
Citation: Hyseni, D.; Piraj, N.;

Çiço, B.; Shabani, I. The Use of

Reactive Programming in the

Proposed Model for Cloud Security

Controlled by ITSS. Computers 2022,

11, 62. https://doi.org/10.3390/

computers11050062

Academic Editors: Leandros Maglaras,

Helge Janicke, Mohamed

Amine Ferrag and Francisco

J. Aparicio-Navarro

Received: 20 March 2022

Accepted: 22 April 2022

Published: 25 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

The Use of Reactive Programming in the Proposed Model for
Cloud Security Controlled by ITSS
Dhuratë Hyseni 1 , Nimete Piraj 2, Betim Çiço 3 and Isak Shabani 1,*

1 Faculty of Electrical and Computer Engineering, University of Prishtina, St. Bregu i Diellit p.n.,
10000 Prishtina, Kosovo; dhurate.hyseni@uni-pr.edu

2 Faculty of Computer Science, University of Prizren “Ukshin Hoti”, St. Rruga e Shkronjave, nr. 1,
20000 Prizren, Kosovo; nimete.piraj@gmail.com

3 Department of Computer Engineering, Epoka University, St. Tiranë-Rinas, 1032 Tirana, Albania;
bcico@epoka.edu.al

* Correspondence: isak.shabani@uni-pr.edu

Abstract: Reactive programming is a popular paradigm that has been used as a new solution in
our proposed model for security in the cloud. In this context, we have been able to reduce the
execution time compared to our previous work for the model proposed in cloud security, where
the control of security depending on the ITSS (IT security specialist) of a certain organization based
on selecting options. Some of the difficulties we encountered in our previous work while using
traditional programming were the coordination of parallel processes and the modification of real-time
data. This study provides results for two methods of programming based on the solutions of the
proposed model for cloud security, with the first method of traditional programming and the use
of reactive programming as the most suitable solution in our case. While taking the measurements
in this paper, we used the same algorithms, and we present comparative results between the first
and second methods of programming. The results in the paper are presented in tables and graphs,
which show that reactive programming in the proposed model for cloud security offers better results
compared to traditional programming.

Keywords: reactive programming; cloud provider; reactive architecture; reactive extensions; encryption
and decryption file; data sources; IT security specialist

1. Introduction

In cloud computing, security has been a challenge because a third party has access to
our data, and the data should be trusted to a third party. Recent trends in cloud security
have played an important role in attracting organizations/companies to deploy sensitive
data on the cloud. In this paper, the IT Security Specialist, ITSS, is referred to as the person
responsible for a company/institution who realizes the “configuration” of security for other
users in the organization.

In this context, the proposed model offers different scenarios based on the level of
sensitivity of data [1]. From another point of view, this increases the reliability of clients in
cloud computing. This reliability will be increased by offering data security controls to end-
user ITSS. Our model, shown in Figure 1, was proposed in [1] with the same philosophy for
controlling security in the cloud, which is based on two objectives: the control of security
depending on the ITSS of a certain organization and the possibility of selecting options
based on different algorithms. The increase in requirements in programming for performing
tasks simultaneously in traditional programming has encountered requirements that cannot
be covered by the increase in resources, such as multi-processor processing. After all this,
another method of programming is required that will function asynchronously; thus, in
order to realize these requirements, we use reactive programming.

Computers 2022, 11, 62. https://doi.org/10.3390/computers11050062 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11050062
https://doi.org/10.3390/computers11050062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-2139-0963
https://orcid.org/0000-0001-9078-6147
https://orcid.org/0000-0003-2071-6834
https://doi.org/10.3390/computers11050062
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11050062?type=check_update&version=1

Computers 2022, 11, 62 2 of 14

Computers 2022, 11, x FOR PEER REVIEW 6 of 16

Table 1. Data in relation to our proposed model for security in cloud, referring to study [21] and
with the most important elements shown.

Elements Support of the Proposed Model

Does your company have an
encryption strategy?

Our proposed model gives responses to the
question where data are partitioned and
encrypted and then sent to the cloud, of which
50% say their organizations have an overall
encryption plan that is applied consistently
across the entire enterprise, but others have a
limited encryption plan, or they did not have at
all.

Industries that have shown interest in
developing a better encrypting strategy

In this part, our proposed model offers support
for every field we mentioned above.

Possible attacks on sensitive data

After processing the data, 53% of attacks on
sensitive data come from the employees. In this
context, our proposed model does not allow
employees to make such interferences. It uses
security configurations realized by the IT
specialist (employee who is qualified in IT), and
then, the entire communication is developed on
that configuration of a particular employee.

What keys pose difficulties when
managing in the encrypting process?

The proposed model makes it possible to store
the data by the used strategy. This strategy
depends on the type of algorithm used, the
cryptography keys, the method of partitioning,
etc. This file is stored locally to the last user.

The elements that will be offered by the proposed model for cloud security are pre-
sented in Table 1. As an initial part, the “configuration” of the security of the organization
will be realized by the IT Security Specialist. Based on data sensitivity, we select the op-
tions mentioned below (Proposal 1, Proposal 2, and Proposal 3).

The proposed model is based on two main actors: the possibility of categorizing the
level of security based on the combination of security algorithms [33,34] and all the control
of security depending on the end user, the ITSS of a certain organization.

End User

Using symmetric algorithm

The opportunities:
1. Symmetric algorithm,

2. Asymmetric algorithm and
3. Hybrid algorithm (symmetric and asymetric)

Continued communication based on
selection from step II

Cloud
Provider

Data center 1

Data center 2

Data center n

…
…

..

Step II: Select
opportunities

Following steps

Step I: Request
for acces

Figure 1. Proposed model for security in cloud computing controlled by the ITSS [1].

The focus of the study will be the evaluation of the effect of reactive programming
on the proposed model for cloud security. The effect will be evaluated from the aspect of
performance but also from the aspect of the application development process. The language
that will be used for this paper is C #, as it is a well-established language with libraries
that will facilitate the development, and our aim will be to compare the synchronous
programming that developed the solution offered in [1] and the reactive one that is realized
in this study.

