
Citation: Alsaadi, Z.; Alshamani, E.;

Alrehaili, M.; Alrashdi, A.A.D.;

Albelwi, S.; Elfaki, A.O. A Real Time

Arabic Sign Language Alphabets

(ArSLA) Recognition Model Using

Deep Learning Architecture.

Computers 2022, 11, 78.

https://doi.org/10.3390/

computers11050078

Academic Editors: Jeremy Straub

and Paolo Bellavista

Received: 27 March 2022

Accepted: 5 May 2022

Published: 10 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

A Real Time Arabic Sign Language Alphabets (ArSLA)
Recognition Model Using Deep Learning Architecture
Zaran Alsaadi 1, Easa Alshamani 1, Mohammed Alrehaili 1, Abdulmajeed Ayesh D. Alrashdi 1, Saleh Albelwi 1,2

and Abdelrahman Osman Elfaki 1,*

1 Faculty of Computing and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia;
421009914@stu.ut.edu.sa (Z.A.); 421009814@stu.ut.edu.sa (E.A.); 421009808@stu.ut.edu.sa (M.A.);
421009856@stu.ut.edu.sa (A.A.D.A.); sbalawi@ut.edu.sa (S.A.)

2 Industrial Innovation and Robotics Center, University of Tabuk, Tabuk 71491, Saudi Arabia
* Correspondence: a.elfaki@ut.edu.sa

Abstract: Currently, treating sign language issues and producing high quality solutions has attracted
researchers and practitioners’ attention due to the considerable prevalence of hearing disabilities
around the world. The literature shows that Arabic Sign Language (ArSL) is one of the most popular
sign languages due to its rate of use. ArSL is categorized into two groups: The first group is ArSL,
where words are represented by signs, i.e., pictures. The second group is ArSl alphabetic (ArSLA),
where each Arabic letter is represented by a sign. This paper introduces a real time ArSLA recognition
model using deep learning architecture. As a methodology, the proceeding steps were followed. First,
a trusted scientific ArSLA dataset was located. Second, the best deep learning architectures were
chosen by investigating related works. Third, an experiment was conducted to test the previously
selected deep learning architectures. Fourth, the deep learning architecture was selected based on
extracted results. Finally, a real time recognition system was developed. The results of the experiment
show that the AlexNet architecture is the best due to its high accuracy rate. The model was developed
based on AlexNet architecture and successfully tested at real time with a 94.81% accuracy rate.

Keywords: deep learning; Arabic Sign Language alphabetic; AlexNet architecture; transfer learning;
data augmentation

1. Introduction and Motivation

Sign language is a method used by people with hearing impairments to interact with
others. Therefore, research and development in the field of sign language recognition has
attracted scientists, researchers, and engineers to develop software to facilitate the process
of communicating with people with hearing disabilities [1]. Sign language is a form of
communication that uses well-known signs or body motions to convey meaning. There are
many hearing impaired people who are unable to write or read a language, as well. Hence,
building a sign language translation or, in other words, a sign language recognition (SLR)
system can be extremely beneficial to their lives. The SLR system is in high demand due
to its capacity to bridge the gap between the hearing impairmed community and the rest
of the world. It is one of the most important areas of computational research that deals
with real life issues. According to the World Health Organization, Fact Sheet (2022), over
5% of the world’s population suffer from hearing impairments. It is also estimated that this
number will increase to above 700 million people by 2050.

Arabic alphabets are used by the population of Arab countries, which amounts to
about 1 billion people, or 14% of the world’s population (World Health Organization, 2015).
In addition to the population of Arab countries, many Asian and African populations use
Arabic alphabets in their languages or dialects, such as Persian, Malay (Jawi), Uyghur,
Kurdish, Punjabi, Sindhi, Balti, Balochi, Pashto, Lurish, Urdu, Kashmiri, Rohingya, Somali

Computers 2022, 11, 78. https://doi.org/10.3390/computers11050078 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11050078
https://doi.org/10.3390/computers11050078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://doi.org/10.3390/computers11050078
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11050078?type=check_update&version=2

Computers 2022, 11, 78 2 of 20

and Mandinka, among others [2]. Therefore, Arabic alphabets are used by almost a quarter
of the world’s population, clearly illustrating their significance.

According to the law of multiple proportions, 5% of the populations that use Arabic
alphabetics face difficulties with hearing impairments. This is considered to be a significant
number. This justifies the importance of Arabic Sign Language Alphabets (ArSLA). Arabic
Sign Language Alphabets (ArSLA) are an illustration of Arabic letters in sign language
shapes. Hence, ArSLA is used by the hearing-impaired community to overcome the
obstacle of dealing with traditional Arabic letters. This enables them to be involved in the
traditional educational and pedagogic process [3].

Arabic sign language is divided into two parts: the first part is a complete language
where each word is represented by a sign (for instance, the word father is represented by a
sign). Different Arab countries have their own Arabic sign languages, such as Egyptian
sign language, or Saudi sign language. The first part is known as Arabic Sign Language
(ArSL). In the second part, each letter in the Arabic alphabet is represented by a special
sign known as Arabic sign Language Alphabets (ArSLA). Due to the formerly explained
importance of Arabic sign language, the challenge of developing Arabic sign language
recognition systems has garnered the attention of researchers and practitioners. As a result,
the literature suggests many solutions for both ArSL and ArSLA.

Transfer learning [4] has been proposed as a solution to overcome this challenge,
a technique in which the model is trained on a large training set. The results of this
training are then treated as the starting point for the target task. Transfer learning has
proved to be successful in fields such as language processing and computer vision. Data
augmentation [5] is another technique found to be effective in alleviating overfitting and
improving overall performance. This method increases the training set’s size by performing
geometric and color transformations such as rotation, resizing, cropping, and adding noise
to or blurring the image, etc. In this work, we did not use either transfer learning or data
augmentation when training our CNN model. Instead, we utilized the ArSLA dataset
which is suitable for testing and training. It uses around 1000 images for each letter to train
the CNN model.

This paper presents a real time Arabic Sign Language Alphabets (ArSLA) recognition
model using deep learning techniques. As previously discusses, we focused on ArSLA
due to its popularity. The main target was to develop a solution that can be accessible
for everyone.

2. Related Works

This section explores related works that were investigated and analyzed with the aim
of discovering and highlighting any research gaps. The methodology used for collecting
related works was to select recent research that utilized sign language recognition methods
covering the previous 10-year period. As selection criteria, research papers that addressed
issues with ArSL, or ArSLA with applicable solutions were chosen. The research papers
that presented inapplicable or reiterated solutions were neglected.

According to [6], the recognition systems of sign languages could be categorized into
two groups: glove-based systems and vision-based systems. The first group is based on
hardware devices which consist of special sensors that can be packaged in different shapes
that should be suitable to be used by hand (since sign languages are characterized by hands).
The second group is based on image processing techniques and algorithms which leads to
using only the camera. Despite the promising achievements in the first group, the second
group could still be considered the best choice as the only hardware device it requires is a
camera which available in almost any modern computer. In the literature, the first group is
titled as sensors-based solutions, while the second group is titled as image-based solutions.
In this paper, we follow the concepts of the second group. In the following, selected papers
from related works are discussed and analyzed.

Halawani and Zaitun [7] developed a system for converting common Arabic spoken
words to ArSL using a speech recognition engine. This work suggests using data gloves

Computers 2022, 11, 78 3 of 20

for measuring sign language motion. It is not clear how the common words used in the
system were collected and validated. Mohandes el al. [8] developed a multilevel system
for ArSL recognition. In the first level, the leap motion controller is used for tracking and
detecting hand motion. Level one is used for images acquisition with the aim of creating a
dataset. The second level is a preprocessing of collected images. The third level is a feature
extraction process. The final level is a classification model. The performance of such systems
is dependent on the degree of accuracy in defining image features. ElBadawy et al. [9] used
a 3D Convolutional Neural Network (CNN) to develop an ArSL recognition system based
on 25 sign pictures. The results of this research achieved 85% accuracy. Alzohairi et al. [10]
developed an ArSLA recognition system using a Support Vector Machine (SVM). The
SVM has been implemented as one versus all SVM that extract the histograms of Oriented
Gradients (HOG) descriptor. The accuracy of this system did not exceed 63%.

Ibrahim et al. [11] proposed an automatic visual Sign Language Recognition Sys-
tem (SLRS) that converts solitary Arabic words into text. This proposal is limited to the
30 isolated words used in the daily school life of hearing-challenged children. A proposed
skin-blob tracking technique is used to identify and track the hands.

