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Abstract: Optimizing traffic signal control (TSC) at intersections continues to pose a challenging
problem, particularly for large-scale traffic networks. It has been shown in past research that it is
feasible to optimize the operations of individual TSC systems or a small collection of such systems.
However, it has been computationally difficult to scale these solution approaches to large networks
partly due to the curse of dimensionality that is encountered as the number of intersections increases.
Fortunately, recent studies have recognized the potential of exploiting advancements in deep and
reinforcement learning to address this problem, and some preliminary successes have been achieved
in this regard. However, facilitating such intelligent solution approaches may require large amounts
of infrastructure investments such as roadside units (RSUs) and drones, to ensure that connectivity
is available across all intersections in the large network. This represents an investment that may be
burdensome for the road agency. As such, this study builds on recent work to present a scalable TSC
model that may reduce the number of enabling infrastructure that is required. This is achieved using
graph attention networks (GATs) to serve as the neural network for deep reinforcement learning.
GAT helps to maintain the graph topology of the traffic network while disregarding any irrelevant
information. A case study is carried out to demonstrate the effectiveness of the proposed model, and
the results show much promise. The overall research outcome suggests that by decomposing large
networks using fog nodes, the proposed fog-based graphic RL (FG-RL) model can be easily applied
to scale into larger traffic networks.

Keywords: traffic signal control; machine learning; multiagent reinforcement learning; graph
attention network

1. Introduction

With growing global populations, urbanization, and automobile ownership, urban
transportation networks continue to experience increasing traffic congestion, with severe
consequences that include travel delay, driver frustration, increased emissions, and reduced
safety. The control of traffic at urban intersections which can help reduce congestion can be
classified broadly as: passive and active. The former entails no explicit control over traffic
operations at a given intersection; thus, movement through the intersection relies on driver
awareness and compliance to the rules of the road (e.g., traffic signs and unsignalized
roundabouts). On the other hand, active intersection control directly restricts some traffic
movements to enable others at any given time block. The most prominent of these is
the traffic signal. While traffic signals provide a relatively safe method of intersection
control, efficiency has been elusive, particularly in intersections with high traffic volumes.
According to the Federal Highway Administration (FHWA), poor signal timing can account
for up to 10% of total traffic congestion [1,2]. The optimization and control of traffic signals
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represent a key strategy for the management of traffic congestion and improving traffic
conditions in urban areas.

Given the significance of traffic signal control (TSC) in urban mobility and conse-
quently on social and commercial activity, TSC research has received much attention.
Broadly, TSC mechanisms can be placed into two categories: fixed-time traffic control
and real-time traffic control. The former typically uses a pretimed program that controls
the cycle and split times. Webster (1958) was one of the earliest researchers to present a
fixed-time control model which had sought to minimize the average delay of vehicles [3].
For traffic flow conditions that are stable with little or no randomness, fixed-time traffic
control is well suited. However, fixed-time models are unsuitable for highly stochastic
and unstable traffic flow conditions. For these conditions, real-time traffic control that
is responsive to traffic conditions is more suited. In real time traffic control, real-time
traffic data are used, thereby allowing the signals to adjust accordingly, duly accounting for
variations in traffic flow. A widely used real-time traffic controller is the actuated signal,
which regulates its cycle and timings based on real-time traffic data received from detectors
and sensors. Several applications of actuated signals have been developed and deployed
successfully; yet still, actuated signals are not always effective in efficient control of traffic
across multiple intersections simultaneously in large road networks This adversity arises
when the signal is unable to cooperate with the signals at other intersections. Over the
decades, several studies have shown that TSC methods such as actuated and pretimed
controls are adequate for a single intersection or small networks [4,5]; however, but they do
not lead to optimal solutions when they are applied to large networks.

With the imminent emergence of robust vehicular connectivity and automation tech-
nologies, researchers are investigating the efficacy of traffic signal control that leverages
such technologies.

Scaling small-intersection TSC solutions to large networks has been a persistent chal-
lenge that has been investigated using various optimization algorithms. In recent years,
there has been pronounced interest in other solution methods, including those that can take
advantage of the plethora of data offered by new and advanced traffic sensors [6,7]. Deep
learning and reinforcement learning concepts were introduced several decades ago [8,9];
however, continuing increases in computational capabilities have made their application
more feasible, and therefore, fostered a new generation of deep and reinforcement learn-
ing algorithms for purposes of continuous and discrete control [10,11]. Parallel with the
emergence of smart infrastructure technologies that facilitate real-time data collection and
sharing such as roadside units (RSUs) and drones, there have been advancements in ma-
chine learning techniques. With these developments, it has become increasingly feasible
to solve traffic signal control and other problems associated with intelligent transporta-
tion systems.