There is a great deal of research that has been conducted on reactive program-
ming [2–4] that shows the ideas of reactive programming from a theoretical point of view as
well as the mathematical models that stand behind the reactive model, which are sometimes
difficult concepts to understand, especially for those who have programmed only with
traditional techniques. A programming paradigm refers to the programming style, which
means building the structure and elements of the program. There are some characteristics
that define a programming paradigm, such as modularity, objects, interruptions or events,
control flow, etc. [5]. Everyone has an opinion as to which of the programming paradigms,
or coding styles, is best. Sometimes, a single model is not the only solution to the problem
and must be combined with different models to solve the same problem, which we propose
in our paper.

Using commands such as threads, locks, and events that refer to asynchronous pro-
gramming, we can achieve the required result, which we completed during this work.

Functional reactive programming enables us to preserve the asynchronous nature of
modern applications while preserving the deterministic nature of traditional programming.
All these applications are supported by Reactive Add-ons, which allow us to handle
asynchronous sources of information, such as events. Data streams are sequences of
continuous events sorted by time. They can indicate three different things: a value (of a
certain type), an error, or a signal indicating “completion”. It should be noted that the
signal indicating “completion” occurs, for example, when the window or the current view
containing that button is closed [6].

In general, reactive programming is constructed on two main concepts, which are:
Data source: The component that emits or transmits data to other components. This

component transmits an indefinite amount of data, including transmitting even when
we do not have any value. The broadcast can be completed successfully, which means
the broadcast is closed or terminated, and it can stop when we have a potential error.
There are cases when the data source does not stop transmitting data: even if we do not
have any subscribers, some cases where the transmission of data does not stop include

Computers 2022, 11, 62 3 of 14

information about stocks, Twitter, meteorological information, etc. Data sources may have
many subscribers at the same time, but they may equally not have any.

Subscribers: The component that monitors changes or monitors data sources when
transmitting data. The moment data are transmitted from the data source, the onNext
command is executed on each subscriber, while now, when the data source stops transmit-
ting the data without any error, the onComplete command is executed for each subscriber.
However, at the time of transmission completion, if we encounter any error, the onError
command is executed on each subscriber.

This study is organized into five main parts. The first and second provide introductory
information related to the paper and the purpose of using reactive programming in the
proposed model for cloud security as well as providing information to resolve different
problems when using reactive programming.

Furthermore, the third and fourth sections give a clear view on the proposed model in
the cloud and the form of implementation of the solution while using reactive programing.
In the last part, we present the results of the two solutions we have focused on: the first
from implementing traditional programing and the second using reactive programming.

2. Literature Review
2.1. Reactive Programming Aspects

Reactive programming has aroused tremendous interest because it offers numerous
possibilities for solving problems. These methods have been used and implemented in
various systems and programming languages, from low-level to high-level languages.
Reactive Programming with Node.js [7] presents the techniques of reactive programming
in Node.Js, while in Programming Reactive Extensions and LINQ [8], we are dealing
with the implementation of Reactive Programming in C # and LINQ. We see that reactive
programming methods and techniques find use in different languages and systems.

Bonér, Jonas, and Viktor Klang, in their publication “Reactive Programming vs. Re-
active Systems” [9], pointed out the separation of the concepts of reactive programming
and reactive systems where they tried through examples to present these two concepts.
They also showed that functional reactive programming is one of the concepts that has
been misunderstood and mixed with other concepts. One of the reasons for the separation
of reactive programming and reactive systems is the communication method they use.
Reactive programming is event-driven, while reactive systems are message-driven.

In “Reactive Programming: A Walkthrough” [10], by Salvaneschi, Guido, et al., the
uses of Reactive Programming are presented, starting from the simplest to its implemen-
tation in the Internet of Things and integrated devices. The main idea of using reactive
programming is because of the fast response of the system.

Recent research shows that reactive programming is the most appropriate current
method for implementing real-time systems. Thus, according to performance analyses
in several programming languages and systems, works have been written in different
languages and libraries for the use of reactive programming [2–4], while research carried
out shows how reactive programming is also adequate for constructing and manipulating
visual images in GUI [11,12].

Reactive programming is a programming paradigm oriented around data streams
and the distribution of changes. This means that it should be possible to easily show
data streams statically or dynamically in the programming languages used and that the
execution model will automatically propagate the changes through the data stream [13–15].
It decomposes the problem into different and unique steps where each can be executed
asynchronously and in a non-blocking way, and then, the workflow is carried out—there
may be limits to its inputs or outputs. The main benefits of reactive programming are the
increasing use of informatics resources in multicore and multi-CPU hardware and increased
performance by reducing serialization points.

The other benefit is developer productivity, as traditional programming paradigms
have stalled to provide a straightforward and maintainable approach to handling asyn-

Computers 2022, 11, 62 4 of 14

chronous and non-blocking and I/O computing [16,17]. Reactive programming solves
most of the challenges here, as it usually eliminates the need for coordination between
active components. Reactive programming excels at creating components and compos-
ing workflows. To take full advantage of asynchronous execution, the inclusion of back
pressure is crucial to avoid excessive utilization or unlimited consumption of resources.

Although reactive programming is a very useful component when building modern
software, to justify building a system at a higher level, reactive architecture should be
used—the process of designing reactive systems. Furthermore, it is important to know that
there are many programming paradigms, and reactive programming is just one of them,
just as every paradigm is not intended for all use cases.

2.2. Cloud Security Aspects

The literature has suggested different models to increase security in cloud. For all the
customers who are still struggling to migrate to the cloud environment, virtual machine
monitoring for addressing security and privacy in the cloud is offered as a choice [18].

The authors from [19] proposed the Trusted Cloud Computing Platform (TCCP),
which allows the calculation of the integrity and confidentiality of data sent by the provider.
This platform informs the CSC (Cloud Service Client) if the data have been accessed by
others or the CSC and then decides whether to interrupt the VM or to continue detecting
unauthorized access. The TCCP’s main task is to ensure that nothing intervenes between
the CSC, CSP (Cloud Service Provider), and VM. Finally, it is the TCCP approach, based
on the plain form of the traditional TERRA belief [20,21], which provides the integrity
and confidentiality of the data with respect to multiple hosts. The authors of [22] offer a
platform for cloud computing: Private Virtual Infrastructure (PVI). This platform manages,
monitors, and combines the Trusted Platform Modules (TPMs) and the Locator Bot (LB) that
provide security measurements to the properties they own; it also provides the database
and offers continuous monitoring in the cloud. From this point of view, it can be said that
the data security falls like the CSC and the CSP. Starting from the SLA, there are no proper
roles for the security responsibilities for all participants in the cloud environment [23,24].
The authors of [23,25,26] argue that cloud service reliability is achieved through the security
level of workload to facilitate service quality assurance.

