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Abstract: Considering the large number of optimisation techniques that have been integrated into the
design of the Java Virtual Machine (JVM) over the last three decades, the Java interpreter continues to
persist as a significant bottleneck in the performance of bytecode execution. This paper examines
the relationship between Java Runtime Environment (JRE) performance concerning the interpreted
execution of Java bytecode and the effect modern compiler selection and integration within the JRE
build toolchain has on that performance. We undertook this evaluation relative to a contemporary
benchmark suite of application workloads, the Renaissance Benchmark Suite. Our results show that
the choice of GNU GCC compiler version used within the JRE build toolchain statistically significantly
affects runtime performance. More importantly, not all OpenJDK releases and JRE JVM interpreters
are equal. Our results show that OpenJDK JVM interpreter performance is associated with benchmark
workload. In addition, in some cases, rolling back to an earlier OpenJDK version and using a more
recent GNU GCC compiler within the build toolchain of the JRE can significantly positively impact
JRE performance.

Keywords: Java Runtime Environment; Java virtual machine; JVM template interpreter; JRE perfor-
mance; GNU GCC compiler collection; GNU GCC effect on JRE performance; OpenJDK; compiler
optimisations; Renaissance Benchmark Suite

1. Introduction

The Java programming language has continued to cement its position as one of the
most popular languages since its first release in 1995 [1–5]. Over the last quarter of a century,
the language has evolved through approximately 18 major revisions [6]. Initially being
developed with a model of execution that did not rely upon ahead-of-time compilation
to machine instructions, its early architecture specifically relied upon an interpretation of
its intermediate formats bytecode [7–9] with possible just-in-time (JIT) compilation [10].
The robustness of Java, its cross-platform capabilities and security features [11] has seen the
Java Virtual Machine (JVM) in its early days be the target for many languages, for example,
Ada [12], Eiffel [13], ML [14], Scheme [15], and Haskell [16] as cited in [17–19]. Nonetheless,
performance analysis of early releases of the language was characterised as providing poor
performance relative to traditional compiled languages [7,9], with early comparisons of
execution time performance of Java code showing significant underperformance relative
to C or C++ code [7,20–23]. The Java interpreter was especially slow [8,24] in contrast to
code compiled to native code [25–27], or even Java JIT-compiled code [27], performance
challenges that persist with contemporary language interpreters [28–30].

Over the last two decades, the language has integrated significant optimisations
regarding its runtime environment. The JVM has transitioned from the separated execution
models defined by the interpreter, client, and server virtual machines (VM) to a tiered
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system that integrates all three. Previous to Java 7, an application’s life cycle resided
within an interpretive environment, the client or server VM. The tiered VM model of
execution harnessing the performance opportunities associated with all three execution
models [31]. Tiered execution allows an application to start quickly in the interpreter,
transition to the client C1 compiler, and then to the server C2 compiler for extremely hot
code. Some recent performance benchmarking of the JVM indicates that, for a small number
of application cases, performance has surpassed that offered by ahead-of-time compiled
code or is relatively no worse [4,32–39]. Regarding energy performance, Java has been
listed as one of the top five languages [40,41]. However, underperformance relative to
native code persists [37], with C++, for example, offering more significant performance
opportunities [38].

The performance of the JVM interpreter remains of significant contemporary impor-
tance [42], not just because of its role within the modern JRE and the information that it
provides for guiding just-in-time compilation, but also due to the extent to which it is relied
upon for the execution of code on a vast array of platforms. In addition, the contemporary
JVM is a popular target for many languages, primarily because of its ability to provide
an environment to efficiently and competitively execute bytecode, for example; Scala,
Groovy, Clojure, Jython, JRuby, Kotlin, Ceylon, X10, and Fantom [43]. The availability of
JVM interpreters allows languages to target architectures without the need to construct
dedicated compilers, leveraging decades of research and significantly reducing the costs
associated with modern language development. Interpreters can substantially facilitate the
development of modern languages, new features, and the testing of alternative paradigms.
The Truffle language implementation framework is an example of a contemporary frame-
work that enables the implementation of languages on interpreters that then utilise the
GraalVM and its associated optimised JRE [44]. Also, the growing envelope of paradigms
and workloads that target the JVM present new optimisation possibilities for current com-
pilers [45,46]. In addition, interpreters are more adaptable than compilers [47], offering
simplicity and portability [48], compact code footprint, significantly reduced hardware
complexity, as well as a substantial reduction in their development costs [49]. Tasks such
as debugging and profiling can be accomplished easier through an interpreter compared
to a compiler [47]. Finally, expensive and non-trivial tasks such as register allocation and
call-stack management, for example, are not required [50].

This paper considers the JRE and its associated interpreter as a target for optimisation
opportunity discovery. We propose that the JVM interpreter, instead of other language
interpreters, will benefit from such analysis. This is partly due to its maturity and the
considerable amount of research that has been undertaken, from which optimisation
techniques have been identified. We have focused on optimisation opportunities associated
with changing the GNU compiler release used within the JRE build toolchain and the
effect on the JRE and its associated JVM’s interpreter. In this current work, we consider
this question relative to six open source releases of OpenJDK, specifically; release versions
9 through 14; and the use of four GNU compiler release versions, specifically versions
5.5.0, 6.5.0, 7.3.0, and 8.3.0. We undertook the analysis on a cluster of Raspberry Pi4
Model B lightweight development boards. We undertake this analysis on a more recent
contemporary benchmark suite, the Renaissance Benchmark Suite. The specific research
questions motivating this work are as follows:

RQ1: When constrained to using a particular release of a JRE, does building with alterna-
tive compiler versions affect runtime performance?

RQ2: When free to migrate between JRE versions, which JRE provides the best runtime
performance, and what build toolchain compiler was associated with the runtime
performance gains?

RQ3: Do workload characteristics influence the choice of JRE and GCC compiler?

This paper is structured as follows. Section 2 presents the background that this research
builds upon and the specific related work. In Section 3, we present our methodology.
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We detail our results in Section 4. In Section 5, we present a discussion of our results. In the
final section, Section 6, we present our conclusions and future work direction.

2. Background and Related Work

The Java interpreter still plays a fundamental role in the boundary of the significant
structural changes integrated into the modern JVM. The interpreter acts as the entry point,
controlling initial Java code execution, with the tiered JVM model activating greater levels
of just-in-time compilation based on the profiling of the behaviour within the interpreter.
Although, the interpreter’s role within the lifespan of a Java application is not finished in
the early stage of application execution. It can be delegated back to [51] when the later
stages within tiered compilation identify previously hot methods for deoptimisation.

There are many ways by which Java interpreters have been implemented. The main
difference across implementations is how instruction dispatch is handled. Three general
strategies have dominated instruction dispatch implementations: switch-based, direct
threading, and inline direct threading [48,52]. The switch-based model is the simplest of all.
Nevertheless, it is the most inefficient due to the number of control transfer instructions,
a minimum of three for each bytecode instruction. Direct threaded dispatch sees the
internal opcode structure updated by the address of their implementation, resulting in the
elimination of the instruction switch and the encapsulating dispatch loop. A differentiating
characteristic between both approaches is that direct threaded code instructions control the
program counter [53], whereas the switch expression takes responsibility for its updating.
Finally, inline threaded implementations eliminate dispatch overhead associated with
control transfer instructions by amalgamating instruction sequences contained within
the bytecode’s basic blocks. The effect eliminates the dispatch overhead associated with
all instructions composing the basic block, bar the last bytecode instruction. Casey et al.,
in [52], and Gagnon et al., in [48] provide an overview of all three techniques. Early research
on interpreter performance identified that instruction dispatching is primarily the most
expensive bottleneck regarding bytecode execution.

2.1. Historical JVM Enhancements

Addressing the underperformance of the Java interpreter, the early work relative to
the JVM deployment history concentrated on optimisation techniques focused on the cost
implications associated with the interpreter dispatch loop, which bore a considerable cost
penalty in simple switch-based implementations. Early historical optimisations of the
Java interpreter that integrated direct threading were shown to provide significant perfor-
mance gains over simple switch dispatch [54]. The findings concerning those threaded
implementations report increases in runtime performance in the order of up to 200% over
switch-based implementations [54]. Those results and observations agree with the earlier
works by Ertl and Gregg in [55,56], in which they focused on the performance of a wide
variety of interpreters such as Gforth, OCaml, Scheme48, YAP, and XLISP. Nevertheless,
the JVM interpreter’s direct-threading optimisation encounters underperformance regard-
ing branch misprediction due to the large number of indirect branches introduced into
direct threaded code [52].

Continuing to explore the effects of threaded interpreters and intending to reduce the
dispatch overhead further, Gagnon et al., in [48] considered the inlining of Java bytecode
instruction implementations that compose basic blocks. Their work reported significant
performance gains from inline threaded interpretation over direct threaded. A side effect of
direct-threaded interpretation is that the number of indirect branches considerably impacts
microarchitectural performance, for example, the branch target buffer (BTB) [52]. The work
of Casey et al., in [52] addressed those limitations by implementing instruction replication
and extending beyond basic block boundaries with super-instructions. Nevertheless,
aggressive superinstruction implementations increase cache miss-rates [57]. Continuing
to explore opportunities associated with threading: context-threaded interpretation of
Java bytecode was proposed by Berndl et al., in [57]. Context-threading eliminates the
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indirect branches but adds a subroutine call and a return from that subroutine call. These
instructions are optimised on modern architectures and outperform indirect branch-heavy
direct threaded code.