For these reasons, deep reinforcement learning (DRL) based approaches to TSC so-
lution for large networks has become an increasingly studied topic. Wiering’s study was
one of the earliest to propose the use of reinforcement learning algorithms for traffic signal
control to minimize city-wide congestion [12]. Prashanth and Bhatnagar proposed rein-
forcement learning with function approximation for traffic signal control, using Q-learning
for adaptive signal control [13]. Chu et al. (2020) proposed a multiagent deep reinforcement
learning algorithm that could be applied to large-scale networks; they applied an actor critic
network to recurrent neural network with long-short term memory (LSTM) [14]. Wang et al.
proposed the cooperative double Q-learning (Co-DQL) model that leverages mean field
approximation of all other agents in the network to significantly reduce model complexity
and the curse of dimensionality [7]. Guo et al. (2019) presented six traffic control methods
that utilize connected and automated vehicle (CAV) capabilities [6].

While the aforementioned studies utilize the state-of-the-art DRL approaches for TSC
problems, an oft overlooked topic is the resource constraints that may restrict transportation
agencies and other government entities from deploying data-facilitating infrastructure such
as RSUs and drones. Additionally, with regard to studies that leveraged CAV capabili-
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ties, the realization is that there exists uncertainty on when CAVs will be deployed on
public roads.

This study presents an alternative to scalable TSC models that can reduce the number
of deployed data-facilitating infrastructure. The proposed model utilizes a graph attention
network (GAT) to preserve the topology of the traffic network while focusing on relevant
inputs to make traffic control decisions. Doing this allows the model to address large
networks as well as variable-sized inputs. The proposed model is applicable where RSUs
are deployed in an urban grid-like network, each serving as fog-nodes that collect data via
detectors and share with other fog-nodes in its range, utilizing the information to control
the phase and duration of the traffic lights in its control. The Q-network utilizes double
estimators to approximate max

a
E{Qt(st+1, a)} instead of maximizing over the estimated

action values in the corresponding state to approximate the value of the next state (as is the
case in standard Q-learning). Therefore, performance overestimation is avoided. Overall,
the model extracts node embeddings from fog node features while also constructing an
adjacency matrix that maps the topology of the connected fog nodes, which, in turn, are
passed through the attention layer to be used for the Q-network. Unlike the models in the
literature, the proposed model considers the preservation of network topology in the TSC
problem using GATs. Additionally, recognizing that until CAVs are deployed on public
roads, CAV-related solutions proposed in the literature cannot be applied in the practice,
this paper proposes an intelligent, scalable traffic control model that can be integrated into
large, urban networks without using CAVs directly.

2. Background
2.1. Reinforcement Learning

In general, reinforcement learning (RL) utilizes feedback of decisions, observations,
and rewards. Deep reinforcement learning (DRL) combines RL with deep learning, which
allows for end-to-end training of multilayer models that can solve complex problems. This
is particularly useful for sequential decision making such as in robotics, video games, and
traffic operations [10,14–18].

Due to the data-driven nature of traffic operations, and fueled by advancements in
sensor and communication protocols, RL and DRL have been increasingly utilized to
address problems in the transportation engineering domain. These applications include
vehicle routing, signal control, vehicle control, and traffic operations. Du et al. (2021)
presented the GAQ-EBkSP method, a DRL-based framework that dynamically routes urban
traffic [19]. In the domain of individual signal timing problems, Li et al. (2016) proposed a
DRL-based method for traffic signal timing, utilizing deep neural networks as the backbone
for reinforcement learning [20]. For direct vehicle control, Koh et al. (2020) presented DRL-
based real-time navigation using deep Q-learning based simulation, which has significant
potential benefits particularly in urban transit studies [21].

