly acne lesion detection and severity grading in the resulted
attention density maps using attention mechanism guided regression model. From left to right:
image, ground truth, and predicted attention density map of acne lesions. (a) Level 0: Example
1. (b) Level 0: Example 2. (c) Level 1: Example 1. (d) Level 1: Example 2. (e) Level 2: Example 1.
(f) Level 2: Example 2. (g) Level 3: Example 1. (h) Level 3: Example 2.
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(a)

(b)

(c)

(d)
Figure 5. Image examples show misprediction of acne lesions in the resulted attention density
maps. From left to right: image, ground truth, and predicted attention density map of acne lesions.
(a) Level 0. (b) Level 1. (c) Level 2. (d) Level 3.
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5. Conclusions

This work proposed an attention mechanism integrated with dilated UNet regressor
for acne counting and severity grading from two-dimensional facial images. By incorporat-
ing the attention mechanism represented by bounding boxes generated by Faster R-CNN
with density map generated by dense regressor, following a fully supervised learning
scheme, the proposed method yielded better acne grading performance than the state-of-
the-art methods. Integrating bounding boxes information guides the proposed method
to simultaneously locate the sparse and dense acne lesion regions for the density map
regression task, targeting towards improving its robustness to diverse distributions of facial
acne lesions. For future work, we suggest implementing and training the developed model
within a weakly-supervised framework, pushing forward to weakly supervised learning
fashion due to unavailability of large amounts of annotated data within the medical domain
and the fact that partial annotations are more common.
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