Security level determination is based on the following requirements: Workload State
Integrity, Guest OS Integrity, Zombie Protection, Denial of Service attacks, malicious
resource exhaustion, platform attacks, and backdoor protection. In this scientific paper,
there is no clear method to determine the level of security, as it is claimed, so it is not
apparent how this security level information is sent to the CSC and CSP.

The authors of [27] proposed a private cloud monitoring and management scheme
called the PCMONS. Despite many differences from traditional technologies and the cloud
environments, it is argued that it is possible that these resources (inherited network and
distributed management methods, etc.) have potential for reuse in the private cloud. The
PCMONS is focused on centralized architecture described by these features:

• A node with accumulated information, which is responsible for collecting local infor-
mation for the next node;

• Cluster Data Integrator—a collection of data for the next layer (collected by monitoring);
• Monitoring Data Integrator, which collects information and stores it only for archives in

the database and provides these data to the configuration generator;
• A Virtual Machine whose task is to transfer data from the VM to the overall monitoring system;
• A Configuration Generator whose task is to obtain information from the database; and
• A Monitoring Tool Server is used for the sole purpose of gathering information from

the monitoring of different resources from a database that is populated with notes
from the Configuration Generator and the Monitoring Data Integrator.

The PCMONS projection responds to the private cloud requirements, with only space
to provide a security environment for the CSC and the CSP. The whole architecture of this
proposal is based on some interesting features that can be used in similar architectures with

Computers 2022, 11, 62 5 of 14

the sole purpose of providing a safe environment for all parties. One of the features that
can be exploited is the monitoring data integrators, which can be exploited by the CSC as
a feature to provide information in the cloud environments. From other research, it can
be said that researchers have provided some security solutions in the cloud environment,
some of which have been implemented. All of the focus has been on the issue of creating a
credible environment and monitoring virtual equipment driven only by the CSP, not by
all the participating parties, and the ability to monitor all these parties. The goal is for the
entire monopoly to be implemented by the CSP. In the paper [28], the authors discussed
the advantages of implementing Blockchain and Using Honeypot Network for detecting
new attacks as well as optimizing and exploiting resources, which we believe will increase
PCMONS performance.

All the work is based on this slogan [29]: “if the provider does not need to read the
information, why should he be allowed to?” The belief in this article was achieved by
dividing the information and then controlling the scattered parts.

In their work, the author identified five cloud computing models designed to increase
cloud security:

• The separation model separates the storage of data from the processing of data at
different providers;

• The availability model ensures that there are at least two providers for each of the data
storage and processing tasks and defines a replication service to ensure that the data
stored at the various stage providers remain consistent at all times;

• The migration model defines a cloud data migration service to migrate data from the
stage provider to another;

• The tunnel model defines a data tunneling servile between a data processing service
and a data stage service, introducing a layer of separation where a data processing
service is oblivious of the location (or even identity) of a data storage service; and

• The cryptography model extends the tunnel model by encrypting the content to be
sent to the stage provider.

By using these models, which allow duplication and task sharing, they reduce their
integrity, availability, and confidentiality by encrypting the data storage [16,30]. According
to [31], the EU confidence increases when exposure and access to sensitive data is banned.

Considering this, a solution is provided where the client requires sensitive data to be
processed only in the system where their placement is required to know exactly where they
are located to be within the EU. However, this is a dubious point because the cloud service
providers have the right to operate all over the world.

The authors from [32] proposed the pi-cloud (personal secure cloud), which includes
the cloud resource management resources that are interrelated to each other for end users.
The pi-cloud objective is the last user to format the IT Infrastructure without losing control
over its data. The cloud federation refers to a personal combination of the user for private
and public cloud sources.

Up to this proposal, in the cloud environments, three facilities of success are jeopar-
dized: availability, integrity, and confidentiality.

The pi-cloud works by sharing trustworthy and untrustworthy sources. The user
adapts the cloud based on their needs, providing data flow and execution of services. The
pi-cloud is controlled by the pi box, and the task of this gate is to divide sensitive data from
the public data. The pi box consists of four main components:

• The cockpit;
• The service controller;
• The data controller; and
• The resource manager.

Computers 2022, 11, 62 6 of 14

3. Overview of Proposed Model Analysis for Cloud Security Controlled by End
User—ITSS

We closely analyzed important elements for the proposed model for security in the
cloud and the method of storing data by the organizations after these data are sent to
cloud [21], and then, we compared them with possibilities to enhance or improve our
proposed model for security in the cloud, shown in Table 1.

Table 1. Data in relation to our proposed model for security in cloud, referring to study [21] and with
the most important elements shown.

Elements Support of the Proposed Model

Does your company have an
encryption strategy?

Our proposed model gives responses to the
question where data are partitioned and
encrypted and then sent to the cloud, of which
50% say their organizations have an overall
encryption plan that is applied consistently
across the entire enterprise, but others have a
limited encryption plan, or they did not have
at all.

Industries that have shown interest in
developing a better encrypting strategy

In this part, our proposed model offers support
for every field we mentioned above.

Possible attacks on sensitive data

After processing the data, 53% of attacks on
sensitive data come from the employees. In this
context, our proposed model does not allow
employees to make such interferences. It uses
security configurations realized by the IT
specialist (employee who is qualified in IT),
and then, the entire communication is
developed on that configuration of a
particular employee.

What keys pose difficulties when managing in
the encrypting process?

The proposed model makes it possible to store
the data by the used strategy. This strategy
depends on the type of algorithm used, the
cryptography keys, the method of partitioning,
etc. This file is stored locally to the last user.

The elements that will be offered by the proposed model for cloud security are pre-
sented in Table 1. As an initial part, the “configuration” of the security of the organization
will be realized by the IT Security Specialist. Based on data sensitivity, we select the options
mentioned below (Proposal 1, Proposal 2, and Proposal 3).