One of the most popular single-agent RL method is Q-learning. Q-learning is a model-
free reinforcement learning approach that can be considered as asynchronous dynamic
programming, where agents learn optimal policies in Markovian domains through solv-
ing sequential decision making [22]. This is achieved by estimating the optimal value,
Q∗(s, a) = max

π
Qπ(s, a), for each action a during state s. Because most problems have

large state and action spaces to learn all action values separately, a parametrized value
function Q(s, a; θt) can be learned instead. Thus, the standard Q-learning update for the
parameter from taking action at in state st with observed reward rt+1 and the subsequently
resulting state, st is:

θt+1 = θt + α
(

YQ
t −Q(st, at; θt)

)
∇θt Q(st, at; θt)
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where α is the learning rate, and the target YQ
t is defined as:

YQ
t ≡ rt+1 + γmax

a
Q(st+1, a; θt)

where the constant γ ∈ [0, 1) is a discount factor that adjusts the relative weight between
immediate and later rewards.

Q-learning in multiagent reinforcement learning (MARL) differs primarily in that
MARL is based on Markov game instead of a Markov decision process (MDP) [23]. Similarly
to MDPs, Markov games can be represented as a tuple (M, S, A1,2,...,M, r1,2,...,M, p), where
M is the number of agents, S = {s1, s2, . . . , sm} is the set of system states, Am is the action
set of agent m ∈ {1, 2, . . . , M}, rm : S×A1 × . . .×AM × S→ R is the reward function
for agent m, and p : S×A1 × . . .×AN → µ(S) is the transition function for moving from
one state s to another state s′ given action a1,2,...M. Partially observable Markov games
additionally require Ω, the set of observations of the hidden states, and O : S×Ω→ R≥0 ,
the observation probability distribution.

In MARL, each agent learns to choose its actions according to their respective strategies.
At each time step, the system state transfer occurs by taking the joint action a = (a1, . . . , aM)
under the joint strategy π , (π1, . . . ,πM), and each agent receives their immediate reward
from the joint action. For each agent m under joint policy π and initial state s(0) = s ∈ S,
the expected discounted reward is:

Vπ
m(s) = Eπ

{
∞

∑
t=0
γtrm(t + 1)|s(0) = s

}

Additionally, the agent-specific average reward can be found as:

Jπm(s) = lim
T→∞

1
T

Eπ

{
T

∑
t=0

rm(t + 1)|s(0) = s

}

2.2. Graph Neural Networks

Graph neural networks (GNNs) are able to preserve acyclic and nonacyclic graph
topology, which can enhance road network representation particularly in the context of
scalable network traffic signal control [24–30]. Due to the graphical nature of transportation
networks, for both vehicles as well as roadways, GNNs can serve as robust neural network
architectures for deep reinforcement learning [26,27]. Deep reinforcement learning requires
a robust neural network architecture that enables forward and backpropagation for pur-
poses of model training [28]. Graph convolutional networks (GCNs) can serve as powerful
neural networks that can address graph data for deep reinforcement learning [26,27]. The
nodes of a GCN layer aggregates its own observed states and those of its neighbors into
embeddings. Given different relational graphs, the message propagation is as follows [30]:

hl+1
i = ς

(
Σm∈Mi gm

(
hl

i, hl
j

))
where hl

i ∈ Rd(l) denotes the hidden state of node vi in the lth layer of the neural network,
d(l) is layer dimensions, Mi is the set of incoming messages, and gm(·) is the transformation
for the message from the nodes.

In essence, these node embeddings can address problems caused by variable length
inputs to perform various sequential learning tasks given graph data, and error terms
can be used to backpropagate to perform the requisite gradient descent for parameter
tuning purposes.
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3. Methodology
DRL Model Architecture

The fog-based graphic RL (FG-RL) model for TSC presented in this paper uses a
scalable and decentralized methodology. Due to the inherent complexity associated with
large networks, centralized models may not converge. Therefore, this study utilizes a
decentralized approach. The graphical structure of the network topology is preserved with
traffic signals and intersections, along with their relative adjacencies. The fog arrangement
determines the topology of the connected entities and the number of the connected inter-
sections within its range. As such, the adjacency matrix containing the relative adjacencies
and connectivity of intersections vary corresponding to the distribution of RSUs (and in
turn, the fog nodes) in the network and the number of road intersections overseen by each
RSU. In DRL architecture, each RSU is represented as a fog node, which serves as an agent
that makes decisions to select traffic signal phases for each of the intersections it oversees,
with an overall goal of congestion reduction.