Microarchitectural characteristics associated with JVM interpreter behaviour, partic-
ularly instruction and data cache effects, have been the focus in [53–56]. Earlier work by
Hsieh et al., in [24] had highlighted that the interpreter bytecode is considered data along
with the data associated with the application and is accessible through the data caches,
ultimately providing more opportunity for increases in data cache misses for the interpreter.

Java’s early underperformance had motivated JVM designers to look at native exe-
cution alternatives. Microprocessor designs, such as PicoJava and MicroJava, facilitated
the native execution of Java bytecode [58]. Due to cost constraints, PicoJava and MicroJava
lacked instruction-level parallelism (ILP) circuitry. The work of Watanabe and Li in [25]
proposed an alternative architecture incorporating ILP circuitry. The JVM top-of-stack is a
considerable bottleneck that inhibits ILP exploitation of the Java bytecode [25,59]. Li et al.,
in [59] propose a virtual register architecture within Java processor designs due to the
distinct shortage of physical registers. The debate on whether a stack architecture or a
register architecture can provide a more efficient implementation for interpreters has also
been considered [60]. Work by Shi et al., [60] highlights many advantages of a virtual
register architecture compared to a more traditional stack architecture.

2.2. Evolution of OpenJDK

Since its first release in 1995, the Java language and, in particular, the JVM specifica-
tion have been implemented and shipped by many vendors (Sun, CA, USA; Oracle, TX,
USA; IBM, NY, USA; Microsoft, WC, USA; AZUL, CA, USA). The codebase of the Sun
implementation started its journey to being open-source in 2006. In 2007 the Open Java
Development Kit (OpenJDK) was founded, which serves as the reference implementation
of the platform [61].

The openjdk.java.net (accessed on 5 May 2022) details the evolution of changes to the
components defining OpenJDK through a catalogue of JDK Enhancement Proposals (JEP)
that detail all OpenJDK changes from OpenJDK version 8 (OpenJDK8) through to the latest
OpenJDK version 19 (OpenJDK19). The proposals serve as an “authoritative”, “record”
detailing “what” has “changed” within an OpenJDK version and “why” that change was
accepted and implemented [62].

The JEP index currently lists 326 enhancement proposals. Of those, 149 (46%) relate
to OpenJDK9 through 14. Of those, 58 (18%) enhancement proposals concern proposed
changes to OpenJDK10 through to 14. A JEP proposal is associated with a JDK component,
for example, core (detailing changes targeted at core libraries), spec (detailing changes
targeted at a specification), tools, security, hotspot, and client (detailing changes targeted at
client libraries). Components also have associated sub-components; for example, hotspot
has associated sub-components for GC (garbage collector changes), runtime, compiler
(for changes related to the JIT-compilers), and JVM tool interface changes.

A number of the more significant changes that have been completed and delivered
as part of the JEP, specifically related to the JRE, have seen the OpenJDK version 10
(OpenJDK10) G1 garbage collector (G1GC) updated to allow for the parallelisation of full
collections. The initial implementation of G1GC “avoided full collections” and fell back to
a full garbage reclamation, using a mark-sweep-compact algorithm when the JVM did not
release memory quickly enough. Specifically, OpenJDK10 saw the mark-sweep-compact
algorithm become fully parallel [63].

OpenJDK version 12 (OpenJDK12) implemented two further enhancements to the
G1GC: “abortable mixed collections” [64], and optimisation in regards to the “speedy
reclamation of committed memory” [65]. Regarding abortable mixed collections, before the
OpenJDK12, G1GC collections, once started, could not terminate until they reclaimed all
live objects across all the regions defined within its collection set were reclaimed. The imple-
mented enhancement saw the G1GC collection set divided into two regions, one mandatory
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and the other optional when “pause time targets” had not been exceeded [64]. Regarding
speedy reclamation defined through JEP346, the implementation enhanced memory man-
agement through the release of heap memory back to the operating system when the JVM
was in an idle state. This implementation targeted cloud-based services where the financial
cost of application execution included the cost of physical resources such as memory [65].
Further enhancements concerning memory management and JVM configurations involved
the enhancement of the G1GC in OpenJDK version 14 (OpenJDK14). The enhancement
ensured that the G1GC performance was increased for JVM configurations running on
multi-socket processor cores, particularly for cores that implement non-uniform memory
access (NUMA) strategies [66].

Before OpenJDK10, OpenJDK gave attention to reducing the “dynamic memory foot-
print” across multiple JVM’s. In that regard, OpenJDK implemented Class Data Sharing
archives. Although those archives were limited to bootstrap classes, access was only avail-
able through the bootstrap class loader [67]. OpenJDK10 expanded class data sharing to
allow application class data sharing across multiple JVMs. With that said, to gain the bene-
fits from application class data sharing, the JVM runtime flag −XX:+UseAppCDS needs to be
passed to the JVM. OpenJDK12 and, in particular, JEP341 [68] turned on application class
data sharing at the build stage of the OpenJDK. Finally, JEP350 [69] allows the dumping
of application class data when an application completes execution, an enhancement first
implemented in OpenJDK version 13 (OpenJDK13).

A list of JDK enhancement proposals related to OpenJDK9 through 14 for the hotspot-
runtime and hotspot-gc components are listed in Table 1. The reader can find a detailed list
of all JEP enhancements affecting all OpenJDK components at [62].

Table 1. A listing of the major OpenJDK JDK Enhancement Proposals, completed and delivered, that
have been integrated into versions of OpenJDK10 through 14 releases.
.

OpenJDK10 OpenJDK11 OpenJDK12 OpenJDK13 OpenJDK14

JEP286: Local-Variable
Type Inference JEP309:

Dynamic
Class-File
Constants

JEP325: Switch
Expressions JEP350: Dynamic CDS

Archives JEP305: Pattern Matching
for instanceof

JEP304:
Garbage
Collector
Interface

JEP323:

Local-Variable
Syntax for
Lambda

Parameters

JEP341: Default CDS
Archives JEP354: Switch

Expressions JEP345:
NUMA-Aware

Memory
Allocation for G1

JEP307: Parallel Full GC
for G1 JEP331: Low-Overhead

Heap Profiling JEP345: Abortable Mixed
Collections for G1 JEP352:

Non-Volatile
Mapped Byte

Buffers

JEP310:
Application
Class-Data

Sharing
JEP346:

Promptly Return
Unused

Committed
Memory from G1

JEP361: Switch
Expressions

JEP312: Thread-Local
Handshakes

JEP316:
Heap Allocation
on Alternative

Memory Devices

JEP319: Root Certificates

2.3. Performance Regression

Focusing specifically on performance measurement of the effects of altering and
integrating different build tools within the JDK build cycle, the literature is considerably
void. That said, the build specifications associated with OpenJDK versions list GNU GCC
compiler versions known to work concerning its building [70]. These specify that versions
of OpenJDK should build successfully with GNU GCC native compiler versions from at
least 5.0 through to 11.2. OpenJDK does not indicate their performance or regression effects
when integrated into the OpenJDK build toolchain.
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With that said, the most recent insights suggest that conventional compilers and
optimisers fail to produce optimal code [71]. In addition, a more recent focus on the
GNU GCC compiler collection has shown that the GNU GCC release used within a build
toolchain can produce significantly different performance [72]. The work of Marcon et al.,
although not analysing JRE performance, analyses the effects of changing the GNU GCC
compiler version in the build toolchain for the Geant4 simulation toolkit [73] (as cited
in [72]), a simulation toolkit that is used for the analysis of high energy physics experiments
and predominately used for experiments performed on the Large Hadron Collider. Their
work considered three versions of GNU GCC, versions 4.8.5, 6.2.0 and 8.2.0; and the
four standard GCC compiler optimisation flags, −O1, −O2, −O3, and −Os. From a high
level, their results show that building with a more recent version of GCC can increase
performance in the order of 30% in terms of execution time. Marcon et al. also considered
the effects associated with static and dynamic compilation. Their results show statistically
significant differences in performance between the statically and dynamically compiled
systems. Their work also reports less profound effects from switching between GCC 6.2.0
and 8.2.0. The greatest effects are associated relative with GCC 4.8.5.

To our knowledge, no other work has addressed and measured the effects associated
with switching GCC compiler in a build toolchain relative to a large codebase such as that of
OpenJDK. In addition, no analysis of such changes are available relative to a contemporary
set of workloads.

Although little work has concentrated on the effects of changing the underlying
compiler toolkit associated with building OpenJDK, the literature has considered and
reported the impact that Java-to-bytecode compilers have on producing optimised bytecode.
For example, Daly et al., in [19] consider the effect that the variant of the Java compiler
has in regards to its emitted Java bytecode. Their findings showed that different Java-to-
bytecode compilers implement vastly different bytecode optimisations. Similar to the work
presented in [19], Horgan et al., [74] consider the effects associated with Java-to-bytecode
compiler choice and the dynamic instruction execution frequencies. Their results have
shown that Java-to-bytecode compiler choice produces minimum dynamic differences
in bytecode usage. The work of Gregg et al., in [54] is similar to that presented in [19]
in that they compared the differences in bytecode distributions associated with different
Java-to-bytecode compilers. Their findings showed that most Java-to-bytecode compilers
fail to implement what is regarded as the simplest of optimisations to the emitted bytecode,
for example, loop optimisation by removing tail goto branches. Gregg et al. reported that
the Java-to-bytecode compilers have little effect on the dynamic bytecode frequencies.