The proposed model is based on two main actors: the possibility of categorizing the
level of security based on the combination of security algorithms [33,34] and all the control
of security depending on the end user, the ITSS of a certain organization.

The proposed model enables an increase in security in the cloud (Figure 1), offering
three proposals of choice depending on the sort of sensitive data:

• Proposal 1: Security is based on the choice of the end user, the ITSS, depending on
the information the proposed model offers. Based on the system proposals, no other
specific factors are considered except for the faster way that the system offers.

• Proposal 2: Based on the features of the file, possible algorithms are proposed, along
with the length of keys, to the user, and then, the user makes a choice. Based on the
system proposals that consider the features of the file, the most suitable and fastest
solution offered by the model is proposed.

• Proposal 3: Security is based on the file cryptography by the client and by keys gener-
ated locally to the client. Thereafter, the file is partitioned and encrypted in particular
parts (P1, P2, . . . , Pn); each part can be stored in different clouds. A new po file
contains the selected algorithm, along with the indexing and the position of the file.
The po file is significantly smaller, encrypted by a more powerful algorithm, and can

Computers 2022, 11, 62 7 of 14

be stored anywhere in cloud. This solution depends entirely on the selection of ITSS,
not taking into account the suggestions that the model can make; the security “config-
uration” is performed by ITSS in case the data sensitivity is too high, and the safest
path is determined using algorithms specific for data encryption and fixed/random
partition number.

In this work, it can be seen how the client and the server communicate, and we have
defined an executable protocol that verifies the data requested by the client. In previous
research [17], Proof of Retrieval (POR) protocols have been proposed, whose task is for
large files to prove that the file was not deleted or modified during the communication
process. This encryption technique takes the file and then encrypts blocks to randomly
encrypt the file. After this step, the client requires its data to depend on their sensitivity to
determine the manner of their archiving.

In addition, communication with cloud providers is realized according to [23,24]
service level agreement (SLA) mutually agreed upon between all parties to provide the
quality of services (QoS), which uses our proposed model for cloud security, as shown in
Figure 1.

To provide a secure communication in the communication channels, we use cryptog-
raphy. As technology improves, the need to provide new encrypting strategies increases as
well [6,13,14], as the only reason that data can be transferred from point A—the end user—
to point B—the database—is to be secured. For data encryption, we use two techniques of
cryptographies: a symmetric algorithm, where the same key is used for encryption and
decryption, and an asymmetric algorithm; however, different keys are used for encryption
and decryption. Our proposed model not only uses these two techniques of encryption but
also uses the combination of both symmetric and asymmetric algorithms as well, known as
hybrid algorithms [23].

Our proposed model’s distribution of file was completed based on the number of
available cloud providers, the space they have, and random distribution in Figure 2.

Computers 2022, 11, x FOR PEER REVIEW 8 of 16

Figure 2. Partitioning and distribution of files to the cloud computing.

Figure 3 shows a demonstrated case where a test.docx file is used for testing, and
then, we used the first level and selected the RSA algorithm. Partitioning is completed
randomly, and then, the partitions are encrypted. Figure 3 shows the case of return, de-
scription, and the merging, and as a result of this option, we obtained the file
test_merge.docx, which takes us to the first step. Additionally, in part of Figure 3, we pre-
sent the file test.docx..enc, which contains the information we explained above.

Figure 2. Partitioning and distribution of files to the cloud computing.

Computers 2022, 11, 62 8 of 14

Despite segments being divided depending on the partitioning method we used,
another file with the suffix “.enc”, as in Figure 2, was generated, which offers general
information on the type of algorithm, the method of partitioning, and the names of the files
before and after the encryption (naming of partitioning is random) as well as the keys used
for cryptography. In Figure 2, this file is named as the Key Encryption File.

Figure 3 shows a demonstrated case where a test.docx file is used for testing, and then,
we used the first level and selected the RSA algorithm. Partitioning is completed randomly,
and then, the partitions are encrypted. Figure 3 shows the case of return, description, and
the merging, and as a result of this option, we obtained the file test_merge.docx, which
takes us to the first step. Additionally, in part of Figure 3, we present the file test.docx..enc,
which contains the information we explained above.

Computers 2022, 11, x FOR PEER REVIEW 9 of 16

Figure 3. Content of the file .enc.

4. Utilization of Reactive Programming in the Proposed Model for Cloud Security
In the proposed model for cloud security proposed in [1,12], reactive programming

was used in the partition distribution by the client to the cloud providers. Figure 4 pre-
sents the earlier method of programming, which is presented in [1], while in Figure 5, the
proposed method of using reactive programming in the proposed model for cloud secu-
rity is presented.

We used Reactive Extensions (Rx) to use reactive programming, and the advantage
of using Rx is that it offers a new way to build and integrate asynchronous events, such
as coordinating multiple data streams as they arrive asynchronously from the cloud. With
Rx, these streams can be “flattened” in a single method, making the code very simple.

As an example, the classic async model in .NET is to initiate each call with a
BeginXXX method and end it with an EndXXX method, also known as the Begin/End
model. If more than several simultaneous asynchronous calls are made, data stream con-
trol quickly becomes impossible.

However, with Rx, the Begin/End model is summarized in a single method, making
the code much cleaner and easier to be changed. Reactive Add-ons can be seen as a library
for building or developing asynchronous and event-based software that uses observable
collections.

Figure 3. Content of the file .enc.

4. Utilization of Reactive Programming in the Proposed Model for Cloud Security

In the proposed model for cloud security proposed in [1,12], reactive programming
was used in the partition distribution by the client to the cloud providers. Figure 4 presents
the earlier method of programming, which is presented in [1], while in Figure 5, the
proposed method of using reactive programming in the proposed model for cloud security
is presented.

We used Reactive Extensions (Rx) to use reactive programming, and the advantage of
using Rx is that it offers a new way to build and integrate asynchronous events, such as
coordinating multiple data streams as they arrive asynchronously from the cloud. With Rx,
these streams can be “flattened” in a single method, making the code very simple.

As an example, the classic async model in .NET is to initiate each call with a BeginXXX
method and end it with an EndXXX method, also known as the Begin/End model. If
more than several simultaneous asynchronous calls are made, data stream control quickly
becomes impossible.