Deriche et al. [12] designed an ArSL recognition system based on dual Leap Motion
Controllers (LMC). The optimum geometric features were collected from both front and
side LMCs. The classification was developed on aBayesian approach. The system was
validated on one hundred developed signs. The accuracy of this system was not mentioned.
Hassan et al. [13] conducted experiments for comparing the two methods of ArSL recog-
nition which are: the k-Nearest Neighbor and Hidden Markov Models. The experiments
were conducted based on a dataset collected by using sensor gloves and another dataset
collected by a motion tracker. The results showed a similar classification accuracy. This
means that the acquisition methods do not affect classification accuracy since a dataset col-
lected them correctly. Gangrade and Bharti [14] used multi-layered random forest (MLRF)
for recognizing static gestures from depth data provided by Microsoft’s Kinect sensor. The
method in [14] was validated by synthetic data, a publicly available dataset of 24 American
Sign Language (ASL) signals.

Kamruzzaman [15] proposed an ArSLA recognition system aimed at translating signs
to Arabic speech. The classifier was developed based on a Convolutional Neural Network
(CNN). The CNN architecture that was used in this model is not clear. The work in [16]
developed a comparison survey to study the performance of ArSLAN classifiers. The
selected classifiers were CNN, RNN, MLP, LDA, HMM, ANN, SVM, and KNN. The works
in [14, 1] used deep convolutional networks to recognize letters and digits in American Sign
Language. Missing signs (special letters, such as the space sign or gap between words) in
the corpus are a source of errors in these models. In addition, the used CNN architectures
are not clear.

The discussion of related works reflects the following issues which represent the
research gap:

(1) There are many works suggesting the use of a special hardware device to read hand
signs which is considered an extra burden and an added expense. These solutions
will not be available to everyone.

(2) Related works that have been developed based on machine learning, or image pro-
cessing algorithms, are dependent on implementing feature extraction techniques.
Hence, the quality of extracted results is completely subject to the selected features
which could possibly be an imperfect selection.

(3) Related works that have been developed based on CNN neglect well known CNN
architectures. Developing a solution based on Ad hoc CNN architecture is doubted
on solution credibility, as new CNN architecture should be tested and validated in
different environments and situations.

(4) The works that dealt with ArSL suffer from scalability issues. Not all words can be
covered due to the vast amount of words used in sign language.

Computers 2022, 11, 78 4 of 20

In the following sections, explanation of how the proposed model has overcome the
above shortcomings has been presented in detail.

3. Methodology

In this section, the steps that have been followed to achieve the proposed model
are presented. As mentioned in the related works, ArSLA recognition could be achieved
based on machine learning, or deep learning, i.e., CNN techniques. In this paper, we
have chosen CNN to develop the recognition model due to its advantage over machine
learning. Contrary to machine learning, the CNN model tackles the feature extraction
by itself. The basic design principles for a CNN are to construct an architecture and
a learning algorithm in such a way that the number of parameters is reduced but the
compression and prediction capacity of the learning algorithms is not compromised. CNN
layers and nonlinear activations are commonly used after the linear math procedure
of convolution. Many times, in the architecture, local connections between pixels are
utilized. The introduction of a local receptive field allows for the extraction of various
feature elements. Hidden layers placed in-between fully connected layers, can detect a
higher degree of complexity. CNN is more effective than machine learning recognition,
reconstruction, and classification because of functions of sparse connectivity between
subsequent layers, the parameter sharing of weights between neighboring pixels, and
similar representations.

Figure 1 shows the frame of methodology for developing the proposed model. This
framework consists of five steps: the search for a suitable standard ArSLA dataset, the
search for suitable CNN models, selection of the best CNN model, the development of a
real time recognition system, and validation of the developed real time recognition system.
In the following, each step is presented and discussed.

Computers 2022, 11, x FOR PEER REVIEW 5 of 22

Figure 1. Frame of methodology for developing the proposed model.

3.1. Search for a Suitable Standard ArSLA Dataset

In this step, we searched for a suitable standard ArSLA dataset. If no suitable dataset

was found, there were no other options but to create our own dataset. Figure 2 shows the

dataset selection strategy.

The targeted dataset should contain three features which are:

(1) Dataset for ArSLA. This means the dataset should contain all Arabic alphabetics let-

ters.

(2) The dataset should consist of static images.

(3) The dataset should be a standard dataset which means the selected dataset has been

involved in public research with published results.

We have chosen the ArSLA dataset that was published in [6]. This dataset has the

advantages of being fully tagged, made publicly available, consisting of 54,049 images in

Figure 1. Frame of methodology for developing the proposed model.

Computers 2022, 11, 78 5 of 20

3.1. Search for a Suitable Standard ArSLA Dataset

In this step, we searched for a suitable standard ArSLA dataset. If no suitable dataset
was found, there were no other options but to create our own dataset. Figure 2 shows the
dataset selection strategy.

Computers 2022, 11, x FOR PEER REVIEW 6 of 22

greyscale jpg formats with a resolution of 64 × 64, and representing the 32 Arabic letters.

Figure 3 shows the selected ArSLA dataset.

Figure 2. The dataset selection strategy.

Figure 3. The selected ArSLA dataset.

Figure 2. The dataset selection strategy.

The targeted dataset should contain three features which are:

(1) Dataset for ArSLA. This means the dataset should contain all Arabic alphabetics letters.
(2) The dataset should consist of static images.
(3) The dataset should be a standard dataset which means the selected dataset has been

involved in public research with published results.

We have chosen the ArSLA dataset that was published in [6]. This dataset has the
advantages of being fully tagged, made publicly available, consisting of 54,049 images in
greyscale jpg formats with a resolution of 64 × 64, and representing the 32 Arabic letters.
Figure 3 shows the selected ArSLA dataset.

Figure 3 shows 32 basic Arabic signs and alphabets that contains 54,049 photos of
ArSLA demonstrated by more than 40 people. The number of photos per class varies
depending on the class. A sample graphic of all Arabic Language Signs is also included.
Based on the image file name, the CSV file contains the label of each related Arabic Sign
Language Image.

3.2. Search for Suitable CNN Architectures

As it is known in computer science, deep learning or CNN is the best technique that
can be used for a recognition system. According to [1] the previous most-used deep learning
trained architectures are AlexNet [17], VGG-16 [18] and ResNet50 [19], EfficientNet [20]
among others.

Computers 2022, 11, 78 6 of 20

Computers 2022, 11, x FOR PEER REVIEW 6 of 22

greyscale jpg formats with a resolution of 64 × 64, and representing the 32 Arabic letters.

Figure 3 shows the selected ArSLA dataset.

Figure 2. The dataset selection strategy.

Figure 3. The selected ArSLA dataset. Figure 3. The selected ArSLA dataset.

CNN can be fed raw image pixel values rather than pre-processed feature vectors,
unlike standard machine learning applications. Figure 4 shows the general architecture
of CNN [21]. CNN’s usual architecture is made up of layers of computing units (gates),
which are:

1. Convolutional Layers: A grid that provides input to each gate. Each gate’s weights
are connected so that each gate recognizes the same feature. There are various sets of
gates similar to this, organized in multiple channels (layers) to learn different aspects.

2. Pooling Layers: This works as a down–sampling layer by reducing the number of
gates. Each of the “k × k” input grid gates are usually reduced to a single cell/gate
by choosing the maximum input value or the average of all inputs. The layer is
scanned with a tiny k grid and a stride is chosen so that the grid covers the layer
without overlapping.

3. Fully linked Layers: Each gate’s output is connected to the input of the next layer’s
gate. (Also referred to as auto encoder levels). These transform a vectorized version
of the input into a normalized vectorized output. The output vector is a set of
probabilities that serve as the classification signature.

4. Convolution Layers: Consider 1D convolution, suppose the input vector is f and the
kernel is g whose length is m. The following equation shows the center of kernel
shifted and multiplied.

(f × g)(i) =
m

∑
j=1

g(j) f
(⌈

i− j +
m
2

⌉)

Computers 2022, 11, 78 7 of 20

Computers 2022, 11, x FOR PEER REVIEW 7 of 22

Figure 3 shows 32 basic Arabic signs and alphabets that contains 54,049 photos of

ArSLA demonstrated by more than 40 people. The number of photos per class varies de-

pending on the class. A sample graphic of all Arabic Language Signs is also included.

Based on the image file name, the CSV file contains the label of each related Arabic Sign

Language Image.

3.2. Search for Suitable CNN Architectures

As it is known in computer science, deep learning or CNN is the best technique that

can be used for a recognition system. According to [1] the previous most-used deep learn-

ing trained architectures are AlexNet [17], VGG-16 [18] and ResNet50 [19], EfficientNet

[20] among others.

CNN can be fed raw image pixel values rather than pre-processed feature vectors,

unlike standard machine learning applications. Figure 4 shows the general architecture of

CNN [21]. CNN’s usual architecture is made up of layers of computing units (gates),

which are:

1 Convolutional Layers: A grid that provides input to each gate. Each gate’s weights

are connected so that each gate recognizes the same feature. There are various sets of

gates similar to this, organized in multiple channels (layers) to learn different aspects.