Contemporary work has reported that Java source code compilation to JVM bytecode
by the javac compiler returns minor optimisations and no aggressive optimisations on the
intermediate bytecode representation. Such optimisation opportunities are delegated to
the JIT-compiler [38]. Furthermore, switching javac compiler versions is not an explanatory
factor for execution speed variations in Java applications running on JVMs [19]. As such,
optimising bytecode to benefit the interpreter needs to be performed between source compi-
lation and initial execution, for example; [22,75,76] or within the interpretive environment
itself. More importantly, the delegation of bytecode optimisation to the JIT compiler results
in a loss of opportunities that might positively affect interpreted execution.

2.4. This Study

Although previous studies have considered optimisations associated with the under-
performance of the JVM interpreter and the effect that different variants of Java-to-bytecode
compilers have on bytecode performance. None to our knowledge have evaluated the im-
pact the compiler used within the JRE build toolchain has on the performance of the JRE and
its associated JVM interpreter. As outlined previously, this is of contemporary importance
for many reasons. Although, and as cited in [9], Cramer et al., in [8] identified that for all
the optimisations targeting interpretation/execution of actual bytecode, approximately 35%
of execution time is spent doing other tasks other than interpreting/executing bytecodes,
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for example, memory management, synchronisation, and running native methods. Of all
these mentioned tasks, object synchronisation is identified by Gu et al., in [7] as being the
most costly, accounting for approximately 58% of non-bytecode execution. All of those exe-
cution tasks are controlled, defined and implemented across the full JRE implementation;
this, in part, has motivated this work in that we investigate several questions relative to
OpenJDK JRE performance. Specifically, what effects does altering GNU GCC versions
in the OpenJDK build toolchain have on JRE performance. In this regard, this research
evaluates three hypotheses:

Hypothesis 1 (H1). There are statistically significant differences in OpenJDK JRE and associated
JVM interpreter performance depending on the GNU GCC version used in the build toolchain.

Hypothesis 2 (H2). There are statistically significant differences in performance across all Open-
JDK JREs and their associated JVM interpreters, and those differences are in part associated with
the version of GNU GCC used in the versions build toolchain.

Hypothesis 3 (H3). Workload characteristics influence the choice of JRE and GCC compiler.

3. Methods

This section provides an overview of the JDK, JRE, JVM, and GNU GCC implementa-
tions analysed in this study. We also provide an overview of the collection of benchmark
application workloads relied upon for assessing JRE and JVM interpreter performance.
We follow this with a specification of the hardware cluster and operating system on which
we evaluated JRE runtime environment performance. We then present an a priori analysis
of the stability of each cluster machine relative to each other. Finally, we summarise the
statistical procedures used to generate our main results.

3.1. JDK, JRE, JVM, and GNU GCC Implementations

We analysed six major version releases of the OpenJDK and, specifically, their associated
JREs regarding their performance evolution. In particular, OpenJDK9 through to 14 JREs. We
built all OpenJDK versions from source, with four builds for each JRE using GNU GCC compiler
release versions 5.5.0, 6.5.0, 7.3.0, and 8.3.0. All JDK builds used a previous immediate version
for the build requirement bootstrap JDK. The initial build of OpenJDK9 relies on the pre-built
OpenJDK8 binary distribution. All subsequent OpenJDK versions built relied upon one of
our built JDK and were used as the bootstrap JDK. The building of OpenJDK10, for example,
depends on our OpenJDK9 built from source. We downloaded all source bundles from the
OpenJDK project’s repository, which the reader can find at https://openjdk.java.net (accessed on
5 May 2022). We downloaded all GNU Compiler Collection releases from https://gcc.gnu.org
(accessed on 5 May 2022).

Specifically, regarding the JRE JVM interpreter, two implementation choices are avail-
able at build time: the production Template interpreter and a C++ interpreter bundled
primarily for ease of implementation and testing of proposed research optimisations. In this
work, we focus our concentration on the behaviour of the JRE with an integrated Template
Interpreter. Interpreter mode was communicated to each JVM using the −Xint runtime flag.
Concerning JVM tuning, and in line with benchmark specifications such as SPECjvm2008,
no additional JVM tuning is activated [77], except for communicating −Xms for heap space
allocation, which we have controlled at 2 GB across all JVM variants. An evaluation of
all JEP showed that OpenJDK had implemented no fundamental changes regarding the
JVM Template Interpreter, and the interpreter can be considered constant across OpenJDK9
through to 14.

We used the default Garbage-First Garbage Collector (G1GC) for heap management
across all JRE JVM executions. Changes to the behaviour and operation of the G1GC have
occurred across OpenJDK10 through to OpenJDK14. In particular, OpenJDK10 saw the
parallelisation of full G1GC cycles; OpenJDK12 saw the introduction of abortable G1GC

https://openjdk.java.net
https://gcc.gnu.org
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collections and the speedy release of memory back to the operating system when the
JVM was idle, and finally, OpenJDK14 saw the introduction of “NUMA-Aware memory
allocation.” Concerning the parallelisation of full G1GC cycles, we initiated all JRE instances
with the default number of threads set to 4 by default across all OpenJDK, from OpenJDK10
through 14. In addition, NUMA awareness does not impact the operational characteristics
of the JRE and associated JVM interpreters assessed in this study, as the Raspberry Pi
4 model B system-on-chip is not a multi-socket processor. The speedy reclamation of
committed memory implemented in OpenJDK12 applies to cases where the JVM is idle,
which is relevant for cloud-based applications and not relevant in our system setting.

No JVM warmup iterations were required, as all JVM executions were run in inter-
preter mode and “the interpreter does not need a warmup” [42]. We ran all benchmark
workloads and their iterations on newly initialised JVMs.

3.2. Benchmarks

We assessed all JRE and their associated JVM interpreter runtime performance using
the collection of 24 workloads composing the Renaissance Benchmark suite version 11 [78].
The Renaissance Benchmark Suite workloads are partitioned into six classes of applications.
Applications targeted for execution on the Apache Spark framework, applications that im-
plement a concurrent programming paradigm, database applications, several applications
developed using a functional paradigm and compiled to Java bytecode, web applications
serving requests to HTTP servers, and several applications written in the Scala language
with their compilation targeting Java bytecode. Table 2 presents an overview of each
application workload.

Table 2. A listing of the 24 applications composing the Renaissance Benchmark suite, subdivided
into application category, alongside a small description of each application. Source: [78].

Category Application Description

Apache-spark chi-square Chi-square test from Spark MLlib.
dec-tree Random Forest algorithm from the Spark ML library.
gauss-mix Gaussian mixture model using expectation-maximization.

log-regression Logistic Regression algorithm from the Spark ML library.
movie-lens Recommends movies using the ALS algorithm.
naive-bayes Multinomial Naive Bayes algorithm from the Spark ML library.
page-rank PageRank iterations, using RDDs.

Concurrency akka-uct Unbalanced Cobwebbed Tree actor workload in Akka.
fj-kmeans K-means algorithm using the fork/join framework.

reactors Benchmarks inspired by the Savina microbenchmark workloads
in a sequence on reactors.IO.

Database db-shootout Shootout test using several in-memory databases.
neo4j-analytics Neo4J graph queries against a movie database.

Functional future-genetic Genetic algorithm using the Jenetics library and futures.
mnemonics Solves the phone mnemonics problem using JDK streams.

par-mnemonics Solves the phone mnemonics problem using parallel JDK streams.
rx-scrabble Solves the Scrabble puzzle using the Rx streams.

scrabble Solves the Scrabble puzzle using JDK Streams.

Scala dotty Dotty compiler on a set of source code files.

philosophers Solves a variant of the dining philosophers problem using
ScalaSTM.

scala-doku Sudoku Puzzles using Scala collections.
scala-kmeans K-Means algorithm using Scala collections.

scala-stm stmbench7 benchmark using ScalaSTM.

Web finagle-chirper Microblogging service using Twitter Finagle.

finagle-http Finagle HTTP requests to a Finagle HTTP server and awaits
response.

To assess JRE and JVM interpreter runtime performance: each of the 24 Renaissance
benchmark application workloads was executed 20 times across all 24 JRE JVM builds,
resulting in 11,520 execution runs. In total, we undertook 94 system days of data acquisition.
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Each JRE version accounts for 1920 of those runs. Individual JREs built using one of the
four GCC compiler versions account for 480 runs each.

We observed several failed workload runs, specifically for the Renaissance Benchmark
application db-shootout that failed to run on all JVM versions after OpenJDK11. In ad-
dition, several other applications reported deprecated API features, reporting that their
dependencies cannot be guaranteed to be supported in later JVM runs, specifically after
OpenJDK9. That said, none of the deprecated API features had been removed from the
assessed OpenJDK versions.