However, with Rx, the Begin/End model is summarized in a single method, mak-
ing the code much cleaner and easier to be changed. Reactive Add-ons can be seen as
a library for building or developing asynchronous and event-based software that uses
observable collections.

Computers 2022, 11, 62 9 of 14
Computers 2022, 11, x FOR PEER REVIEW 10 of 16

Figure 4. Traditional programming used for model proposed for security in cloud.

For the measurements, we followed the path from point A to point B, which is pre-
sented in red in Figures 4 and 5.

Figure 4 presents the traditional programming applied in the proposed model for
cloud security, while Figure 5 presents the new solution realized in this study for the pro-
posed model for cloud security.

Figure 4. Traditional programming used for model proposed for security in cloud.
Computers 2022, 11, x FOR PEER REVIEW 11 of 16

Figure 5. Reactive programming used in proposed model for cloud security.

In Figure 5, for the continuation of our work, we used reactive programming realized
in the model for cloud security. The reason why we decided to use reactive programming
in this part, Figure 5, is that, after the analysis of the delay time, it was seen that, when
sending and receiving partitions, there are delays, and the use of reactive programming
speeds up this process.

In the algorithm from Figure 6, the algorithm we used for programming the proposed
model in the cloud is presented. During this algorithm, reactive programming was used
with the sole purpose of faster and more accurate communication. The algorithm shows
that it starts with the question of whether the providers are active as to where the parti-
tions will be sent/received, pn (p1, p2, p3..pn). If yes, then the next step Enc. (Alg.n)/Dec.
(Alg.n) is performed at the same time for all partitions. After the completion of this step,
the last step is performed, which is the population of the file with the communication
rules, which, in the algorithm, we have called p0. The algorithm in Figure 6 is realized
using LINQ communication as part of ASP.NET, as shown in Figure 7.

Figure 5. Reactive programming used in proposed model for cloud security.

Computers 2022, 11, 62 10 of 14

For the measurements, we followed the path from point A to point B, which is pre-
sented in red in Figures 4 and 5.

Figure 4 presents the traditional programming applied in the proposed model for
cloud security, while Figure 5 presents the new solution realized in this study for the
proposed model for cloud security.

In Figure 5, for the continuation of our work, we used reactive programming realized
in the model for cloud security. The reason why we decided to use reactive programming
in this part, Figure 5, is that, after the analysis of the delay time, it was seen that, when
sending and receiving partitions, there are delays, and the use of reactive programming
speeds up this process.

In the algorithm from Figure 6, the algorithm we used for programming the proposed
model in the cloud is presented. During this algorithm, reactive programming was used
with the sole purpose of faster and more accurate communication. The algorithm shows
that it starts with the question of whether the providers are active as to where the partitions
will be sent/received, pn (p1, p2, p3..pn). If yes, then the next step Enc. (Alg.n)/Dec.
(Alg.n) is performed at the same time for all partitions. After the completion of this step,
the last step is performed, which is the population of the file with the communication rules,
which, in the algorithm, we have called p0. The algorithm in Figure 6 is realized using
LINQ communication as part of ASP.NET, as shown in Figure 7.

Computers 2022, 11, x FOR PEER REVIEW 12 of 16

Using pseudocode for partitioning files and encrypting them at the
same time
Require:
Communication between end user and providers (C1,C2, C3..Cn)
Ensure:
Communication is ready, Cn, and the file is partitioned into pn(p1,p2,
p3..pn) partitions, and calling algorithms for encryption/ decryption, it is
possible Enc.(alg.1, alg.2, alg.3,,,alg.n)/ Dec.(alg.1, alg.2, alg.3,,,alg.n)
while Cn is active, and pn is ready

do
If (tn is active)

Continue encryption/decryption with
Enc.(alg.n)/Dec.(alg.n) for pn

else
Delete(tn)

end if
end while
until all partitions are encrypted/decryption
Enc.(alg.n) all pn and also send to the Cn in same time

if (t1, t2..tn end)
return p0 with rules that have been used

else
return p0 empty

end if

Figure 6. Pseudocode for partition file and encryption/decryption used in Reactive Programming.

IQueryable<T>
LINQ to Cloud provider

IEnumerable<T>
LINQ to Object

IObservable<T>
LINQ to Events

As
Qu

ery
ab

le

AsEnumerable To
En

um
era

ble

ToObservable

Figure 7. LINQ communication as part of ASP.Net used in reactive programming.

In Figure 7, the communication that is presented using LINQ as part of ASP.Net is
introduced, which is a set of technologies based on the integration of query capabilities
directly into the C # language and which is used in our model, Figure 5. In IQueryable,
ready providers are called to place the partitions; for each of them, Objects are created,
and through the events, the resources of reactive extensions are called.

Figure 6. Pseudocode for partition file and encryption/decryption used in Reactive Programming.

Computers 2022, 11, 62 11 of 14

Computers 2022, 11, x FOR PEER REVIEW 12 of 16

Using pseudocode for partitioning files and encrypting them at the
same time
Require:
Communication between end user and providers (C1,C2, C3..Cn)
Ensure:
Communication is ready, Cn, and the file is partitioned into pn(p1,p2,
p3..pn) partitions, and calling algorithms for encryption/ decryption, it is
possible Enc.(alg.1, alg.2, alg.3,,,alg.n)/ Dec.(alg.1, alg.2, alg.3,,,alg.n)
while Cn is active, and pn is ready

do
If (tn is active)

Continue encryption/decryption with
Enc.(alg.n)/Dec.(alg.n) for pn

else
Delete(tn)

end if
end while
until all partitions are encrypted/decryption
Enc.(alg.n) all pn and also send to the Cn in same time

if (t1, t2..tn end)
return p0 with rules that have been used

else
return p0 empty

end if

Figure 6. Pseudocode for partition file and encryption/decryption used in Reactive Programming.

IQueryable<T>
LINQ to Cloud provider

IEnumerable<T>
LINQ to Object

IObservable<T>
LINQ to Events

As
Qu

ery
ab

le

AsEnumerable To
En

um
era

ble

ToObservable

Figure 7. LINQ communication as part of ASP.Net used in reactive programming.