2 Pooling Layers: This works as a down--sampling layer by reducing the number of

gates. Each of the “k × k” input grid gates are usually reduced to a single cell/gate by

choosing the maximum input value or the average of all inputs. The layer is scanned

with a tiny k grid and a stride is chosen so that the grid covers the layer without

overlapping.

3 Fully linked Layers: Each gate’s output is connected to the input of the next layer’s

gate. (Also referred to as auto encoder levels). These transform a vectorized version

of the input into a normalized vectorized output. The output vector is a set of proba-

bilities that serve as the classification signature.

4 Convolution Layers: Consider 1D convolution, suppose the input vector is f and the

kernel is g whose length is m. The following equation shows the center of kernel

shifted and multiplied.

(𝑓 x 𝑔)(𝑖) = ∑  

𝑚

𝑗=1

𝑔(𝑗)𝑓 (⌈𝑖 − 𝑗 +
𝑚

2
⌉)

Figure 4. General architecture of CNN.

Similarly, one can define the 2D convolution. If the input of 2D convolution is an

image I (or, equivalently, a w by h matrix), and the m × m kernel matrix is denoted as W,

then this could be noted by the following equation

Figure 4. General architecture of CNN.

Similarly, one can define the 2D convolution. If the input of 2D convolution is an
image I (or, equivalently, a w by h matrix), and the m × m kernel matrix is denoted as W,
then this could be noted by the following equation:

(I ⊗W)(x, y) = ∑m
j=1 ∑m

k=1 Wj,k Idx−j+m/2e,dy−k+m/2e−

Consider next the Convolutional layer in a typical CNN. Suppose the input of the
convolutional layer has the dimension H × W × C, then the convolutional layers can
be taken as a set of C parallel, or stacked matrix feature maps, formed by convolving
different sized matrix kernels (feature detectors) over the input, and projecting element
wise the accumulated dot products. If the chosen convolutional kernel is k1 × k2 × C
and with a stride Zs (representing the kernel sliding interval), and together with a zero-
padding parameter Zp, representing the extent of the zero-border surrounding the image,
one controls the size of the resulting feature maps. Then, the dimension of the output of
such a convolution layer will be H1 ×W1 × D1, where:

(H1, W1, D1) =

(
H + 2Zp − k1

Zs + 1
,

W + 2Zp − k2

Zs + 1
, KD

)
where additionally KD: =depth size capturing the number of stacked convolutional layers,
(=C in this case).

Activation functions:
Activation functions define the output of a neuron based on a given set of inputs.

Some commonly used activation functions σ() with their gradients are as follows (Zanna,
and Bolton, 2020) [22]:

ReLU: σ(x) =
{

0 x < 0
x x ≥ 0

Softmax: σ
(

xj
)
= exj

∑d
k=1 exk

5. Pooling Layers: Pooling layers are down-sampling layers combining the output of
layers to a single neuron. If we denote k as the kernel size (now assume kernel is
squared), Dn as number of kernel windows, and Zs as stride to develop pooling
layers, then the output dimension of the pooling layer will be (suppose we have
H1 ×W1 × D1 input) as has been denoted be the following equation:

where (H1, W1, D1) =

(
H1 − k

Zs
+ 1,

W1 − k
Zs

+ 1, Dn

)

Computers 2022, 11, 78 8 of 20

With a pooling type that can be:

Max-pooling
Average Pooling
L2 norm Pooling

6. Fully Connected Dense Layers: After the pooling layers, pixels of pooling layers are
stretched to a single column vector. These vectorized and concatenated data points
are fed into dense layers, known as fully connected layers for the classification. In
some cases, the output layer of a deep network uses a soft max procedure. Similar
to logistic regression: Given n vectors {x1, x2, . . . ,xn} with labels {l1, l2, . . . ,ln}, where
li ∈ {0, 1} (as a binary classification task). With a weight vector w one can define by
the following equation:

Prob(l = 1 | x) = σ(wTx) : =
1

1 + e−wTx

where σ represents sigmoid function.
In the following, the selected four CNN models have been presented.

3.2.1. AlexNet

AlexNet was the first convolutional network to employ the graphics processing unit
(GPU) to improve performance. AlexNet has five convolutional layers, three max-pooling
layers, two normalization layers, two fully connected layers, and one SoftMax layer in
its design. Convolutional filters and a nonlinear activation function ReLU are used in
each convolutional layer. Max pooling is conducted using the pooling layers. Due to the
presence of fully connected layers, the input size is fixed. The input size is usually stated
as 224 × 224 × 3, however due to padding, it can add up to 227 × 227 × 3. The neural
network has 60 million parameters in total. Max Pool is used to down-sample an image or a
representation. Overlapping Max Pool layers are like Max Pool layers with the exception of
the adjacent windows over which the maximum determined overlaps, as shown in Figure 5.
AlexNet’s employed pooling windows with a size of 33 and a stride of 2 between adjacent
windows [23]. Figure 5 shows AlexNet architecture.

Computers 2022, 11, x FOR PEER REVIEW 9 of 22

design. Convolutional filters and a nonlinear activation function ReLU are used in each

convolutional layer. Max pooling is conducted using the pooling layers. Due to the pres-

ence of fully connected layers, the input size is fixed. The input size is usually stated as

224 × 224 × 3, however due to padding, it can add up to 227 × 227 × 3. The neural network

has 60 million parameters in total. Max Pool is used to down-sample an image or a repre-

sentation. Overlapping Max Pool layers are like Max Pool layers with the exception of the

adjacent windows over which the maximum determined overlaps, as shown in Figure 5.

AlexNet’s employed pooling windows with a size of 33 and a stride of 2 between adjacent

windows [23]. Figure 5 shows AlexNet architecture.

Figure 5. AlexNet architecture.

3.2.2. VGG16

The use of very small 3 × 3 receptive field (filters) over the whole network with a

stride of 1 pixel was proposed in this model. In AlexNet, the receptive field in the first

layer was 11 × 11 with stride 4, whereas the receptive field in the second layer was 11 x 11

with stride 4. The notion of utilizing 3 × 3 filters in a uniform manner increased the VGG

performance. Two 3 × 3 filters in succession produce a 5 × 5 effective receptive field. Three

3 × 3 filters, meanwhile, produce a 7 × 7 receptive field. A combination of multiple 3 × 3

filters can thus stand in for a larger receptive area. In addition to the three convolution

layers, there are three non-linear activation layers, rather than the single one in 7 × 7.

Therefore, the decision functions become more discriminative and would provide the net-

work the ability to converge quickly. Secondly, it greatly reduces the number of weight

parameters in the model. This can also be viewed as a regularization of the 7 × 7 convolu-

tional filters, forcing them to decompose through the 3 × 3 filters, with non-linearity intro-

duced in the middle using ReLU activations. The network’s inclination to over-fit during

the training exercise would be reduced as a result as shown in Figure 6. Furthermore, 3 ×

3 is the smallest size that can capture the concepts of left to right, top to bottom, and so

on. As a result, lowering the filter size even further may have an influence on the model’s

capacity to recognize the spatial aspects of the image. The network’s persistent use of 3 ×

3 convolutions made it incredibly simple, elegant, and easy to deal with [24]. Figure 6

shows VGG16 architecture.

Figure 5. AlexNet architecture.

3.2.2. VGG16

The use of very small 3 × 3 receptive field (filters) over the whole network with a
stride of 1 pixel was proposed in this model. In AlexNet, the receptive field in the first
layer was 11 × 11 with stride 4, whereas the receptive field in the second layer was 11 × 11
with stride 4. The notion of utilizing 3 × 3 filters in a uniform manner increased the
VGG performance. Two 3 × 3 filters in succession produce a 5 × 5 effective receptive
field. Three 3 × 3 filters, meanwhile, produce a 7 × 7 receptive field. A combination
of multiple 3 × 3 filters can thus stand in for a larger receptive area. In addition to the
three convolution layers, there are three non-linear activation layers, rather than the single

Computers 2022, 11, 78 9 of 20

one in 7 × 7. Therefore, the decision functions become more discriminative and would
provide the network the ability to converge quickly. Secondly, it greatly reduces the number
of weight parameters in the model. This can also be viewed as a regularization of the
7 × 7 convolutional filters, forcing them to decompose through the 3 × 3 filters, with non-
linearity introduced in the middle using ReLU activations. The network’s inclination to
over-fit during the training exercise would be reduced as a result as shown in Figure 6.
Furthermore, 3 × 3 is the smallest size that can capture the concepts of left to right, top to
bottom, and so on. As a result, lowering the filter size even further may have an influence
on the model’s capacity to recognize the spatial aspects of the image. The network’s
persistent use of 3 × 3 convolutions made it incredibly simple, elegant, and easy to deal
with [24]. Figure 6 shows VGG16 architecture.