3.3. Hardware

Our experimental set-up consists of a cluster of 10 Raspberry Pi4 Model B development
boards, integrated with Broadcom BCM2711, Quad-core Cortex-A72 (ARM v8) 64-bit
system-on-chip processors with an internal main reference clock speed of 1.5 GHz. Each
Raspberry Pi has a 32 KB L1 data cache, a 48 KB L1 instruction cache per core, 1 MB L2 cache,
and 4 GB of LPDDR4-3200 SDRAM. Network connectivity is provided by 2.4 GHz and
5.0 GHz IEEE 802.11ac wireless interfaces, Bluetooth 5.0, 2 USB 3.0 ports and 2 USB 2.0 ports.
Each Raspberry Pi provides general-purpose input-output (GPIO) functionality through a
40 pin GPIO header. A Raspberry Pi can be powered over a 5V DC USB type C connector
or 5v DC GPIO headers. All Raspberry Pi’s were powered from mains. The maximum
tolerable current is 3 Amperes [79]. A specification diagram is presented in Figure 1. We ran
each Raspberry Pi4 Model B with the Raspbian Buster Light Debian distribution of Linux,
Kernel version 4.19. We loaded the operating system (OS) through an embedded Micro-SD
card slot. All Raspberry Pi’s had the same OS clone installed. The Raspbian Buster Light
distribution is a non-windowing version providing only a command-line interface. All
Raspberry Pi4 were SSH enabled.

Figure 1. Raspberry Pi4 Model B board peripheral device layout. Detailing position of Broadcom
BCM2711 processor, RAM, USB Type-C power supply, and network ports. Source: [80].

3.4. Runtime Stability across Cluster Nodes

A random sample of five applications were selected from the Renaissance Benchmark
Suite, namely: chi-square, future-genetic, neo4j-analytics, scala-kmeans, and scrab-
ble. A single build of OpenJDK9, built with GNU GCC version 8, was distributed across
six of the cluster’s Raspberry Pi4. We executed the benchmark samples on each of the six
Raspberry Pi4. We conducted an analysis of variance on their respective execution times.
At the 5% significance level, we observed no statistically significant differences in runtime
performance for four of the benchmark applications, all p > 0.05. The single benchmark
case scala-kmeans did show differences in runtime performance between the six Rasp-
berry Pi4 development boards (p < 0.05). With that said, the average runtime across the
scala-kmeans benchmark is approximately 155 s; the observed difference from the single
Raspberry Pi4 accounts for an effect of approximately 1.97 s (1.28%). Albeit cognoscente of
the small effect difference associated with the scala-kmeans benchmark, predominately
benchmark application runs across the Raspberry Pi4 development boards are stable.
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3.5. JRE and JVM Build Stability

A more recent concern regarding consistency, reliability, and robustness of the analysis
of runtime systems has raised an important question regarding the effects of application
build order. In particular, questioning the determinism concerning the layout of an appli-
cation in memory. An effect that can be attributed to application build cycle linking and
later application loading into memory. Focusing on the impact attributable to build cycle
linking, four homogeneous builds of OpenJDK9, built with GNU GCC compiler release
version 7, were analysed. The results from an analysis of variance showed no statistically
significant differences in application runtime performance across the four homogeneous
builds (p > 0.05). An indicator that runtime environment stability is reliable and that there
are no differences in OpenJDK JRE and associated JVM performance.

3.6. Statistical Analysis

To determine if there are differences in JRE performance depending on the GNU
compiler build version used within the JDK build toolchain, we conducted an analysis
of variance of the runtime behaviour of the 24 applications composing the Renaissance
Benchmark suite. In the cases where statistically significant differences in JRE performance
has been identified, follow-up Tukey HSD post hoc tests were carried out to identify specific
differences between pair-wise comparisons of JRE build versions built with one of the four
GNU compilers running on individual OpenJDK versions.

We also conducted a two-way analysis of variance to assess the interaction effects
between the GNU GCC compiler version and the OpenJDK version. The analysis of
variance evaluated the effects associated with updates to OpenJDK versions and updates
to GNU GCC versions.

4. Results
4.1. The Effect of GCC Evolution on Performance

In this section, we present the results from an analysis of the runtime characteristics of
Renaissance Benchmark applications and the performance of the six JRE and associated JVM
interpreter versions distributed with OpenJDK9, OpenJDK10, OpenJDK11, OpenJDK12,
OpenJDK13, and OpenJDK14. Each JRE binary was built from source by integrating one of
four GNU GCC compilers (gcc and g++) within the respective OpenJDK build toolchains.
In particular, each JRE was built with the GNU GCC compiler versions 5.5.0 (gcc-5 and
g++-5), 6.5.0 (gcc-6 and g++-6), 7.3.0 (gcc-7 and g++7), and 8.3.0 (gcc-8 and g++-8). In total,
24 JREs were assessed. Our results are presented in Tables 3–8 and Figures 2–7. In all table
cases, the first column (JVM) lists the OpenJDK version considered, the second column
(Benchmark) lists the Renaissance benchmark for which a statistically significant difference
in performance was observed, the third column (GCC) lists the two GCC compiler versions
compared (the first in the pairing is the fastest, with the second being relatively slower),
the fourth column (Mdi f f ) lists the mean difference in performance, this is followed by
associated 95% confidence intervals for the mean difference, the penultimate column
lists the observed p-value for the test of difference, and the final column (Gain) lists the
percentage gain to be achieved by switching build toolchain compiler to the fastest.

4.1.1. OpenJDK9

Of 24 analyses of variances undertaken on the runtime behaviour of four of the
OpenJDK9 JRE, 7 (29%) of the 24 analyses showed differences in OpenJDK9 runtime
behaviour based on the GNU compiler version used within the OpenJDK9 build toolchain.
At the application workload level, follow-up Tukey HSD post hoc tests showed that of
the possible 144 pairwise comparisons (6 for each application: GCC5-v-GCC6, GCC5-
v-GCC7, . . . , GCC7-v-GCC8) 14 (10%) showed that GCC build version influenced JRE
runtime behaviour, the results of which are presented in Table 3. Performance differences
ranging between 0.8% and 5.9% were observed. The Renaissance db-shootout benchmark
application workload had the most significant impact on OpenJDK9 JRE performance based



Computers 2022, 11, 96 11 of 29

on the choice of GCC compiler used within its build toolchain. GCC compiler versions 6
and 7 provide those gains relative to GCC versions 5 and 8. In contrast, GNU GCC compiler
version 8 significantly increased JRE performance for 6 (43%) of the 14 differences observed.

Table 3. A listing of Tukey HSD post hoc test results for the differences between OpenJDK9 JRE
builds and the associated benchmark application loads eliciting those differences. Mean differences
and confidence intervals reported in seconds.

JRE Benchmark GCC Mdi f f 95%CI p Gain (%)

j09 akka-uct GCC8-GCC5 −13 (−25, −2) 0.020 1.210
j09 akka-uct GCC8-GCC6 −14 (−26, −3) 0.011 1.297
j09 chi-square GCC7-GCC5 −8 (−13, −3) 0.000 1.158
j09 chi-square GCC8-GCC5 −6 (−11, −1) 0.007 0.856
j09 chi-square GCC7-GCC6 −8 (−13, −3) 0.001 1.098
j09 chi-square GCC8-GCC6 −6 (−10, −1) 0.014 0.796
j09 db-shootout GCC6-GCC5 −39 (−61, −18) 0.000 4.283
j09 db-shootout GCC7-GCC5 −54 (−75, −32) 0.000 5.929
j09 db-shootout GCC6-GCC8 36 (15, 57) 0.000 3.907
j09 dec-tree GCC7-GCC5 −3 (−6, 0) 0.025 0.872
j09 dotty GCC8-GCC5 −3 (−6, 0) 0.017 0.822
j09 finagle-chirper GCC8-GCC6 −2 (−5, 0) 0.044 0.898
j09 scala-kmeans GCC5-GCC7 2 (0, 4) 0.010 1.264
j09 scala-kmeans GCC6-GCC7 2 (1, 4) 0.004 1.383

For a descriptive comparative analysis of the execution time performance of each
OpenJDK9 JRE build, irrespective of a finding of statistical significance, Figure 2 presents
grouped box-and-whisker plots illustrating a side-by-side comparison of the OpenJDK JRE
execution times observed across GCC versions 5, 6, 7, and 8 for each benchmark workload.

Figure 2. Execution time analysis of the 24 Renaissance benchmark suite applications. Each panel
depicting the runtime performance for each OpenJDK9 JRE built with the four GNU GCC compiler
versions 5, 6, 7, and 8.

4.1.2. OpenJDK10

Considering OpenJDK10 JREs and their associated JVM interpreters, the 24 analyses of
variances performed provided evidence of statistically significant differences in OpenJDK10
performance for 7 (29%) analyses undertaken. At the application level, 14 (10%) pairwise



Computers 2022, 11, 96 12 of 29

comparisons between OpenJDK10 JREs showed differences in runtime behaviour based
on the GCC version used within the build toolchain for the JVM. Of all comparisons, no
evidence was found to suggest any differences in performance between OpenJDK10 JREs
and their associated JVM interpreter built using GCC version 7 or 8. The complete set of
results for OpenJDK10 JRE builds are detailed in Table 4. Of the small number of pairwise
comparisons showing performance differences, those differences ranged between 0.6%
and 3.0%. Except for a single workload, that of scala-kmeans, compared across compiler
GCC versions 5 and 6, GCC compiler versions 7 and 8 predominately provided better
performance over GCC versions 5 and 6.

Table 4. A listing of Tukey HSD post hoc test results for the differences between OpenJDK10 JRE
builds and the associated benchmark application loads eliciting those differences. Mean differences
and confidence intervals reported in seconds.