In Figure 7, the communication that is presented using LINQ as part of ASP.Net is
introduced, which is a set of technologies based on the integration of query capabilities
directly into the C # language and which is used in our model, Figure 5. In IQueryable,
ready providers are called to place the partitions; for each of them, Objects are created,
and through the events, the resources of reactive extensions are called.

Figure 7. LINQ communication as part of ASP.Net used in reactive programming.

In Figure 7, the communication that is presented using LINQ as part of ASP.Net is
introduced, which is a set of technologies based on the integration of query capabilities
directly into the C # language and which is used in our model, Figure 5. In IQueryable,
ready providers are called to place the partitions; for each of them, Objects are created, and
through the events, the resources of reactive extensions are called.

5. Results and Analysis

To be able to compare two different methods of programming, we used the same
executable environment as well as the same files as in Table 2. In order to have accurate
comparisons of the results, we relied on the same work environment for two methods
of programming:

• Processor: Initial (R) Celeron (R) CPU 1005 M 1.90 GHz;
• Network details: ping: 55 ms, download: 15.46 Mbps, upload: 2.22 Mbps;
• We used the same files for the experiments, Table 2.

Table 2. Files used for measurement referred from the paper [1].

Type Size Comment

.doc 2969 KB Large

.doc 606 KB Medium

.pdf 606 KB Medium
.png 606 KB Medium
.mov 454 KB Medium

The structure of the data analysis is the same as in previous work [1]; for all measure-
ments, we used the measuring unit of time of execution in milliseconds. Additionally, for
every case of measurements, there were two methods of measurements for Upload and
Download. These measurements are realized using the same schemas for every type of
algorithm (symmetric, asymmetric, and hybrid) for Old Execution Time, Figure 4, and for
New Execution Time, Figure 5. Moreover, in this part, the execution time of measurement
starts after the file is partitioned, and special measurements (i.e., t1,t2 . . . tn) are made for
every partition. Additionally, the total time in general is taken for T, while in partitions,
t1,t2 . . . tn. For measurements, we used three symmetric algorithms, namely AES, DES, and
TripleDES, and three asymmetric algorithms, namely RSA, Diff-Hellman, and El Gamal, as
well as hybrid algorithms (combination of both symmetric and asymmetric algorithms).

In Table 3 and Figure 8, the results of measurements are shown, and the time of
calculation is carried out as in Equation (1), while by using reactive programming, it will be
found by Equation (2). The MaximumOfTime() function calculates the longest processing
time (upload + download) of the partition to a provider, and that is the time it takes

Computers 2022, 11, 62 12 of 14

to process all the partitions (upload + download) for a file (because it is processed the
execution at the same time for all file partitions).

TOld Execution Time = t1 + t2 + · · ·+ tn (1)

TNew Execution Time = MaximumOfTime (t1 , t2 , . . . tn) (2)

Table 3. Information table with old and new execution time [1].

File Type File Size Algorithm Old Execution Time New Execution Time

.doc 2969 KB AES|DES|TripleDES 43,217 26,927

.doc 2969 KB RSA|Diffie-Hellman|ElGamal 175,436 74,337

.doc 2969 KB RSA|DES|ElGamal 133,085 74,337

.doc 606 KB AES|DES|TripleDES 27,057 11,255

.doc 606 KB RSA|Diffie-Hellman|ElGamal 42,542 15,322

.doc 606 KB AES|Diffie-Hellman|TripleDES 32,256 15,322

.pdf 606 KB AES|DES|TripleDES 26,551 10,056

.pdf 606 KB RSA|Diffie-Hellman|ElGamal 45,357 17,559

.pdf 606 KB DES|TripleDES|ElGamal 37,137 17,559
.png 606 KB AES|DES|TripleDES 25,215 10,121
.png 606 KB RSA|Diffie-Hellman|ElGamal 40,975 15,553
.png 606 KB RSA|Diffie-Hellman|TripleDES 35,543 13,764
.mov 454 KB AES|DES|TripleDES 15,658 11,021
.mov 454 KB RSA|Diffie-Hellman|ElGamal 39,056 13,696
.mov 454 KB DES|Diffie-Hellman|ElGamal 32,716 13,696

Computers 2022, 11, x FOR PEER REVIEW 14 of 16

.pdf 606 KB
RSA|Diffie-Hellman|El-

Gamal
45,357 17,559

.pdf 606 KB DES|TripleDES|ElGamal 37,137 17,559
.png 606 KB AES|DES|TripleDES 25,215 10,121

.png 606 KB
RSA|Diffie-Hellman|El-

Gamal
40,975 15,553

.png 606 KB
RSA|Diffie-Hellman|Tri-

pleDES
35,543 13,764

.mov 454 KB AES|DES|TripleDES 15,658 11,021

.mov 454 KB
RSA|Diffie-Hellman|El-

Gamal
39,056 13,696

.mov 454 KB
DES|Diffie-Hellman|El-

Gamal
32,716 13,696

Figure 8. Results of measurements from old and new execution time.

6. Conclusions
In this study, we have presented the model proposal for cloud security and the pos-

sibility of categorizing the level of security based on the combination of security algo-
rithms, and then, all the control of the security depends on the end user, the ITSS, of a
certain organization, which is a solution that was proposed in our previous work. For the
implementation of this solution, we used traditional programming, but we experienced
longer delays that came up when files were being partitioned and during the merging of
those partitions from the cloud providers.

During this study, we proposed a solution for solving this problem by using reactive
programming. As presented in Figure 6, the use of reactive programming in this case
speeds up the processes, e.g., pn(p1,p2, p3..pn), Enc.(alg.1, alg.2, alg.3,,,alg.n), Dec.(alg.1,

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000
200,000

AE
S|

DE
S|

Tr
ip

le
DE

S

RS
A|

Di
ffi

e-
He

llm
an

|E
lG

am
al

RS
A|

DE
S|

El
Ga

m
al

AE
S|

DE
S|

Tr
ip

le
DE

S

RS
A|

Di
ffi

e-
He

llm
an

|E
lG

am
al

AE
S|

Di
ffi

e-
He

llm
an

|T
rip

le
DE

S

AE
S|

DE
S|

Tr
ip

le
DE

S

RS
A|

Di
ffi

e-
He

llm
an

|E
lG

am
al

DE
S|

Tr
ip

le
DE

S|
El

Ga
m

al

AE
S|

DE
S|

Tr
ip

le
DE

S

RS
A|

Di
ffi

e-
He

llm
an

|E
lG

am
al

RS
A|

Di
ffi

e-
He

llm
an

|T
rip

le
DE

S

AE
S|

DE
S|

Tr
ip

le
DE

S

RS
A|

Di
ffi

e-
He

llm
an

|E
lG

am
al

DE
S|

Di
ffi

e-
He

llm
an

|E
lG

am
al

2,969
KB

2,969
KB

2,969
KB

606 KB 606 KB 606 KB 606 KB 606 KB 606 KB 606 KB 606 KB 606 KB 454 KB 454 KB 454 KB

.doc .doc .doc .doc .doc .doc .pdf .pdf .pdf .png .png .png .mov .mov .mov

Old execution time New execution time

Figure 8. Results of measurements from old and new execution time.