Computers 2022, 11, x FOR PEER REVIEW 10 of 22

Figure 6. VGG16 Architecture.

3.2.3. ResNet

We usually stack additional layers in Deep Neural Networks to address a complex

problem, which improves accuracy and performance. The idea behind adding more layers

is that these layers can learn increasingly complicated features as time goes on. However,

it has been discovered that the classic Convolutional neural network model has a maxi-

mum depth threshold. Moreover, the emergence of ResNet or residual networks, which

are made up of Residual Blocks, has relieved the challenge of training very deep networks.

ResNet’s skip connections alleviate the problem of disappearing gradients in deep neural

networks by allowing the gradient to flow through an additional shortcut channel as

shown in Figure 6. These connections also aid the model by allowing it to learn the identity

functions, ensuring that the higher layer performs at least as well as the lower layer, if not

better [25]. Figure 7 shows ResNet architecture.

Figure 7. ResNet Architecture.

Figure 6. VGG16 Architecture.

3.2.3. ResNet

We usually stack additional layers in Deep Neural Networks to address a complex
problem, which improves accuracy and performance. The idea behind adding more layers
is that these layers can learn increasingly complicated features as time goes on. However, it
has been discovered that the classic Convolutional neural network model has a maximum
depth threshold. Moreover, the emergence of ResNet or residual networks, which are made
up of Residual Blocks, has relieved the challenge of training very deep networks. ResNet’s
skip connections alleviate the problem of disappearing gradients in deep neural networks
by allowing the gradient to flow through an additional shortcut channel as shown in
Figure 6. These connections also aid the model by allowing it to learn the identity functions,
ensuring that the higher layer performs at least as well as the lower layer, if not better [25].
Figure 7 shows ResNet architecture.

Computers 2022, 11, x FOR PEER REVIEW 10 of 22

Figure 6. VGG16 Architecture.

3.2.3. ResNet

We usually stack additional layers in Deep Neural Networks to address a complex

problem, which improves accuracy and performance. The idea behind adding more layers

is that these layers can learn increasingly complicated features as time goes on. However,

it has been discovered that the classic Convolutional neural network model has a maxi-

mum depth threshold. Moreover, the emergence of ResNet or residual networks, which

are made up of Residual Blocks, has relieved the challenge of training very deep networks.

ResNet’s skip connections alleviate the problem of disappearing gradients in deep neural

networks by allowing the gradient to flow through an additional shortcut channel as

shown in Figure 6. These connections also aid the model by allowing it to learn the identity

functions, ensuring that the higher layer performs at least as well as the lower layer, if not

better [25]. Figure 7 shows ResNet architecture.

Figure 7. ResNet Architecture.

Figure 7. ResNet Architecture.

Computers 2022, 11, 78 10 of 20

3.2.4. EfficientNet

EfficientNet is a convolutional neural network design and scaling method that uses a
compound coefficient to scale all depth/width/resolution dimensions evenly. The Efficient-
Net scaling method consistently scales network breadth, depth, and resolution with a set
of predefined scaling coefficients, unlike traditional methods, which arbitrary scales these
elements. Before the EfficientNets, the most popular technique to scale up ConvNets was
to increase the depth (number of layers), the breadth (number of channels), or the image
quality. As shown in Figure 8, the EfficientNet started by creating a baseline network using
a technique called neural architecture search which automates the building of neural net-
works. On a floating-point operations per second (FLOPS) basis, it optimizes both accuracy
and efficiency. The movable inverted bottleneck convolution is used in this architecture
(MBConv). The researchers then scaled up this baseline network to create the EfficientNets
family of deep learning models [20]. Figure 8 shows EfficientNets architecture.

Computers 2022, 11, x FOR PEER REVIEW 11 of 22

3.2.4. EfficientNet

EfficientNet is a convolutional neural network design and scaling method that uses

a compound coefficient to scale all depth/width/resolution dimensions evenly. The Effi-

cientNet scaling method consistently scales network breadth, depth, and resolution with

a set of predefined scaling coefficients, unlike traditional methods, which arbitrary scales

these elements. Before the EfficientNets, the most popular technique to scale up ConvNets

was to increase the depth (number of layers), the breadth (number of channels), or the

image quality. As shown in Figure 8, the EfficientNet started by creating a baseline net-

work using a technique called neural architecture search which automates the building of

neural networks. On a floating-point operations per second (FLOPS) basis, it optimizes

both accuracy and efficiency. The movable inverted bottleneck convolution is used in this

architecture (MBConv). The researchers then scaled up this baseline network to create the

EfficientNets family of deep learning models [20]. Figure 8 shows EfficientNets architec-

ture.

Figure 8. Efficient Nets architecture.

In the previous step, the most popular CNN models, according to the literature, were

discussed. The next step illustrates how the best CNN model among the four explained

CNN models was nominated. In the following, the third step of our methodology is pre-

sented.

3.3. Select the Best CNN Architecture

According to [26], accuracy is the best benchmark to compare between CNN archi-

tectures. Accordingly, experiments have been conducted for testing accuracy among the

four selected CNN architectures. Experiments were conducted according to the following

steps:

(1) Preparing and resizing the dataset images to be ready for insertion into the selected

four CNN architectures.

(2) Labeling the dataset images to be ready for the classification process. The Appendix

A shows a snapshot of the software code for labeling the dataset images and for pre-

paring the dataset for experiments.

(3) Split dataset images in two sets, training and testing sets.

The first step in building the real-time object detection model was to split the dataset

into train and test sets. The python library split-folders were used to split the dataset. The

dataset was split into 80% training set (43,240 images) and 20% test set (10,809 images).

The training set was used for training the CNN architecture to achieve the best weights.

Figure 8. Efficient Nets architecture.

In the previous step, the most popular CNN models, according to the literature,
were discussed. The next step illustrates how the best CNN model among the four ex-
plained CNN models was nominated. In the following, the third step of our methodology
is presented.

3.3. Select the Best CNN Architecture

According to [26], accuracy is the best benchmark to compare between CNN architec-
tures. Accordingly, experiments have been conducted for testing accuracy among the four
selected CNN architectures. Experiments were conducted according to the following steps:

(1) Preparing and resizing the dataset images to be ready for insertion into the selected
four CNN architectures.

(2) Labeling the dataset images to be ready for the classification process. The Appendix A
shows a snapshot of the software code for labeling the dataset images and for prepar-
ing the dataset for experiments.

(3) Split dataset images in two sets, training and testing sets.

The first step in building the real-time object detection model was to split the dataset
into train and test sets. The python library split-folders were used to split the dataset. The
dataset was split into 80% training set (43,240 images) and 20% test set (10,809 images).
The training set was used for training the CNN architecture to achieve the best weights.
The testing set was used for checking the correctness of achieved weights and to adjust
it accordingly.

Define the optimizer where the Adam optimizer [27] has been chosen for controlling
the learning rate based on the following equation:

Optimizer = Adam (lr = 0.001, beta_1 = 0.9, beta_2 = 0.999)

Computers 2022, 11, 78 11 of 20

(4) Define the epochs and batch size where the epoch specifies the number of times the
CNN accepts whole training data, i.e., the epoch is equal to one forward pass and one
backward pass for all training samples. On the other hand, the batch size specifies the
number of training samples we use in one forward pass and one backward pass [28].
The following parameters are defined in this step: epochs = 30; batch_size = 32. Due
to limitation of this paper size, only the results of last five epoch are presented. In this
step, image Augmentation was also implemented to avoid overfitting problem.

(5) Run the four CNN architectures where categorical cross-entropy loss [29] is typically
used in a multiclass classification setting in which the outputs are interpreted as
predictions of class membership probabilities. The output of this experiment step
is defining classification accuracy for each CNN architecture. Table 1 shows the
hyperparameters for experiments. Table 2 shows the accuracy results that have been
generated from the conducted experiments.

Table 1. The Hyperparameters for experiments.

Hyperparameters VGG16
Value

RestNet50
Value

EffecientNet
Value

AlexNet
Value

Initial learning rate 0.001 0.001 0.001 0.001
Activation function Categorical Cross Entropy Categorical Cross Entropy Categorical Cross Entropy Categorical Cross Entropy
Number of epochs 30 30 30 30

Batch size 32 32 32 32
Optimizer ADAM ADAM ADAM ADAM

Weight initialization Xavier initialization Xavier initialization Xavier initialization Xavier initialization
Learning rate decay (λ) 0.0002 0.0002 0.0002 0.0002

Momentum 0.9 0.9 0.9 0.9

Table 2. The accuracy results that have been generated from the conducted experiments.