JRE Benchmark GCC Mdi f f 95%CI p Gain (%)

j10 chi-square GCC7-GCC5 −8 (−14, −3) 0.001 1.089
j10 chi-square GCC7-GCC6 −6 (−11, 0) 0.043 0.746
j10 dotty GCC8-GCC5 −2 (−4, 0) 0.008 0.572
j10 dotty GCC8-GCC6 −2 (−4, −1) 0.004 0.604
j10 finagle-http GCC7-GCC5 −2 (−5, 0) 0.045 1.394
j10 finagle-http GCC7-GCC6 −3 (−5, −1) 0.006 1.764
j10 movie-lens GCC5-GCC8 9 (3, 15) 0.002 1.070
j10 naive-bayes GCC7-GCC5 −53 (−78, −27) 0.000 1.919
j10 naive-bayes GCC7-GCC6 −48 (−73, −22) 0.000 1.737
j10 scala-kmeans GCC5-GCC6 2 (0, 4) 0.031 1.345
j10 scala-kmeans GCC8-GCC5 −2 (−4, −1) 0.005 1.653
j10 scala-kmeans GCC8-GCC6 −4 (−6, −2) 0.000 3.021
j10 scala-stm GCC7-GCC6 −2 (−3, 0) 0.039 0.866
j10 scala-stm GCC8-GCC6 −2 (−3, 0) 0.012 0.997

A descriptive comparative analysis of the execution time performance of each OpenJDK10
JRE build, irrespective of a finding of statistical significance, is presented in Figure 3.

Figure 3. Execution time analysis of the 24 Renaissance benchmark suite applications. Each panel
depicting the runtime performance for each OpenJDK10 JRE built with the four GNU GCC compiler
versions 5, 6, 7, and 8.
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4.1.3. OpenJDK11

We observed the most significant frequency of JRE performance differences for Open-
JDK11 JREs and their associated JVM interpreter, particularly OpenJDK11 built with GCC
versions 5, 6, 7, and 8. Of the 24 analyses of variance, 17 (71%) showed statistically sig-
nificant differences in OpenJDK11 JRE performance. Of all the 144 possible pairwise
comparisons of OpenJDK11 builds, 36 (25%) showed differences in JVM performance based
on the GCC compiler version used within the JVM build toolchain. Of the statistically
significant differences observed, more recent GNU compilers have provided better per-
formance gain opportunities. The GCC compiler version 7 was the best compiler in 17
(47%) of the 36 cases, GCC compiler version 8 was identified as providing the best perfor-
mance in 12 (33%) cases. Our results identified GCC compiler version 6 as giving the best
OpenJDK11 performance in 7 (20%) cases. Performance differences ranged between 0.7%
and 4.6%. Similar to OpenJDK9 JVM behaviour, the Renaissance application db-shootout
had benefited most, with performance gain opportunities ranging between 2% and 4.6%
Table 5.

Table 5. A listing of Tukey HSD post hoc test results for the differences between OpenJDK11 JRE
builds and the associated benchmark application loads eliciting those differences. Mean differences
and confidence intervals reported in seconds.

JRE Benchmark GCC Mdi f f 95%CI p Gain (%)

j11 akka-uct GCC7-GCC5 −20 (−34, −5) 0.004 1.683
j11 chi-square GCC6-GCC5 −7 (−12, −2) 0.004 0.905
j11 chi-square GCC7-GCC5 −6 (−11, 0) 0.029 0.733
j11 chi-square GCC8-GCC5 −11 (−16 , −6 ) 0 1.418
j11 db-shootout GCC6-GCC5 −26 (−45, −7) 0.004 2.527
j11 db-shootout GCC7-GCC5 −46 (−65, −27) 0.000 4.608
j11 db-shootout GCC8-GCC5 −35 (−53, −17) 0.000 3.485
j11 db-shootout GCC7-GCC6 −20 (−39, −1) 0.034 2.031
j11 dec-tree GCC6-GCC5 −3 (−6, −1) 0.014 0.911
j11 dec-tree GCC7-GCC5 −5 (−8, −3) 0.000 1.445
j11 dec-tree GCC8-GCC5 −4 (−7, −1) 0.004 1.013
j11 dotty GCC7-GCC5 −3 (−5, −1) 0.001 0.932
j11 dotty GCC8-GCC5 −4 (−7, −2) 0.000 1.303
j11 dotty GCC8-GCC6 −3 (−5, −1) 0.002 0.835
j11 finagle-chirper GCC7-GCC5 −3 (−5, 0) 0.034 0.987
j11 finagle-http GCC7-GCC6 −2 (−5, 0) 0.041 1.369
j11 finagle-http GCC8-GCC6 −3 (−5, −1) 0.009 1.598
j11 future-genetic GCC6-GCC7 2 (0, 3) 0.031 1.272
j11 log-regression GCC7-GCC5 −5 (−10, −1) 0.003 1.355
j11 log-regression GCC8-GCC5 −5 (−9, −1) 0.005 1.269
j11 log-regression GCC7-GCC6 −4 (−8, 0) 0.039 1.036
j11 mnemonics GCC7-GCC6 −10 (−17, −3) 0.003 1.027
j11 mnemonics GCC8-GCC6 −10 (−17, −3) 0.002 1.055
j11 movie-lens GCC6-GCC5 −10 (−17, −4) 0.001 1.190
j11 movie-lens GCC7-GCC5 −12 (−19, −6) 0.000 1.433
j11 movie-lens GCC8-GCC5 −11 (−17, −4) 0.000 1.230
j11 naive-bayes GCC7-GCC5 −45 (−71, −19) 0.000 1.760
j11 naive-bayes GCC8-GCC5 −43 (−69, −18) 0.000 1.708
j11 neo4j-analytics GCC6-GCC5 −34 (−65, −2) 0.031 2.745
j11 neo4j-analytics GCC7-GCC5 −33 (−65, −2) 0.035 2.696
j11 neo4j-analytics GCC8-GCC5 −36 (−67, −5) 0.016 2.944
j11 page-rank GCC7-GCC5 −13 (−22, −4) 0.002 1.083
j11 page-rank GCC7-GCC6 −9 (−18, 0) 0.038 0.787
j11 par-mnemonics GCC7-GCC6 −8 (−15, −1) 0.020 1.041
j11 philosophers GCC8-GCC5 −6 (−12, −1) 0.023 1.328
j11 scala-kmeans GCC8-GCC5 −2 (−4, 0) 0.012 1.674
j11 scala-kmeans GCC6-GCC7 3 (1, 5) 0.004 1.885

In Figure 4 we present a set of box-and-whisker plots of the execution time performance
of OpenJDK11 under load from each of the 24 Renaissance benchmark workloads.
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Figure 4. Execution time analysis of the 24 Renaissance benchmark suite applications. Each panel
depicting the runtime performance for each OpenJDK11 JRE built with the four GNU GCC compiler
versions 5, 6, 7, and 8.

4.1.4. OpenJDK12

Analysis of variances performed on the OpenJDK12 JVM interpreters showed statisti-
cally significant differences in their performance for 4 (17%) of the 24 analyses. The results
associated with follow-up Tukey HSD post hoc comparisons are detailed in Table 6. Of
144 possible pairwise comparisons, 6 (4%) showed statistically significant differences in pair-
wise comparisons of OpenJDK12 builds depending on GCC compiler choice. Performance
differences ranged between 0.4% and 1.4% were observed. No difference in performance
between OpenJDK12 versions built with GCC versions 7 and 8 has been observed.

Table 6. A listing of Tukey HSD post hoc test results for the differences between OpenJDK12 JRE
builds and the associated benchmark application loads eliciting those differences. Mean differences
and confidence intervals reported in seconds.

JRE Benchmark GCC Mdi f f 95%CI p Gain (%)

j12 dec-tree GCC7-GCC6 −3 (−5, 0) 0.016 0.688
j12 dotty GCC5-GCC6 1 (0, 3) 0.047 0.399
j12 dotty GCC5-GCC7 1 (0, 3) 0.031 0.424
j12 dotty GCC5-GCC8 2 (0, 3) 0.011 0.465
j12 finagle-chirper GCC7-GCC5 −4 (−7, −1) 0.003 1.390
j12 finagle-chirper GCC8-GCC5 −4 (−6, −1) 0.002 1.387
j12 finagle-chirper GCC7-GCC6 −4 (−7, −1) 0.002 1.441
j12 finagle-chirper GCC8-GCC6 −4 (−7, −1) 0.001 1.438
j12 log-regression GCC8-GCC6 −4 (−8, 0) 0.046 1.026

A descriptive overview of the execution time performance of each OpenJDK12 JRE,
built with GNU GCC versions 5 through 9 are depicted in Figure 5. In particular, we present
side-by-side box-and-whisker plots illustrating execution time distributions for each of the
Renaissance benchmark workloads.
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Figure 5. Execution time analysis of the 24 Renaissance benchmark suite applications. Each panel
depicting the runtime performance for each OpenJDK12 JRE built with the four GNU GCC compiler
versions 5, 6, 7, and 8.

4.1.5. OpenJDK13

Focusing on OpenJDK13 (Table 7), 6 (25%) of the 24 analyses of variance showed
statistically significant differences in OpenJDK13 performance based on the GCC compiler
version used within the OpenJDK13 build toolchain. Follow up post hoc Tukey HSD tests
identified 18 (13%) differences in performance from the possible 144 pairwise comparisons.
Performance differences ranged between 0.6% and 3.5%. All four GCC compiler versions
were represented across all statistically significant comparisons.