6. Conclusions

In this study, we have presented the model proposal for cloud security and the possi-
bility of categorizing the level of security based on the combination of security algorithms,

Computers 2022, 11, 62 13 of 14

and then, all the control of the security depends on the end user, the ITSS, of a certain
organization, which is a solution that was proposed in our previous work. For the imple-
mentation of this solution, we used traditional programming, but we experienced longer
delays that came up when files were being partitioned and during the merging of those
partitions from the cloud providers.

During this study, we proposed a solution for solving this problem by using reactive
programming. As presented in Figure 6, the use of reactive programming in this case
speeds up the processes, e.g., pn(p1,p2, p3..pn), Enc.(alg.1, alg.2, alg.3„,alg.n), Dec.(alg.1,
alg.2, alg.3„,alg.n). After using this technique of reactive programming, we realized
measurements for the same data to come to a more accurate comparison between these
two programming techniques for the proposed model for security in the cloud.

The measurements we made are based on the two equations presented in the study:
the time calculation is completed as in Equation (1), and using reactive programming, as
in Equation 2, is based on the results shown in Table 3. It can be seen that the difference
of execution time exists both during the partitions and during the merging, which is also
emphasized in all data types.

From the realized measurements that are presented in Figure 8, we can conclude
that the effect of using reactive programming is presented in each file type and by each
algorithm used, reducing the execution time in the proposed model for cloud security.

In conclusion, it can be said that reactive programming use is probably more difficult
to apply than the traditional programming that has been used so far, but the execution time
is faster, especially in our case.

In the future, it would be good for the proposed model with the changes implemented
in this paper to be tested in other environments and with other data in order to have
different results and then to improve where it shows delays.

However, in the future, we plan to use FPGA, as a frontage connected with business
(IT Security Specialist), to increases the level of security and speed of the encryption and
decryption process (as a hardware and software solution). Additionally, in the future, it
will be interesting for this model to advance more with testing and provide more cloud
storage security managed with data dynamics, including quantum key cryptography.

Author Contributions: Methodology, D.H., I.S. and B.Ç.; validation, N.P. and I.S.; formal anal-
yses, D.H. and B.Ç.; resources, D.H., B.Ç. and I.S.; writing—original draft preparation, D.H.;
writing—review and editing, I.S. and B.Ç.; visualization, D.H. and N.P.; supervision, B.Ç. and
I.S.; project administration, D.H.; funding acquisition, D.H. and N.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hyseni, D.; Luma, A.; Selimi, B.; Cico, B. The Proposed Model to Increase Security of Sensitive Data in Cloud Computing. Int. J.

Adv. Comput. Sci. Appl. 2018, 9, 203–210. [CrossRef]
2. Mogk, R.; Salvaneschi, G.; Mezini, M. Reactive programming experience with rescala. In Proceedings of the Conference

Companion of the 2nd International Conference on Art, Science, and Engineering of Programming, Nice, France, 9–12 April 2018;
pp. 105–112.

3. Ignatoff, D.; Cooper, G.H.; Krishnamurthi, S. Crossing state lines: Adapting object-oriented frameworks to functional reactive
languages. In International Symposium on Functional and Logic Programming; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 259–276.

4. Cunha, G.T. Reactive vs. Synchronous Performance Test with Spring Boot 2.0. 2018. Available online: dzone.com/articles/spring-
boot-20-webflux-reactive-performance-test (accessed on 12 January 2022).

http://doi.org/10.14569/IJACSA.2018.090229
dzone.com/articles/spring-boot-20-webflux-reactive-performance-test
dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

Computers 2022, 11, 62 14 of 14

5. Programming Paradigms. Available online: https://theailearner.com/2018/09/26/programming-paradigms/ (accessed on
25 February 2022).

6. Staltz, A. The Introduction to Reactive Programming You’ve Been Missing. 2014. Available online: https://gist.github.com/
staltz/868e7e9bc2a7b8c1f754 (accessed on 21 August 2017).

7. Doglio, F. Functional Reactive Programming. In Reactive Programming with Node; Apress: Berkeley, CA, USA, 2016; pp. 25–45.
8. Liberty, J.; Betts, P.; Turalski, S. Programming Reactive Extensions and Linq; Apress Media, LLC: New York, NY, USA, 2011.
9. Bonér, J.; Klang, V. Reactive Programming vs. Reactive Systems; Lightbend, Inc.: San Francisco, CA, USA, 2016.
10. Salvaneschi, G.; Margara, A.; Tamburrelli, G. Reactive programming: A walkthrough. In Proceedings of the 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, Florence, Italy, 16–24 May 2015; Volume 2, pp. 953–954.
11. Czaplicki, E.; Chong, S. Asynchronous functional reactive programming for GUIs. ACM SIGPLAN Not. 2013, 48, 411–422.

[CrossRef]
12. Hyseni, D.; Cico, B.; Shabani, I. The proposed model for security in the cloud, controlled by the end user. In Proceedings of the

2015 4th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 14–18 June 2015; pp. 81–84.
13. Hyseni, D.; Cico, B.; Luma, A.; Selimi, B.; Shemsedini, E. Different methods of distribution data in the cloud—Controlled by

IT security specialist. In Proceedings of the 2018 7th Mediterranean Conference on Embedded Computing (MECO), Budva,
Montenegro, 10–14 June 2018; pp. 1–5.