The network topology and information attention are modeled using GAT. The fog node
can oversee multiple intersections, some of which may have few or no queued vehicles.
Therefore, it must learn to divert attention away from relatively uncongested intersections
and focus more on congested intersections. However, a given intersection’s congestion
levels can vary drastically between episodes or even across different time-steps in one
episode. As a result, applying an attention model can facilitate the learning process under
conditions when such variations exist.

Each fog node i produces node embeddings that encode node features hi. The state is
a tuple of N× F node feature matrix Xt and an N×N adjacency matrix At, where N is the
total number of nodes, and F is the number of features in each node. The feature matrix
considers the states consistent with those in the literature [7,14], namely, (i) the cumulative
delay of the first vehicle on each incoming lane at an intersection, and (ii) the total number
of approaching vehicles on each incoming lane.

The network architecture is shown in Figure 1. At each time-step t, the node feature
matrix Xt is fed as the input into a fully connected encoder denoted ϕ that generates node
embeddings Ht in d dimensional embedding space H∈RN×d

Ht = ϕ(Xt)∈H

The node embeddings then are passed through the graph convolution with attention
mechanism.
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The adjacency matrix is weighted using the following attention mechanism:

H′t = GAT(Ht, At) = αHtW + b

where αij are coefficients computed by the attention mechanism defined in the litera-
ture [31]:

αij =
exp

(
LeakyReLU

(
aT [Whi

∣∣∣∣Whj
]))

Σk∈(Ni)
exp(LeakyReLU( aT [Whi||Whk]))

The output of the GAT layer is then used as inputs to the Q network to obtain the Q val-
ues. Further, experience relay and soft target update are utilized to enhance learning [11,31],
and the model is trained on randomly sampled batches from a replay buffer. Thus, the
architecture can be summarized as follows:

• FCN Encoder ϕ: Dense (32) + Dense (32)
• GAT Layer GAT: GATConv (32)
• Q Network: Dense (32) + Dense (32) + Dense (64) + Dense (32)
• Output Layer: Dense (5)

4. Case Study

The case study utilized the Simulation of Urban MObility (SUMO) for traffic simu-
lation [32], an open-source simulator that enables detailed tracking of vehicle and traffic
light parameters. Sumo is a highly portable, microscopic, and continuous traffic simulation
package designed to handle large networks. For an initial proof of concept, a small 6-node
network is considered (Figure 2). The traffic signal parameters are defined as the pre-timed
phases, with the RL agents selecting the appropriate phase for each intersection. Further,
the lane-change parameters for the vehicles follow the LC2013 model, provided in SUMO.
The vehicles are defined for car-following behavior but are permitted to change lanes
if needed.
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4.1. Network Descriptions

A small grid network was used for numerical experimentation, as shown in Figure 2.
Two network settings are considered for numerical experimentation. The first setting uti-
lizes a “smart cities” approach, where each intersection is connected via a central controller
in a cloud environment. This setting is a fully observable Markov decision process or
MDP. It must be noted that this is an ideal setting that has no constraints, meaning that all
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entities are assumed to be connected. While this can be achieved easily in simulation, it will
need many connectivity facilitating infrastructure units to ensure that the entire network is
connected. This could be problematic particularly at large networks.

The second setting utilizes the proposed fog-node approach, where intersections are
grouped together by a small number of connectivity-facilitating infrastructure such as RSUs
or drones. To assess the effects of multiple facilitating infrastructure with varying numbers
and arrangements of connected intersections, this numerical example was conducted with
two and three fog nodes, detailed in Figure 3. As previously stated, the two benefits of
segmenting the whole network into smaller fog nodes are the improved scalability and
the possibility of reducing the infrastructure (number of RSUs and/or drones) required to
facilitate the intelligent TSC models.

Each westbound and eastbound road segment entering signalized intersections is a
two-lane arterial comprised of a through lane and a left-turn lane. Each northbound and
southbound road segment consists of a single through lane. Vehicles enter each outer road
segments (10 total) at a flow rate of 2200 vehicles/hour. The vehicle origins and flows are
randomly distributed.
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4.2. Markov Decision Process Settings

Action Space
Each fog node controls the traffic signals in its range. As shown in Figure 3, the fog

nodes control specific intersections under their “jurisdiction”. The fog node arrangements
are as follows, with the top left intersection denoted as 0, and subsequent intersections are
numbered from left to right and top to bottom.