Model Epoch Train Loss Train Accuracy (%) Valid Loss Valid Acc (%)

VGG16

26 0.2187 93.27

0.5936 82.30

27 0.2069 93.70

28 0.2077 93.68

29 0.1996 93.77

30 0.1957 94.05

RestNet50

26 0.0235 99.29

0.5688 89.83

27 0.0157 99.55

28 0.0212 99.35

29 0.0175 99.52

30 0.1021 96.76

EffecientNet

26 0.0290 99.24

0.5481 86.56

27 0.0269 99.24

28 0.0225 99.32

29 0.0265 99.29

30 0.0239 99.37

AlexNet

26 0.0269 99.10

0.2004 94.81

27 0.0242 99.28

28 0.0265 99.19

29 0.0216 99.32

30 0.0085 99.75

Computers 2022, 11, 78 12 of 20

It is obvious that the best CNN architecture is the AlexNet architecture. In the follow-
ing table, the implementation of real time recognition model based AlexNet architecture
is presented. Figure 9 shows the accuracy results of the conducted experiment. Figure 10
shows the loss results of the conducted experiment. Table 3 shows how many images
representing each sign were employed into network training and validation.

Computers 2022, 11, x FOR PEER REVIEW 13 of 22

AlexNet

26 0.0269 99.10

0.2004 94.81

27 0.0242 99.28

28 0.0265 99.19

29 0.0216 99.32

30 0.0085 99.75

It is obvious that the best CNN architecture is the AlexNet architecture. In the fol-

lowing table, the implementation of real time recognition model based AlexNet architec-

ture is presented. Figure 9 shows the accuracy results of the conducted experiment. Figure

10 shows the loss results of the conducted experiment. Table 3 shows how many images

representing each sign were employed into network training and validation.

Table 3. How many images representing each sign were employed into network training and vali-

dation.

Letter Name in

English Script

Letter name in

Arabic script
of images #

Letter name in

English script

Letter name in

Arabic script
of images

1 Alif)17 1672 ألَِف(أ Zā)1723 ظَاء(ظ

2 Bā)18 1791 باَء(ب Ayn)2114 عَين(ع

3 Tā)19 1838 أتاَء(ت Ghayn)1977 غَين(غ

4 Thā)20 1766 ثاَء(ث Fā)1955 فاَء(ف

5 Jīm)21 1552 جِيمْ(ج Qāf)1705 قاَف(ق

6 Hā)22 1526 حَاء(ح Kāf)1774 كَاف(ك

7 Khā)23 1607 خَاء(خ Lām)1832 لامَْ(ل

8 Dāl)24 1634 داَلْ(د Mīm)1765 مِيمْ(م

9 Dhāl)25 1582 ذاَل(ذ Nūn)1819 نوُن(ن

10 Rā)26 1659 رَاء(ر Hā)1592 هَاء(ه

11 Zāy)27 1374 زَاي(ز Wāw)1371 وَاو(و

12 Sīn)28 1638 سِينْ(س Yā)1722 ياَ(ئ

13 Shīn)29 1507 شِينْ(ش Tāa)1791 ة(ة

14 Sād)30 1895 صَادْ(ص Al)1343 ال(ال

15 Dād)31 1670 ضَاد(ض Laa)1746 لا(لا

16 Tā)32 1816 طَاء(ط Yāa)1293 ياَء(ياَء

Figure 9. The accuracy results of the conducted experiment.

Computers 2022, 11, x FOR PEER REVIEW 14 of 22

Figure 9. The accuracy results of the conducted experiment.

Figure 10. The loss results of the conducted experiment.

4. Developing Real Time ArSLA Recognition Model Using AlexNet Deep Learning

Architecture

In this section, the technical details of developing a real time model for ArSL recog-

nition is explained. We have selected AlexNet architecture due to its high performance as

examined in the previous section. As previously presented in this discussion, the recogni-

tion model based on AlexNet architecture has been developed and is ready to be tested

and used. Now, Figures 11 and 12 show two Arabic letters Nuon (ن) and Thaa (ث) that

have been captured in real time. A gestures technique has been used for identifying and

capturing hand shape. In image processing, a gesture is defined as a technique in which

part of the human body is recognized by using a camera [30].

In the following, steps for the sign reorganization are described:

Image Capturing: Open-cv has been used for developing software to control the cam-

era and implement the real-time detection. The saved model from previous trainings were

loaded into the system for applying with a real-time detector. After that, the gesture recog-

nition model has been used to detect the convexity of hand.

Extracting the ROI: (Region of interest) from inserted frames within background sub-

traction. Determine the contour and draw the convex hull. The contour is outlined as the

object’s (hand) boundary that can be seen in the image. The contour can also be a wave

connecting points that has a similar color value and is important in the shape analyzing

and objects identification method.

Find the convexity defects depending upon the number of defects and determine the

gesture. This process takes few milliseconds which means the recognition is implemented

at real time.

Algorithm 1 shows the algorithm of gestures technique that was implemented in this

model. Algorithm 2 shows the algorithm of testing the model by a single image. The

model recognized these two letters successfully. This process can later be used to write a

full article. Writing a full article by using our proposed model will enhance the lives of

people with hearing disabilities.

Figure 10. The loss results of the conducted experiment.

Computers 2022, 11, 78 13 of 20

Table 3. How many images representing each sign were employed into network training
and validation.

Letter Name in
English Script

Letter Name in
Arabic Script # of Images # Letter Name in

English Script
Letter Name in
Arabic Script # of Images

1 Alif (

@(

Ë�

�
@ 1672 17 Zā (

 (ZA
�	

£ 1723

2 Bā (H. (ZA
�
K. 1791 18 Ayn (¨(á�

�
« 2114

3 Tā (�
H (ZA

��
K

@ 1838 19 Ghayn (

	
¨(á�

�	
« 1977

4 Thā (�
H (ZA

�
�
K 1766 20 Fā (

	
¬(ZA

�	
¯ 1955

5 Jı̄m (h. (�Õæ

k.�

1552 21 Qāf (�
� (

	
¬A

��
¯ 1705

6 Hā (h (ZA
�

g 1526 22 Kāf (¼(
	

¬A
�
¿ 1774

7 Khā (p (ZA
�	

g 1607 23 Lām (È(�
Ð

�
B 1832

8 Dāl (X (
�

È@
�
X 1634 24 Mı̄m (Ð(�Õæ

Ó� 1765

9 Dhāl (
X (È@

�	
X 1582 25 Nūn (

à(
àñ

�	
K 1819

10 Rā (P (Z @ �P 1659 26 Hā (è(ZA
�
ë 1592

11 Zāy (P (ø

@
�	P 1374 27 Wāw (ð(ð@

�
ð 1371

12 Sı̄n (� (
�	á�
��

1638 28 Yā (ø (A
�
K
 1722

13 Shı̄n (�
� (

�	á�

�

��
1507 29 Tāa (�

è(�
è 1791

14 Sād (�(�
XA

�
� 1895 30 Al (È@(È@ 1343

15 Dād (
�(XA

�	
� 1670 31 Laa (

Computers 2022, 11, x FOR PEER REVIEW 13 of 22

AlexNet

26 0.0269 99.10

0.2004 94.81
27 0.0242 99.28
28 0.0265 99.19
29 0.0216 99.32
30 0.0085 99.75

It is obvious that the best CNN architecture is the AlexNet architecture. In the fol-
lowing table, the implementation of real time recognition model based AlexNet architec-
ture is presented. Figure 9 shows the accuracy results of the conducted experiment. Figure
10 shows the loss results of the conducted experiment. Table 3 shows how many images
representing each sign were employed into network training and validation.

Table 3. How many images representing each sign were employed into network training and vali-
dation.

Letter Name in
English Script

Letter name in
Arabic script # of images #

Letter name in
English script

Letter name in
Arabic script # of images

1 Alif (17 1672 ألَِف)أ Zā (1723 ظَاء)ظ
2 Bā (18 1791 باَء) ب Ayn (2114 عَين)ع
3 Tā (19 1838 أتاَء) ت Ghayn (1977 غَين)غ
4 Thā (20 1766 ثاَء) ث Fā (1955 فاَء)ف
5 Jīm (21 1552 جِيمْ) ج Qāf (1705 قاَف) ق
6 Hā (22 1526 حَاء) ح Kāf (1774 كَاف)ك
7 Khā (23 1607 خَاء) خ Lām (1832 لامَْ)ل
8 Dāl (24 1634 داَلْ) د Mīm (1765 مِيمْ)م
9 Dhāl (25 1582 ذاَل) ذ Nūn (1819 نوُن)ن

10 Rā (26 1659 رَاء) ر Hā (1592 هَاء)ه
11 Zāy (27 1374 زَاي) ز Wāw (1371 وَاو)و
12 Sīn (28 1638 سِينْ) س Yā (1722 ياَ) ئ
13 Shīn (29 1507 شِينْ) ش Tāa (1791 ة)ة
14 Sād (30 1895 صَادْ)ص Al (1343 ال)ال
15 Dād (31 1670 ضَاد)ض Laa (لا) لا 1746
16 Tā (32 1816 طَاء)ط Yāa (1293 ياَء) ياَء

(

Computers 2022, 11, x FOR PEER REVIEW 13 of 22

AlexNet

26 0.0269 99.10

0.2004 94.81
27 0.0242 99.28
28 0.0265 99.19
29 0.0216 99.32
30 0.0085 99.75

It is obvious that the best CNN architecture is the AlexNet architecture. In the fol-
lowing table, the implementation of real time recognition model based AlexNet architec-
ture is presented. Figure 9 shows the accuracy results of the conducted experiment. Figure
10 shows the loss results of the conducted experiment. Table 3 shows how many images
representing each sign were employed into network training and validation.