14. Hyseni, D.; Selimi, B.; Luma, A.; Cico, B. The strategy of cryptography for the proposed model of security in cloud computing. In
Proceedings of the 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI),
Chennai, India, 21–22 September 2017; pp. 24–28.

15. Hussain, M.E.; Hussain, R. Cloud Security as a Service Using Data Loss Prevention: Challenges and Solution. In International
Conference on Internet of Things and Connected Technologies; Springer: Cham, Switzerland, 2021; pp. 98–106.

16. Mishra, S.; Sharma, S.K.; Alowaidi, M.A. Analysis of security issues of cloud-based web applications. J. Ambient. Intell. Humaniz.
Comput. 2021, 12, 7051–7062. [CrossRef]

17. Juels, A.; Kaliski, B.S., Jr. Pors: Proofs of retrievability for large files. In Proceedings of the 2007 ACM Conference on Computer
and Communications Security (CCS 2007), Alexandria, VA, USA, 2 November–31 October 2007; ACM Digital Library: New York,
NY, USA, 2007; pp. 584–597.

18. Sen, J. Security and privacy issues in cloud computing. In Architectures and Protocols for Secure Information Technology Infrastructures;
IGI Global: Hershey, PA, USA, 2013; pp. 1–45.

19. Santos, N.; Gummadi, K.P.; Rodrigues, R. Towards Trusted Cloud Computing. In Proceedings of the 2009 Conference on Hot
Topics in Cloud Computing (HOTCLOUD), San Diego, CA, USA, 15 June 2009; USENIX: Berkeley, CA, USA, 2009.

20. Garfinkel, T.; Pfaff, B.; Chow, J.; Rosenblum, M.; Boneh, D. Terra: A virtual machine-based platform for trusted computing. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, Bolton Landing, NY, USA, 19–22 October 2003.

21. Ponemon Institute Research Report. Global Encryption Trends Study. 2021. Available online: https://www.entrust.com/-/
media/documentation/reports/2021-global-encryption-trends-exec-summary-re.pdf (accessed on 12 March 2022).

22. Krautheim, F.J. Private Virtual Infrastructure for Cloud Computing. In Proceedings of the 2009 Workshop on Hot Topics in Cloud
Computing, HotCloud 2009, San Diego, CA, USA, 15 June 2009.

23. Kumar, S.; Karnani, G.; Gaur, M.S.; Mishra, A. Cloud security using hybrid cryptography algorithms. In Proceedings of the 2021
2nd International Conference on Intelligent Engineering and Management (ICIEM), London, UK, 28–30 April 2021; pp. 599–604.

24. Dhirani, L.L.; Newe, T.; Nizamani, S. Federated Hybrid Clouds Service Level Agreements and Legal Issues. In Third International
Congress on Information and Communication Technology; Springer: Singapore, 2019; pp. 471–486.

25. Ouedraogo, M.; Mignon, S.; Cholez, H.; Furnell, S.; Dubois, E. Security transparency: The next frontier for security research in the
cloud. J. Cloud Comput. 2015, 4, 12. [CrossRef]

26. Arshad, J.; Townend, P.; Jie, X. Quantification of Security for Compute Intensive Workloads in Clouds. In Proceedings of the 15th
International Conference on Parallel and Distributed Systems, Shenzhen, China, 8–11 December 2009.

27. De Chaves, S.A.; Uriarte, R.B.; Westphall, C.B. Towards an architecture for monitoring private clouds. IEEE Commun. Mag. 2011,
49, 130–137. [CrossRef]

28. Sangui, S.; Ghosh, S.K. Cloud Security Using Honeypot Network and Blockchain: A Review. In Machine Learning Techniques and
Analytics for Cloud Security; Scrivener Publishing LLC: Beverly, MA, USA, 2021.

29. Jaatun, M.G.; Zhao, G.; Vasilakos, A.V.; Nyre, Å.A.; Alapnes, S.; Tang, Y. The design of a redundant array of independent
net-storages for improved confidentiality in cloud computing. J. Cloud Comput. Adv. Syst. Appl. 2012, 1, 13. [CrossRef]

30. Dorairaj, S.D.; Kaliannan, T. An adaptive multilevel security framework for the data stored in cloud environment. Sci. World J.
2015, 2015, 601017. [CrossRef] [PubMed]

31. Wolters, P.T.J. The security of personal data under the GDPR: A harmonized duty or a shared responsibility? Int. Data Priv. Law
2017, 7, 165–178. [CrossRef]

32. Mosch, M.; Groß, S.; Schill, A. User-controlled resource management in federated clouds. J. Cloud Comput. 2014, 3, 10. [CrossRef]
33. Nagarajan, G. Comparative Analysis of Public Cloud Security Based Schemes and Cryptographic Algorithms. Turk. J. Comput.

Math. Educ. (TURCOMAT) 2021, 12, 2114–2127.
34. Awaysheh, F.M.; Aladwan, M.N.; Alazab, M.; Alawadi, S.; Cabaleiro, J.C.; Pena, T.F. Security by design for big data frameworks

over cloud computing. IEEE Trans. Eng. Manag. 2021. [CrossRef]

https://theailearner.com/2018/09/26/programming-paradigms/
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
http://doi.org/10.1145/2499370.2462161
http://doi.org/10.1007/s12652-020-02370-8
https://www.entrust.com/-/media/documentation/reports/2021-global-encryption-trends-exec-summary-re.pdf
https://www.entrust.com/-/media/documentation/reports/2021-global-encryption-trends-exec-summary-re.pdf
http://doi.org/10.1186/s13677-015-0037-5
http://doi.org/10.1109/MCOM.2011.6094017
http://doi.org/10.1186/2192-113X-1-13
http://doi.org/10.1155/2015/601017
http://www.ncbi.nlm.nih.gov/pubmed/26258165
http://doi.org/10.1093/idpl/ipx008
http://doi.org/10.1186/s13677-014-0010-8
http://doi.org/10.1109/TEM.2020.3045661

	Introduction
	Literature Review
	Reactive Programming Aspects
	Cloud Security Aspects

	Overview of Proposed Model Analysis for Cloud Security Controlled by End User—ITSS
	Utilization of Reactive Programming in the Proposed Model for Cloud Security
	Results and Analysis
	Conclusions
	References