Arrangement 1: intersections 0–3, 1–4, and 2–5 share information and control.
Arrangement 2: intersections 0–1–2 and 3–4–5 share information and control.
Arrangement 3: intersections 0–1–3 and 2–4–5 share information and control.
Fully-Observable: all intersections share information and control.
In the (0–3, 1–4, 2–5) arrangement, there are a total of three fog nodes, sharing data

across only connected intersections. In the remaining two arrangements, there are only two
fog nodes. Each signal can have one of five pre-determined phases, as is consistent with
most literature and the practice [7,14]: east–west straight, east–west left-turn, three straight
and left-turn phases for east, west, and north–south.

State Space
The local state observed within each fog node is defined as follows:

sk,t =
{

waitk,t[lane], wavek,t[lane]
}

As stated previously, waitk,t[lane] denotes the cumulative delay of the first vehicle for
a given lane in an intersection, and wavek,t[lane] denotes the total number of approaching
vehicles on each incoming lane.

Rewards
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The reward function consists of two main penalties:

r1 = waitk,t[lane]
r2 = wavek,t[lane]

The total reward is the negative weighted sum of the two penalties:

r = −Σlane(σ1r1 + σ2r2)

where σ1, σ2 are used to scale the two penalties. This numerical example used σ1 = 1 and
σ2 = 0.30.

5. Results

Figure 4 presents a comparison of the training results using 2 fog nodes versus a fully
observable system.
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For each setting, the model was trained using a soft target update set at 1× 10−3 and
a learning rate of 1× 10−5. Each model was trained for a total of 100,000 time steps, with
20,000 time steps for warm-up. Given these training parameters, the training results for the
fully observable “smart cities” setting and the fog-node setting are shown in Figure 4. It
can be seen that despite the lack of information sharing between fog nodes, the training
performance is similar to the fully observable model with the exception of Arrangement 2
(0–1–2, 3–4–5).

However, despite strong training performance, the use of fog nodes results in higher
average intersection delay, as shown in Figure 5. Over a 1000 time-step policy replay with
randomized seed, the fully observable model exhibits the best performance, with 50.37 s
of average intersection delay. On the other hand, the worst performance is obtained from
an actuator-based, static traffic light system with an average intersection delay of 243.72 s.
Among the fog node models, the models with only two fog nodes performed worse than
the model with three fog nodes. The (0–1–2, 3–4–5) model outperformed the (0–1–3, 2–4–5)
model by about 30 s (118.25 s vs. 148.26 s), and the (0–3, 1–4, 2–5) model performed the
closest to the ideal fully observable scenario with an average intersection delay of 74.23 s.

The primary shortcoming of a fully observable model for traffic signal control problems
is that fully observable TSC models are difficult to scale well due to the curse of dimen-
sionality (dramatic increase in complexity as the number of connected nodes increases).
These results indicate that the use of separately controlled fog nodes allows for comparable
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training performance while being more scalable, albeit at the cost of some performance.
Based on the discrepancies in average intersection delays across fog node arrangements,
there is an opportunity to achieve pareto-optimality, particularly in large networks.
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6. Conclusions

In order to create a more easily scalable and intelligent traffic signal control (TSC)
model that can be applied to large networks, this paper proposed the use of graph at-
tention networks (GATs) and fog-node architecture. The added benefit of segmenting
large networks into smaller fog-nodes includes the possibility of reducing the number of
smart infrastructure units required to facilitate the intelligent TSC models. Multiagent
reinforcement learning based models for TSC typically can be affected by the curse of
dimensionality. The proposed model addresses scalability in two ways: (i) graph attention
that only utilizes relevant node features and neighbor node features to reduce the input
complexity, and (ii) fog-nodes that break up the large network into manageable sizes.
Preliminary findings show that the proposed model shows promising results that can be
scaled into larger networks.

However, their performance in reducing average intersection delay may be relatively
inferior compared to a fully observable model. As such, ongoing work on various fog
node deployment arrangements and their performance, are expected to provide additional
insights on the tradeoff between scalability and performance using the proposed GAT and
fog-node architecture. Another promising research direction is to create a simplified or
averaged performance within each fog node to reduce the data size and complexity, thereby
allowing fog nodes to exchange data between each other to make decisions based on the
performance of other fogs.
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