Table 3. How many images representing each sign were employed into network training and vali-
dation.

Letter Name in
English Script

Letter name in
Arabic script # of images #

Letter name in
English script

Letter name in
Arabic script # of images

1 Alif (17 1672 ألَِف)أ Zā (1723 ظَاء)ظ
2 Bā (18 1791 باَء) ب Ayn (2114 عَين)ع
3 Tā (19 1838 أتاَء) ت Ghayn (1977 غَين)غ
4 Thā (20 1766 ثاَء) ث Fā (1955 فاَء)ف
5 Jīm (21 1552 جِيمْ) ج Qāf (1705 قاَف) ق
6 Hā (22 1526 حَاء) ح Kāf (1774 كَاف)ك
7 Khā (23 1607 خَاء) خ Lām (1832 لامَْ)ل
8 Dāl (24 1634 داَلْ) د Mīm (1765 مِيمْ)م
9 Dhāl (25 1582 ذاَل) ذ Nūn (1819 نوُن)ن

10 Rā (26 1659 رَاء) ر Hā (1592 هَاء)ه
11 Zāy (27 1374 زَاي) ز Wāw (1371 وَاو)و
12 Sīn (28 1638 سِينْ) س Yā (1722 ياَ) ئ
13 Shīn (29 1507 شِينْ) ش Tāa (1791 ة)ة
14 Sād (30 1895 صَادْ)ص Al (1343 ال)ال
15 Dād (31 1670 ضَاد)ض Laa (لا) لا 1746
16 Tā (32 1816 طَاء)ط Yāa (1293 ياَء) ياَء

1746

16 Tā ((ZA
�

£ 1816 32 Yāa (ZA
�
K
 (ZA

�
K
 1293

4. Developing Real Time ArSLA Recognition Model Using AlexNet Deep
Learning Architecture

In this section, the technical details of developing a real time model for ArSL recogni-
tion is explained. We have selected AlexNet architecture due to its high performance as
examined in the previous section. As previously presented in this discussion, the recogni-
tion model based on AlexNet architecture has been developed and is ready to be tested
and used. Now, Figures 11 and 12 show two Arabic letters Nuon (

à) and Thaa (�
H) that

have been captured in real time. A gestures technique has been used for identifying and
capturing hand shape. In image processing, a gesture is defined as a technique in which
part of the human body is recognized by using a camera [30].

Computers 2022, 11, x FOR PEER REVIEW 15 of 22

Figure 11. Arabic letter Nuon (ن).

Figure 12. Arabic letter Thaa (ث).

Algorithm 1. Algorithm of gestures technique that has been implemented in this model.

video capture

Set: cap = cv2.VideoCapture(0)

while True:

 read frame

 # Simulating mirror image

 frame = cv2.flip(frame, 1)

 # Coordinates of the ROI

 x1 = int(0.5*frame.shape [1])

 y1 = 10

 x2 = frame.shape [1]-10

 y2 = int(0.5*frame.shape [1])

 # Drawing the ROI

 # The increment/decrement by 1 is to compensate for the bounding box

 cv2.rectangle(frame, (x1 − 1, y1 − 1), (x2 + 1, y2 + 1), (255, 0, 0), 1)

 # Extracting the ROI

 roi = frame[y1:y2, x1:x2]

Figure 11. Arabic letter Nuon (
à).

Computers 2022, 11, 78 14 of 20

Computers 2022, 11, x FOR PEER REVIEW 15 of 22

Figure 11. Arabic letter Nuon (ن).

Figure 12. Arabic letter Thaa (ث).

Algorithm 1. Algorithm of gestures technique that has been implemented in this model.

video capture

Set: cap = cv2.VideoCapture(0)

while True:

 read frame

 # Simulating mirror image

 frame = cv2.flip(frame, 1)

 # Coordinates of the ROI

 x1 = int(0.5*frame.shape [1])

 y1 = 10

 x2 = frame.shape [1]-10

 y2 = int(0.5*frame.shape [1])

 # Drawing the ROI

 # The increment/decrement by 1 is to compensate for the bounding box

 cv2.rectangle(frame, (x1 − 1, y1 − 1), (x2 + 1, y2 + 1), (255, 0, 0), 1)

 # Extracting the ROI

 roi = frame[y1:y2, x1:x2]

Figure 12. Arabic letter Thaa (�
H).

In the following, steps for the sign reorganization are described:
Image Capturing: Open-cv has been used for developing software to control the

camera and implement the real-time detection. The saved model from previous trainings
were loaded into the system for applying with a real-time detector. After that, the gesture
recognition model has been used to detect the convexity of hand.

Extracting the ROI: (Region of interest) from inserted frames within background
subtraction. Determine the contour and draw the convex hull. The contour is outlined as
the object’s (hand) boundary that can be seen in the image. The contour can also be a wave
connecting points that has a similar color value and is important in the shape analyzing
and objects identification method.

Find the convexity defects depending upon the number of defects and determine the
gesture. This process takes few milliseconds which means the recognition is implemented
at real time.

Algorithm 1 shows the algorithm of gestures technique that was implemented in this
model. Algorithm 2 shows the algorithm of testing the model by a single image. The model
recognized these two letters successfully. This process can later be used to write a full
article. Writing a full article by using our proposed model will enhance the lives of people
with hearing disabilities.

Algorithm 1. Algorithm of gestures technique that has been implemented in this model

video capture
Set: cap = cv2.VideoCapture(0)
while True:

read frame
Simulating mirror image
frame = cv2.flip(frame, 1)

Coordinates of the ROI
x1 = int(0.5*frame.shape [1])
y1 = 10
x2 = frame.shape [1]-10
y2 = int(0.5*frame.shape [1])
Drawing the ROI
The increment/decrement by 1 is to compensate for the bounding box
cv2.rectangle(frame, (x1 − 1, y1 − 1), (x2 + 1, y2 + 1), (255, 0, 0), 1)
Extracting the ROI
roi = frame [y1:y2, x1:x2]

Resizing the ROI so it can be fed to the model for prediction
roi = resize image (roi, (64, 64))
roi = Color CTV (roi, cv2.COLOR_BGR2GRAY)
_, image = cv2.threshold(roi, 120, 255, cv2.THRESH_BINARY)
Show image(image)

Computers 2022, 11, 78 15 of 20

Algorithm 2. Algorithm of testing the model by single image

Set path:
Img = convert to gray(path)
print(path)
letter = path.split(letter)
print(letter)
num = transform(letter)
print(num)
img = reshape image(1, 227, 227, 3)
pred_y = model1.predict(img)
print(np.argmax(pred_y))
calculate test loss
test accuracy = model1.evaluate(img, num)
print(test accuracy)

5. Discussion and Conclusions

Regarding the confusion matrix, all the models predicted 32 classes for the 32 standard
Alphabetic Arabic signs. The VGG model predicted 45 correct images belonging to class 7.
It also predicted 30 images correctly belonging to class 19. The ResNet model predicted
20 correct images from class 7 and about 10 images from class 19. The efficientNet model
predicted about 10 images correct for class 7 and class 19.

Deep learning challenges were stated in [31]. In the following, the explanation of how
this proposal model dealt with these challenges is presented.

Challenge 1: Convolutional neural networks (CNNs) require sufficient training sam-
ples to achieve high performance as using small datasets can result in overfitting.

To overcome this challenge, transfer learning has been proposed as a solution, a
technique in which the model is trained on a large training set. The results of this training
are then treated as the starting point for the target task. Transfer learning has been successful
in fields such as language processing and computer vision. Frequently used pretrained
deep learning models include common models such as AlexNet, EfficientNet, VGG16,
and ResNet, which are all typically utilized for image classification. Data augmentation is
another technique that has proved to be effective in alleviating overfitting and improving
overall performance. This method increases the training set’s size by performing geometric
and color transformations such as rotation, resizing, cropping, and either adding noise
or blurring the image, etc. In this work, we did not use either transfer learning or data
augmentation in training our CNN model. Instead, we utilized the ArSLA dataset which
is suitable for testing and training. It uses around 1000 images for each letter to train the
CNN model.

Challenge 2: Selecting the proper CNN model. This is because model selection will be
different from one dataset to another, meaning the process is dependent on trial and error.