Table 7. A listing of Tukey HSD post hoc test results for the differences between OpenJDK13 JRE
builds and the associated benchmark application loads eliciting those differences. Mean differences
and confidence intervals reported in seconds.

JRE Benchmark GCC Mdi f f 95%CI p Gain (%)

j13 dotty GCC7-GCC5 −3 (−4, −1) 0.000 0.840
j13 dotty GCC8-GCC5 −2 (−3, 0) 0.006 0.554
j13 dotty GCC7-GCC6 −2 (−4, −1) 0.000 0.717
j13 dotty GCC8-GCC6 −1 (−3, 0) 0.046 0.432
j13 fj-kmeans GCC5-GCC7 12 (2, 23) 0.014 2.329
j13 fj-kmeans GCC5-GCC8 15 (5, 25) 0.001 2.846
j13 movie-lens GCC6-GCC5 −8 (−15, −1) 0.025 0.797
j13 movie-lens GCC6-GCC8 11 (4, 18) 0.001 1.074
j13 philosophers GCC7-GCC5 −18 (−29, −6) 0.001 3.525
j13 philosophers GCC8-GCC5 −16 (−28, −5) 0.001 3.279
j13 scala-kmeans GCC6-GCC5 −2 (−4, 0) 0.044 1.228
j13 scala-kmeans GCC7-GCC5 −3 (−5, −1) 0.000 1.932
j13 scala-kmeans GCC8-GCC5 −3 (−5, −1) 0.000 2.229
j13 scala-stm GCC6-GCC5 −3 (−4, −1) 0.000 1.531
j13 scala-stm GCC7-GCC5 −6 (−7, −4) 0.000 3.291
j13 scala-stm GCC8-GCC5 −5 (−6, −3) 0.000 2.646
j13 scala-stm GCC7-GCC6 −3 (−4, −2) 0.000 1.733
j13 scala-stm GCC8-GCC6 −2 (−3, −1) 0.002 1.098
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In Figure 6 we present a number of panels depicting side-by-side box-and-whisker plots
for each of the GNU GCC versions used in building OpenJDK13 JREs. Each panel, depicting
the execution time distributions for each of the 24 Renaissance benchmark workloads.

Figure 6. Execution time analysis of the 24 Renaissance benchmark suite applications. Each panel
depicting the runtime performance for each OpenJDK13 JRE built with the four GNU GCC compiler
versions 5, 6, 7, and 8.

4.1.6. OpenJDK14

In Table 8 we present the results associated with OpenJDK14 builds. Of the 24 analyses
of variance of OpenJDK JREs and their associated JVM interpreters, 5 (21%) were associated
with statistically significant differences in OpenJDK14 runtime performance depending on
the GCC compiler used within the source build toolchain. Across all GCC release version
pairwise comparisons, 9 (6%) showed differences in performance. Performance differences
ranged between 0.6% and 3.5%.

Table 8. A listing of Tukey HSD post hoc test results for the differences between OpenJDK14 JRE
builds and the associated benchmark application loads eliciting those differences. Mean differences
and confidence intervals reported in seconds.

JRE Benchmark GCC Mdi f f 95%CI p Gain (%)

j14 chi-square GCC7-GCC5 −7 (−11, −3) 0.000 0.951
j14 dotty GCC7-GCC5 −2 (−4, 0) 0.006 0.584
j14 dotty GCC7-GCC6 −2 (−4, −1) 0.002 0.635
j14 finagle-chirper GCC7-GCC5 −3 (−5, 0) 0.043 0.985
j14 fj-kmeans GCC8-GCC5 −10 (−19, −1) 0.022 2.267
j14 fj-kmeans GCC7-GCC6 −11 (−20, −2) 0.010 2.539
j14 fj-kmeans GCC8-GCC6 −15 (−24, −6) 0.000 3.471
j14 scala-stm GCC7-GCC5 −1 (−3, 0) 0.012 0.857
j14 scala-stm GCC7-GCC6 −2 (−3, 0) 0.003 0.983

In Figure 7 we present a collection of panels depicting OpenJDK14 JRE execution time
performance under load from each of the 24 Renaissance benchmark workloads. Each panel
illustrating the execution time performance associated with the four GNU GCC versions.
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Figure 7. Execution time analysis of the 24 Renaissance benchmark suite applications. Each panel
depicting the runtime performance for each OpenJDK14 JRE built with the four GNU GCC compiler
versions 5, 6, 7, and 8.

4.2. Best Performing JRE Build for Each OpenJDK Source Bundle

The previous subsections presented detailed results for all statistically significant
differences from the pairwise comparison between the four GNU GCC compiler versions
used within OpenJDK JRE build toolchains. In some cases, our results have shown statisti-
cally significant differences between multiple GNU GCC compilers for the same workload.
For example, in Table 8 we have shown that for the fj-kmeans benchmark workload that
both OpenJDK14 JREs built with GCC8 and GCC7 outperform those built with GCC5
and GCC6. This subsection identifies the best overall performing OpenJDK JRE build
and the associated GCC compiler used in its build toolchain. Specifically, we present the
sequence of GCC compiler versions, listed from best through to worst. The results are
presented in Table 9. For example, OpenJDK9 JRE and its associated JVM interpreter built
with GCC version 7 had the best runtime performance while stressed by the chi-square
workload. The second-best performing OpenJDK JRE was the OpenJDK9 JRE built with
GCC version 8. The third-best performing OpenJDK JRE was the OpenJDK9 JRE built with
GCC version 6. Regarding the worst-performing OpenJDK9 release, was OpenJDK9 built
with GCC 5. Instances where no listings are provided, indicate no statistically significant
differences between GCC compiler versions.
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Table 9. Rank ordering from best to worst GCC compiler version for each OpenJDK JRE version.
Application categories (Cat) are listed, where (A) represents Apache-spark, (C) Concurrency, (D)
Database, (F) Functional, (S) Scala, and (W) Web based applications. After this, there is the application
name (App), and then the six OpenJDK releases analyzed.

JRE

Cat App j09 j10 j11 j12 j13 j14

(A) chi-square 7-8-6-5 7-8-6-5 8-6-7-5 7-6-8-5
dec-tree 7-6-8-5 7-8-6-5 7-8-5-6
gauss-mix

log-regression 7-8-6-5 8-7-5-6
movie-lens 5-7-6-8 7-8-6-5 6-7-5-8
naive-bayes 7-8-6-5 7-8-6-5
page-rank 7-8-6-5

(C) akka-uct 8-7-5-6 7-6-8-5
fj-kmeans 5-6-7-8 8-7-5-6
reactors

(D) db-shootout 7-6-8-5 7-8-6-5
neo4j-analytics 8-6-7-5

(F) future-genetic 6-8-5-7
mnemonics 8-7-5-6

par-mnemonics 7-5-8-6
rx-scrabble
scrabble

(S) dotty 8-7-6-5 8-7-5-6 8-7-6-5 5-6-7-8 7-8-6-5 7-8-5-6
philosophers 8-7-6-5 7-8-6-5
scala-doku

scala-kmeans 8-6-5-7 8-5-7-6 8-6-5-7 8-7-6-5
scala-stm 8-7-5-6 7-8-6-5 7-8-5-6

(W) finagle-chirper 8-7-5-6 7-8-6-5 7-8-5-6 7-8-6-5
finagle-http 7-8-5-6 8-7-5-6

In Figure 8 we present collections of stacked bar-plots for each OpenJDK JRE version,
each panel depicting the individual stacked bars representing a ranking of the GNU GCC
compilers, the longer the bar the better the resulting performance, for each benchmark
application. In cases where stacked bars are of equal height, those bars indicate that there
were no statistically significant differences for effect of the GNU GCC version used within
the OpenJDK JRE build toolchain under load from the associated benchmark workload.
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Figure 8. Stacked barplots depicting a ranking of each GNU GCC version for each benchmark
workload. Each panel depicting the rankings for each OpenJDK JRE release.

4.3. Interaction Effects between GNU GCC Version and OpenJDK JRE Releases

In this subsection we present the results from an analysis of the interaction effects
between GNU GCC version and OpenJDK JRE release and their effect on JRE runtime
performance. In particular, we present the results associated with a two-way analysis of
variance, undertaken at the level of individual Renaissance benchmark workload. The re-
sults of those statistically significant interactions are presented in Table 10 along with the
individual impact of both GNU GCC version and OpenJDK JRE release.

Table 10. Details of the results associated two-way ANOVA that examined the effect of GNU GCC
version and OpenJDK JRE release on JRE runtime performance.

Benchmark Source of
Variation Df SS MSS F Pr(> F)

akka-uct JRE 5 330,274 66,055 394.08 ***
GCC 3 3667 1222 7.29 ***

JRE:GCC 15 5659 377 2.25 **
Residual 474 79,452 168

chi-square JRE 5 136,792 27,358 695.36 ***
GCC 3 1651 550 13.99 ***

JRE:GCC 15 2127 142 3.6 ***
Residual 474 18,649 39

db-shootout JRE 3 45,427,126 15,142,375 22,355.72 ***
GCC 3 31,696 10,565 15.6 ***

JRE:GCC 8 36,587 4573 6.75 ***
Residual 294 199,137 677
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Table 10. Cont.

Benchmark Source of
Variation Df SS MSS F Pr(> F)

db-shootout JRE 3 45,427,126 15,142,375 22,356.72 ***
GCC 3 31,696 10,565 15.6 ***

JRE:GCC 8 36,587 4573 6.75 ***
Residual 294 199,137 677

dotty JRE 5 162,612 32,522 6090.16 ***
GCC 3 303 101 18.9 ***

JRE:GCC 15 333 22 4.16 ***
Residual 474 2531 5

finagle-chirper JRE 5 98,380 19,676 1772.37 ***
GCC 3 428 143 12.86 ***

JRE:GCC 15 302 20 1.81 *
Residual 474 5262 11

finagle-http JRE 5 80,601 16,120 3181.5 ***
GCC 3 54 18 3.53 *

JRE:GCC 15 185 12 2.43 **
Residual 474 2402 5

fj-kmeans JRE 5 642,104 128,421 524.9 ***
GCC 3 701 234 0.96 0.414

JRE:GCC 15 11,620 775 3.17 ***
Residual 474 115,967 245

log-regression JRE 5 82,256 16,451 813.39 ***
GCC 3 400 133 6.58 ***

JRE:GCC 15 742 49 2.45 **
Residual 474 9587 20

mnemonics JRE 5 102,008 20,402 258.9 ***
GCC 3 476 159 2.01 0.111

JRE:GCC 15 2965 198 2.51 **
Residual 474 37,352 79

movie-lens JRE 5 1,900,161 380,032 5223.56 ***
GCC 3 1603 534 7.34 ***

JRE:GCC 15 4355 290 3.99 ***
Residual 474 34,485 73

naive-bayes JRE 5 15,432,623 3,086,525 3059.23 ***
GCC 3 28529 9510 9.43 ***

JRE:GCC 15 51,442 3429 3.4 ***
Residual 469 473,184 1009

page-rank JRE 5 3,028,739 605,748 4540.5 ***
GCC 3 2809 936 7.02 ***

JRE:GCC 15 3733 249 1.87 *
Residual 465 62,036 133

philosophers JRE 5 296,446 59,289 889.78 ***
GCC 3 2429 810 12.15 ***

JRE:GCC 15 3567 238 3.57 ***
Residual 465 30,985 67

reactors JRE 5 1,526,650 305,330 911.97 ***
GCC 3 645 215 0.64 0.588

JRE:GCC 15 8609 574 1.71 *
Residual 465 155,683 335

scala-kmeans JRE 5 9964 1993 402.43 ***
GCC 3 237 79 15.94 ***

JRE:GCC 15 408 27 5.49 ***
Residual 465 2303 5

scala-stm-bench7 JRE 5 14,254 2851 927.04 ***
GCC 3 152 51 16.43 ***

JRE:GCC 15 347 23 7.52 ***
Residual 465 1430 3

* indicates that p < 0.05. ** indicates that p < 0.01. *** indicates that p < 0.001.
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Of the 24 two-way analysis of variance conducted, 16 (67%) showed statistically sig-
nificant interactions between the GNU GCC version and OpenJDK JRE release on JRE
runtime performance. The workloads that showed no interaction effects were: dec-tree,
future-genetic, gauss-mix, neo4j-analytics, par-mnemonics, rx-scrabble, scala-
doku, scrabble. Of those workloads 4 (50%) are classified as implementations adhering to
a functional paradigm.

4.4. Best Performing JRE Build across All JVM Source Bundles

In the previous subsection, we presented our findings regarding the interaction effects
associated with GNU GCC version and OpenJDK JRE build. In this section we detail
the results from comparing all OpenJDK JRE GCC builds and their performances at the
benchmark application workload level, identifying the best overall OpenJDK JRE build for
each benchmark application workload. The analysis identified that OpenJDK9, OpenJDK12,
and OpenJDK14 provided the best performance opportunities for application execution on
their JRE and associated JVM interpreters. OpenJDK10 and 11 do not feature in this list.
All GNU GCC compiler versions are an essential determinant, although; only relative to
specific OpenJDK versions. Our results show that upgrading or downgrading the OpenJDK
version can significantly affect performance, and upgrading or downgrading the GNU
GCC compiler also affects performance. The complete set of results is presented in Table 11.

Table 11. Listings of the best performing OpenJDK JRE and associated JVM interpreter and the
associated GNU compiler used within its build toolchain. The JVM-GCC column lists the OpenJDK
JRE version and GCC lists the compiler version, for example, the J9G7 mnemonic represents the
OpenJDK9 JRE built with the GNU compiler release version 7. The Min and Max columns list the
minimum and maximum execution times, respectively. The Ming and Maxg list the minimum and
maximum expected percentage performance gains calculated relative to all other JVM builds.

Cat App JVM-GCC Min Max Ming (%) Maxg (%)

(A) chi-square J9G7 712 770 0.2993 8.4700
dec-tree J9G7 363 382 0.2860 5.5288
gauss-mix J9G5 840 875 0.3191 4.5187

log-regression J14G7 394 434 0.1618 10.4412
movie-lens J9G7 844 1024 0.4546 21.7986
naive-bayes J14G7 2371 2879 0.5042 22.0627
page-rank J9G7 1175 1407 0.0226 19.6997

(C) akka-uct J9G8 1116 1188 1.1826 7.7073
fj-kmeans J14G8 439 549 0.0487 25.1022
reactors J9G8 1750 1934 0.0246 10.5718

(D) db-shootout J9G7 918 1036 1.5785 14.6811
neo4j-analytics J9G8 1180 1260 1.1334 7.9697

(F) future-genetic J12G6 136 142 0.1237 4.6159
mnemonics J14G5 899 948 0.2551 5.7351

par-mnemonics J14G7 728 769 0.1885 5.8624
rx-scrabble J9G7 29 29 0.3785 3.7780
scrabble J12G5 76 86 0.9335 14.3167

(S) dotty J14G7 340 386 0.5357 14.2982
philosophers J14G7 444 519 0.2206 17.1383
scala-doku J9G5 612 646 0.8467 6.3272

scala-kmeans J14G6 140 156 0.9683 12.9829
scala-stm J14G7 166 184 0.3791 11.6980

(W) finagle-chirper J9G8 266 312.19 0.0510 17.5514
finagle-http J9G8 161 201.04 0.2090 24.9095

Mean 0.4627 12.4069
Standard Deviation 0.4228 6.7492

4.5. Overall Observed Effects

Further analysis of the distribution of performance gain opportunities identified aver-
age performance gain opportunities of approximately 4.90% with an associated standard
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deviation of approximately 4.89%. Our results show the minimum gain in performance at
0.02% ranging through to a maximum performance opportunity of approximately 25.10%.
Our results show a median performance gain of approximately 3.58%, with associated first
and third quartile measures being 1.81% and 5.74%, respectively. A histogram of the overall
distribution is presented in Figure 9.

Figure 9. The distribution of observed performance gain opportunities across the complete set of
benchmark applications.

5. Discussion

This paper has focused on optimisation opportunities associated with switching GNU
compiler versions within the JDK build toolchain. In this current work, we considered
this question relative to six open source releases of OpenJDK, specifically; release versions
9 through 14; and the use of four GNU compiler release versions in the OpenJDK build
toolchain, specifically versions 5.5.0, 6.5.0, 7.3.0, and 8.3.0.

Our analyses are multi-faceted; first, we have undertaken a within-JRE-JVM version
analysis, focusing on the effect of a change of the GNU compiler release version within
the build toolchain for specific OpenJDK JRE and their associated JVM interpreter. We
believe our analysis is of interest to those constrained to a particular OpenJDK JRE and
JVM. In addition, this tests the hypothesis that compiler selection, at build time, affects
overall JRE performance. Second, we have undertaken a between-JRE-JVM version analysis
and considered the overall effect of changing the GNU compiler release version within
the JVM build toolchain. We have identified a pair of OpenJDK JRE with GNU compiler
that provides the best performance based on workload type. In addition, this tests the
hypothesis that there exists an optimum pairing of OpenJDK JRE with GNU compiler that
provides the best overall performance opportunities.

From a within-JRE release perspective, OpenJDK11 JRE had the greatest number of
applications for which a change in GCC compiler in the JRE build toolchain had an effect.
We observed the effect under loads from 17 (71%) of the 24 Renaissance applications running
on OpenJDK11 builds. In these cases, GCC version 7 accounted for 51% of the observed
differences, GCC version 8 accounted for 41%, and GCC version 6 was the best OpenJDK11
JVM build toolchain compiler for a single case, namely for the application future-genetic.
GCC compiler version 7 was predominately associated with the Apache-spark category
of applications, and GCC 8 was associated with better performance for Scala applications.
A GNU GCC compiler version change did not affect JRE performance for seven Renaissance
application workloads running on OpenJDK11 JRE builds. OpenJDK12 JRE had the smallest
number of applications for which a change in GCC compiler in the JRE build toolchain had
an effect. Only four cases showed statistically significant differences, two Apache-spark
applications workloads, one Scala and the Web application finagle-chirper. The Scala
dotty compiler was the only application workload with the best performance on a JRE
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built with the oldest GNU GCC compiler—GCC version 7. OpenJDK JRE performance
degraded under load from dotty as newer compilers were used in the JRE build toolchain.
We observed similar proportions of significant differences for OpenJDK9, OpenJDK10,
and OpenJDK13 JREs. GNU Compiler version alternatives greatly influenced OpenJDK10
and OpenJDK13 JRE interpreters under load from the Scala applications.