To address this issue, we trained and tested four, state-of-the-art CNN models, includ-
ing AlexNet, VGG16, GoogleNet, and ResNet, in order to select the best model to classify
the sign language. Our results found that AlexNet had the highest accuracy at 94.81%.

Challenge 3: In manufacturing, data acquisition can be difficult. This is due to one of
two issues: The first is that sensor placement is ineffective. The second is that vibrations or
noise render the collected data useless.

To address this challenge, the ArSLA dataset [6] utilized data from 40 contributors
across varying age groups. We then scaled the image pixels to zero-mean and unit variance
as pre-processing techniques. We desire our model to learn from noisy images because most
of the applications use the camera to capture the letters, some of which are lower quality.

In Section 2 (Related Works), the problem descriptions, research gaps, and enhance-
ment possibilities were discussed in four points. In the following, the contributions of the
proposed recognition model are discussed in light of these four points.

Computers 2022, 11, 78 16 of 20

(1) The proposed model is accessible to everyone as no additional or special equipment
was used and only a PC or laptop camera is required.

(2) The process of feature extraction is built into the Alexnet architecture which pro-
duces high accuracy. This feature extraction is completely independent of human
intervention which in turn makes it free from human error factors.

(3) The recognition systems developed based on deep learning architectures exhibit a
good reputation and produce results with high accuracy. In light of this, the best deep
learning (CNN) architectures (according to the literature) were tested by a real and
trusted ArSL dataset, then based on the test’s results the best CNN architecture were
chosen for developing the real-time recognition system. The proposed model was not
built from scratch, but rather from the latest findings of researchers in this field, which
enabled it to benefit from the accumulated experiences. Table 4 summarizes related
works by focusing on training accuracy. In our proposed model, the training accuracy
for AlexNet is 99.75% (see Table 2). For the training accuracy that is better than the
highest value in related works, see Table 4. For the sake of transparency, we have
additionally presented the validation accuracy (testing accuracy) which is 94.81%.

Table 4. Shows summary of related works by focus on training accuracy.

Ref Year Device Language Features Technique Training Accuracy

1 [9] 2017 Camera 25 Arabic words Image pixels CNN 90%

2 [12] 2019
dual Leap

Motion
Controllers

100 Arabic words N geometric
parameters LDA 88%

3 [14] 2019 Kinect sensor 35 Indian sign
Distances, angles, and

velocity involving
upper body joints

Multi-class
support vector

machine classifier
87.6%

4 [11] 2018 Single camera 30 Arabic words Segmented image Euclidean
distance classifier 83%

5 [32] 2020 Single camera 24 English letters Image pixels
Inception v3 plus

Support Vector
Machine (SVM)

92.21%

6 [16] 2020 Single camera 28 Arabic letters Image pixels CNN 97.82%

7 [6] 2015 Glove 30 Arabic letters invariant features ResNet-18 93.4%

8 [33] 2011 Single camera 20 Arabic words Edge detection and
contours tracking HMM 82.22%

9 [13] 2019 Camera 40 Arabic sign
language words

Thresholder image
differences HMM 94.5%

10 [10] 2018 Camera 30 Arabic letters FFT HOG and SVM 63.5%

(4) The proposed model was developed with the complete Arabic alphabet which allows
users to write full articles using ArSLA in real time.

This model is limited to detect only one object (a hand) without taking into the
background into consideration. The background of the hand plays a prominent role in
object recognition. The performance might not be the same if the background is changed.
The background should be the same as in the training set. In addition, the detection process
in our proposed model is highly sensitive to variations in the hand’s pose.

Future work is planned and suggested to develop a mobile application based on this
proposed model. Another direction of future work is to utilize transfer learning to pre-train
a model on other sign language datasets such as the American Sign Language dataset,
MS-ASL. Other work will modify Arabic sign language data to validate the effectiveness of
implementing transfer learning in sign language recognition. Data augmentation will also
be applied to generate training samples.

Computers 2022, 11, 78 17 of 20

Author Contributions: Conceptualization, A.O.E.; Data curation, Z.A.; Formal analysis, S.A.; Investi-
gation, Z.A. and S.A.; Methodology, Z.A. and A.O.E.; Project administration, A.O.E.; Resources, E.A.,
M.A. and A.A.D.A.; Software, Z.A., E.A., M.A. and A.A.D.A.; Supervision, A.O.E. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data has been presented in main text.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow
from tensorflow.keras.layers import Input, Lambda, Dense, Flatten, GlobalAverage-

Pooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.applications import Xception
from tensorflow.keras.models import Sequential
from tensorflow.keras.applications.vgg16 import preprocess_input
from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from glob import glob
from tensorflow.keras.applications import EfficientNetB0
initiate vgg16
model = VGG16(include_top = False, weights = ‘imagenet’)
x = model.output
x = GlobalAveragePooling2D () (x)
x = Dense(1024, activation = ‘relu’) (x)
pred = Dense(trainx.num_classes, activation = ‘softmax’)(x)
mdl2 = Model(inputs = model.input, outputs = pred)
for layer in model.layers:

layer.trainable = False
mdl2.compile(loss = ‘categorical_crossentropy’,

optimizer = ‘adam’,
metrics = [‘accuracy’])

mdl2.fit(trainx, epochs = 30)
vgg model evaluation
test_loss, test_acc = mdl2.evaluate(testx)
generating predictions
true_classes = testx.classes
class_indices = trainx.class_indices
class_indices = dict((v, k) for k, v in class_indices.items())
ypred2 = mdl2.predict(testx)
ypred2_classes = np.argmax(ypred2, axis = 1)
accuracy
from sklearn.metrics import accuracy_score
acc = accuracy_score(true_classes, ypred2_classes)

Computers 2022, 11, 78 18 of 20

print(acc)
import seaborn as sns
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(true_classes, ypred2_classes)
print(cm)
plt.figure(figsize = (12, 9))
sns.heatmap(cm)
plt.show()
RestNet50
res = ResNet50(include_top = False, weights = ‘imagenet’)
x1 = res.output
x1 = GlobalAveragePooling2D()(x1)
x1 = Dense(1024, activation = ‘relu’)(x1)
pred1 = Dense(trainx.num_classes, activation = ‘softmax’)(x1)
mdl3 = Model(inputs = res.input, outputs = pred1)
for layer in model.layers:

layer.trainable = False
mdl3.compile(loss = ‘categorical_crossentropy’,

optimizer = ‘adam’,
metrics = [‘accuracy’])

mdl3.fit(trainx, epochs = 30)
restnet model evaluation
testr_loss, testr_acc = mdl3.evaluate(testx)
confusion matrix
cm1 = confusion_matrix(trueclas, ypred3_classes)
heatmap
plt.figure(figsize = (12, 9))
sns.heatmap(cm1)
plt.show()
efficient net model
eff = EfficientNetB0(include_top = False, weights = ‘imagenet’)
x2 = eff.output
x2 = GlobalAveragePooling2D()(x2)
x2 = Dense(1024, activation = ‘relu’)(x2)
pred2 = Dense(trainx.num_classes, activation = ‘softmax’)(x2)
mdl4 = Model(inputs = eff.input, outputs = pred2)
for layer in model.layers:

layer.trainable = False
mdl4.compile(loss = ‘categorical_crossentropy’,

optimizer = ‘adam’,
metrics = [‘accuracy’])

mdl4.fit(trainx, epochs = 30)
generating predictions for restnet
trueclas = testx.classes
classindices = trainx.class_indices
classindices = dict((v, k) for k, v in class_indices.items())
ypred3 = mdl3.predict(testx)
ypred3_classes = np.argmax(ypred3, axis = 1)
accuracy
acc1 = accuracy_score(trueclas, ypred3_classes)
print(acc1)
efficientnet model evaluation
testf_loss, testf_acc = mdl4.evaluate(testx)
efficientnet confusion matrix

Computers 2022, 11, 78 19 of 20

confusion matrix
cm2 = confusion_matrix(trueclazz, ypred4_classes)
heatmap
plt.figure(figsize = (12, 9))
sns.heatmap(cm2)
plt.show()
Alexnet model
defining a model
alx = Xception(include_top = False, weights = ‘imagenet’)
x4 = alx.output
x4 = GlobalAveragePooling2D()(x4)
x4 = Dense(1024, activation = ‘relu’)(x4)
pred5 = Dense(trainx.num_classes, activation = ‘softmax’)(x4)
mdl5 = Model(inputs = alx.input, outputs = pred5)

for layer in model.layers:
layer.trainable = False

mdl5.compile(loss = ‘categorical_crossentropy’,
optimizer = ‘adam’,

metrics = [‘accuracy’])
mdl5.fit(trainx, epochs = 30)
alexnet model evaluation
testa_loss, testa_acc = mdl5.evaluate(testx)
generating predictions for efficientnet
trueclazz1 = testx.classes
clazzindices1 = trainx.class_indices
clazzindices1 = dict((v, k) for k, v in class_indices.items())
ypred5 = mdl5.predict(testx)
ypred5_classes = np.argmax(ypred5, axis = 1)
accuracy
acc3 = accuracy_score(trueclazz1, ypred5_classes)
print(acc3)

Alexnet confusion matrix
confusion matrix
cm3 = confusion_matrix(trueclazz1, ypred5_classes)
heatmap
plt.figure(figsize = (12, 9))
sns.heatmap(cm3)
plt.show()

References
1. Rastgoo, R.; Kiani, K.; Escalera, S. Sign Language Recognition: A Deep Survey. Expert Syst. Appl. 2020, 164, 113794. [CrossRef]
2. Mirdehghan, M. Persian, Urdu, and Pashto: A comparative orthographic analysis. Writ. Syst. Res. 2010, 2, 9–23. [CrossRef]
3. El-Bendary, N.; Zawbaa, H.M.; Daoud, M.S.; Hassanien, A.E.; Nakamatsu, K. ArSLAT: Arabic Sign Language Alphabets Translator.