Ranking JRE release performance across all six OpenJDK versions has shown that three
of the six OpenJDK JRE choices provide the best runtime performance. The OpenJDK9
JRE and associated interpreter provided the best runtime performance under load from 13
(54%) of the 24 Renaissance benchmark applications. The OpenJDK JRE that provided the
second to best overall performance opportunities was the OpenJDK14 JRE. It gives the best
overall performance for 9 (38%) of the 24 Renaissance workloads. The only other OpenJDK
JRE associated with better performance was the OpenJDK JRE version 12, which provided
the best performance for 2 (8%) of the 24 workloads. The OpenJDK releases 10, 11, and 13,
and their associated JRE provided no performance enhancement opportunities relative to
either OpenJDK JRE 9, 12, and 14 releases.

Ranking of the GNU GCC compiler version used within the build toolchains of the
OpenJDK releases showed that GCC version 7 provided the best performance in 12 (50%)
workload cases. GCC version 8 delivered the best performance in 6 (25%) workload cases
when specified as the build compiler. GCC versions 5 and 6 accounts for the remaining
25% of best build compilers.

Of all the compiler performance rankings, version ranking sequence 7-8-6-5 accounted
for 25% of all performance rankings, with 7 providing the best performance and 5 delivering
the worst performance. In addition, this was followed by the version ranking list 8-7-5-6,
which accounted for 14%. The top-ranked GCC compilers were version rankings 7-8, which
accounted for 33% of all performance rankings. Compiler version rankings 8-7 accounted
for 21% of performance rankings. The third most prominent pairing of version rankings
was 7-6, which accounted for approximately 14% of performance ranks.

The interacting playoff between the GNU GCC compiler version and the OpenJDK
source bundle versions showed interacting effects for 67% of loads executed on the JRE
associated JVMs. The workloads with no observed interaction effects were predominately
associated with those written in a functional paradigm.

Overall our results show that from all the GNU GCC compiler comparisons under-
taken across all OpenJDK builds, GCC versions 7 and 8 provide the best performance
opportunities. Those GCC compilers used in the build toolchains of OpenJDK9 and Open-
JDK14 give the best overall combination. Our results show that changing the OpenJDK
version, which includes considering downgrading from a newer release to an older release,
can positively impact performance. Using a recent GNU GCC compiler release in the build
cycle can significantly affect performance. For example, the OpenJDK9 release date was
September 2017, and the GNU GCC version 8 release date was February 2019. Our results
show that builds of OpenJDK9 undertaken before 2019 would underperform relative to a
new build of OpenJDK9 with the GNU GCC version 8 compiler collection released in 2019.

Attempting to isolate and attach meaning to the observed interactions between the
GNU GCC version and the OpenJDK version and the effects on OpenJDK JRE runtime
performance reported within this article, consideration must be given to the components
within the JRE that could have been affected through the build processes. Some compo-
nents, such as the garbage collector, have undergone several revisions across OpenJDK
releases. For example, the G1 garbage collector has seen four major updates, OpenJDK10
saw G1 updated for full parallelisation of its full-collection phase, and OpenJDK12 imple-
mented abortable mixed-collections as well as speedy reclamation of committed memory.
Additionally, OpenJDK version 14 saw the G1 collector become NUMA aware. Those im-
plementations filtered through to later OpenJDK versions without deprecation or removal.

It is possible that JEP enhancements have had a collective impact and contributed
to the observed statistically significant interactions between the GNU GCC version and
the OpenJDK version. Although, none of the interactions in OpenJDK versions 10, 11,



Computers 2022, 11, 96 24 of 29

or 13 appeared in the list of best performing OpenJDK JRE. In addition, concerning the
parallelisation of the full G1GC cycles, we initiated all JRE instances with the default
number of parallel GC threads set to 4 across all OpenJDK, from OpenJDK10 through 14.
NUMA awareness does not impact the operational characteristics of the JRE and associated
JVM interpreters assessed in this study, as the Raspberry Pi 4 model B system-on-chip is not
a multi-socket processor. With that said, NUMA awareness is only available when running
the parallel GC (−XX:+UseParallelGC) [81]. Also, the speedy reclamation of committed
memory implemented in OpenJDK12 applies to cases when the JVM is idle, and the release
of memory back to the operating system would have no impact. It is more relevant for
cloud-based applications and not relevant in our system setting. In addition, an inspection
of all G1GC runtime flags showed that all default settings are the same across OpenJDK
releases. Other candidate JRE components that could have contributed to the observed
interactions are concerned with the Java Native Interface (JNI) and the Java Class Library
(JCL) that was built during the OpenJDK build cycle. There are a considerable number
of those interface methods and library classes. Any impacts from a specific GNU GCC
compiler would have a significant collective impact.

Additionally, the building of the Java compiler, javac, with the different GNU GCC
compilers could impact the generated Java library classes and their respective bytecodes,
as the build javac compiler is used to compile the JCL. Daly et al., in [19] addressed the
effect the Java-to-bytecode compiler has on the emitted bytecode was addressed. They
showed that different Java-to-bytecode compilers implement vastly different bytecode
optimisations. Although, Gregg et al., in [54] showed that most Java-to-bytecode compilers
fail to implement the simplest of optimisations to the emitted bytecode.

With that said, if the GNU GCC versions did not affect OpenJDK JRE performance, we
would expect to find no significant differences in JRE performance when all JRE components
are kept constant. Our analysis included that case by studying the effects of the GNU GCC
compiler on specific versions of OpenJDK. For example, the four builds of the OpenJDK9
JRE all used the same source code bundle. As such, the OpenJDK version was constant.

Regarding workload factors, application workload is undoubtedly an essential factor.
OpenJDK builds with specific compilers offer different performance opportunities for
certain workloads. Our results have indicated that changing workload would, in many
cases, necessitate a change of the compiler used within the build toolchain, even in cases
where the same OpenJDK release is required. For example, OpenJDK9 or 14, built with
GCC 7, provides the best performance opportunities for application workloads that target
the Apache Spark framework. OpenJDK9 and OpenJDK14, made with GNU GCC version
8, give the best options for performance gains when workloads predominately involve
concurrent execution. Of the two Database applications comprising the Renaissance Bench-
mark Suite, OpenJDK9 delivered the best overall performance coupled with GCC compiler
versions 7 and 8. Of the applications written in a functional paradigm, three of the six
OpenJDK builds provided the best results. Specifically, OpenJDK9, 12, and 14 built with
GCC 5, 6, and 7. Scala applications performed best when running on OpenJDK14 built
with GCC version 7. Our results also indicate that for the two web-based applications,
finagle-http and finagle-chirper, that OpenJDK9 built with GNU compiler version 8
provided the best overall performance opportunities.

How much performance change can we expect? Our results have shown an average
OpenJDK JRE performance increase of approximately 4.90% with an associated standard
deviation of 4.89%. Interquartile measures show that, in approximately 50% of cases run
with the optimal OpenJDK and GCC pairing, we can expect performance gains between
1.81% and 5.74%. In many instances, depending on the current OpenJDK JVM deployment,
rebuilding the runtime environment can increase performance by as much as 20%.

6. Conclusions and Future Work

In this paper, we have considered the impact that GCC compiler releases used in
the build toolchain of OpenJDK have on JVM interpreter performance under modern
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workloads. Our findings show that, when constrained to a particular OpenJDK release,
the choice of GCC compiler version can significantly impact overall application perfor-
mance for many application workloads. With the extra freedom to consider other OpenJDK
versions and their associated JVM interpreters, there is an optimum pairing of OpenJDK
and GCC compiler for each workload. Our results show that performance can be enhanced
by, on average, 5%. Many workloads show performance gains above 10%, with a smaller
number exceeding 20%, peaking at approximately 25%.

Our results have clearly shown that careful consideration needs to be given to the
decision regarding which OpenJDK release to choose and specifically what compiler was
used in its associated build toolchain. More importantly, our results would offer options to
those who are constrained to working within a specific OpenJDK release and have shown
that performance opportunities still exist through careful selection of compiler collection
versions used within build toolchains. Interestingly, our results in this regard suggest that
a richer set of OpenJDK binary distributions should be made available to the market, not
just binary builds that target specific architectures but also binaries built using different
compiler collections. Furthermore, OpenJDK binaries that have a specific target workload
type would be of considerable interest.

Is there scope for leveraging performance? Our results have shown that this is un-
doubtedly the case. In particular, we have shown that the JVM interpreter can benefit from
a rebuild using an alternative toolchain compiler. In particular, older versions of OpenJDK,
for example OpenJDK9, predominately exhibit better performance if built with a later GNU
GCC compiler.

Our future work will consider low level microarchitectural performance metrics, such
as branch misprediction, and data cache behaviour, and the impact that build toolchain
compiler choice has on those performance characteristics. In addition, we plan to expand
this work and include the full set of available garbage collector algorithms and assess their
impact on JRE performance. Additionally, we intend to explore the effects associated with
the JRE Native Libraries and Java Class Libraries and the effect of building those with alter-
native GCC GNU compilers. In addition, we plan to explore similar effects associated with
hotspot compilation. Finally, we are also interested in exploring if hotspot-style compilation,
applied to internal JVM structures, could provide additional performance opportunities.
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