In Proceedings of the 2010 International Conference on Computer Information Systems and Industrial Management Applications
(CISIM), Krakow, Poland, 8–10 October 2010; pp. 590–595. [CrossRef]

4. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE
2020, 109, 43–76. [CrossRef]

5. Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. arXiv 2017, arXiv:1712.04621.
6. Tharwat, A.; Gaber, T.; Hassanien, A.E.; Shahin, M.K.; Refaat, B. Sift-based arabic sign language recognition system. In

Afro-European Conference for Industrial Advancement, Proceedings of the First International Afro-European Conference for Industrial
Advancement AECIA 2014, Addis Ababa, Ethiopia, 17–19 November 2015; Springer International Publishing: Cham, Switzerland,
2015; pp. 359–370.

http://doi.org/10.1016/j.eswa.2020.113794
http://doi.org/10.1093/wsr/wsq005
http://doi.org/10.1109/cisim.2010.5643519
http://doi.org/10.1109/JPROC.2020.3004555

Computers 2022, 11, 78 20 of 20

7. Halawani, S.M.; Zaitun, A.B. An avatar based translation system from Arabic speech to Arabic sign language for deaf people.
Inter. J. Inf. Sci. Educ. 2012, 2, 13–20.

8. Mohandes, M.; Aliyu, S.; Deriche, M. Arabic sign language recognition using the leap motion controller. In Proceedings of the
2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June 2014; pp. 960–965.

9. ElBadawy, M.; Elons, A.S.; Howida, A.; Shedeed, H.A.; Tolba, M.F. Arabic sign language recognition with 3d convolutional
neural networks. In Proceedings of the 2017 Eighth International Conference on Intelligent Computing and Information Systems
(ICICIS), Cairo, Egypt, 5–7 December 2017; pp. 66–71.

10. Alzohairi, R.; Alghonaim, R.; Alshehri, W.; Aloqeely, S.; Alzaidan, M.; Bchir, O. Image based Arabic sign language recognition
system. Int. J. Adv. Comput. Sci. Appl. 2018, 9. [CrossRef]

11. Ibrahim, N.B.; Selim, M.M.; Zayed, H.H. An Automatic Arabic Sign Language Recognition System (ArSLRS). J. King Saud Univ.
Comput. Inf. Sci. 2018, 30, 470–477. [CrossRef]

12. Deriche, M.; Aliyu, S.O.; Mohandes, M. An Intelligent Arabic Sign Language Recognition System Using a Pair of LMCs With
GMM Based Classification. IEEE Sens. J. 2019, 19, 8067–8078. [CrossRef]

13. Hassan, M.; Assaleh, K.; Shanableh, T. Multiple Proposals for Continuous Arabic Sign Language Recognition. Sens. Imaging
2019, 20. [CrossRef]

14. Gangrade, J.; Bharti, J. Real time sign language recognition using depth sensor. Int. J. Comput. Vis. Robot. 2019, 9, 329. [CrossRef]
15. Kamruzzaman, M.M. Arabic Sign Language Recognition and Generating Arabic Speech Using Convolutional Neural Network.

Wirel. Commun. Mob. Comput. 2020, 2020, 3685614. [CrossRef]
16. Mustafa, M. A study on Arabic sign language recognition for differently abled using advanced machine learning classifiers.

J. Ambient. Intell. Human Comput. 2020, 12, 4101–4115. [CrossRef]
17. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2012,

60, 84–90. [CrossRef]
18. Piekarski, M.; Jaworek-Korjakowska, J.; Wawrzyniak, A.I.; Gorgon, M. Convolutional neural network architecture for beam

instabilities identification in Synchrotron Radiation Systems as an anomaly detection problem. Measurement 2020, 165, 108116.
[CrossRef]

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

20. Koonce, B. EfficientNet. In Convolutional Neural Networks with Swift for Tensorflow; Apress: Berkeley, CA, USA, 2021; pp. 109–123.
21. Valueva, M.; Nagornov, N.; Lyakhov, P.; Valuev, G.; Chervyakov, N. Application of the residue number system to reduce hardware

costs of the convolutional neural network implementation. Math. Comput. Simul. 2020, 177, 232–243. [CrossRef]
22. Zanna, L.; Bolton, T. Data-Driven Equation Discovery of Ocean Mesoscale Closures. Geophys. Res. Lett. 2020, 47, e2020GL088376.

[CrossRef]
23. Schmidhuber, J. Deep Learning. Scholarpedia 2015, 10, 32832. [CrossRef]
24. Rezende, E.; Ruppert, G.; Carvalho, T.; Theophilo, A.; Ramos, F.; Geus, P.D. Malicious software classification using VGG16

deep neural network’s bottleneck features. In Information Technology-New Generations; Springer International Publishing: Cham,
Switzerland, 2018; pp. 51–59.

25. Lin, H.; Jegelka, S. Resnet with one-neuron hidden layers is a universal approximator. Advances in neural information processing
systems. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Red Hook, NY, USA,
3–8 December 2018; Volume 31.

26. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53. [CrossRef]

27. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980.
28. Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Continual lifelong learning with neural networks: A review. Neural Netw.

2019, 113, 54–71. [CrossRef]
29. Gordon-Rodriguez, E.; Loaiza-Ganem, G.; Pleiss, G.; Cunningham, J.P. Uses and abuses of the cross-entropy loss: Case studies

in modern deep learning. In Proceedings of the “I Can’t Believe It’s Not Better!” at NeurIPS Workshops, PMLR, Virtual,
12 December 2020.

30. Kaura, H.K.; Honrao, V.; Patil, S.; Shetty, P. Gesture controlled robot using image processing. Int. J. Adv. Res. Artific. Intell. 2013, 2.
[CrossRef]

31. Nasir, V.; Sassani, F. A review on deep learning in machining and tool monitoring: Methods, opportunities, and challenges. Int. J.
Adv. Manuf. Technol. 2021, 115, 2683–2709. [CrossRef]

32. Abiyev, R.H.; Arslan, M.; Idoko, J.B. Sign Language Translation Using Deep Convolutional Neural Networks. KSII Trans. Internet
Inf. Syst. 2020, 14, 631–653. [CrossRef]

33. Youssif, A.A.; Aboutabl, A.E.; Ali, H.H. Arabic sign language (ArSL) recognition system using hmm. Int. J. Adv. Comput. Sci.
Appl. 2011, 2. [CrossRef]

http://doi.org/10.14569/IJACSA.2018.090327
http://doi.org/10.1016/j.jksuci.2017.09.007
http://doi.org/10.1109/JSEN.2019.2917525
http://doi.org/10.1007/s11220-019-0225-3
http://doi.org/10.1504/IJCVR.2019.101527
http://doi.org/10.1155/2020/3685614
http://doi.org/10.1007/s12652-020-01790-w
http://doi.org/10.1145/3065386
http://doi.org/10.1016/j.measurement.2020.108116
http://doi.org/10.1016/j.matcom.2020.04.031
http://doi.org/10.1029/2020GL088376
http://doi.org/10.4249/scholarpedia.32832
http://doi.org/10.1186/s40537-021-00444-8
http://doi.org/10.1016/j.neunet.2019.01.012
http://doi.org/10.14569/IJARAI.2013.020511
http://doi.org/10.1007/s00170-021-07325-7
http://doi.org/10.3837/tiis.2020.02.009
http://doi.org/10.14569/IJACSA.2011.021108

	Introduction and Motivation
	Related Works
	Methodology
	Search for a Suitable Standard ArSLA Dataset
	Search for Suitable CNN Architectures
	AlexNet
	VGG16
	ResNet
	EfficientNet

	Select the Best CNN Architecture

	Developing Real Time ArSLA Recognition Model Using AlexNet DeepLearning Architecture
	Discussion and Conclusions
	Appendix A
	References

