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Abstract: An interesting question for linear programming (LP) algorithms is how to deal with
solutions in which the number of nonzero variables is less than the number of rows of the matrix in
standard form. An approach is that of basis deficiency-allowing (BDA) simplex variations, which
work with a subset of independent columns of the coefficient matrix in standard form, wherein the
basis is not necessarily represented by a square matrix. We describe one such algorithm with several
variants. The research question deals with studying the computational behaviour by using small,
extreme cases. For these instances, we must wonder which parameter setting or variants are more
appropriate. We compare the setting of two nonsimplex active-set methods with Holmström’s TomLab
LPSIMPLEX V3.0 commercial sparse primal simplex commercial implementation. All of them update
a sparse QR factorization in MATLAB. The first two implementations require fewer iterations and
provide better solution quality and running time.

Keywords: linear programming; phase I; basis deficiency-allowing simplex variations; nonsimplex
active-set method; Farkas lemma; sparse matrices

1. Introduction

Since the introduction of the simplex method for linear programming (LP) in 1947,
there has been interest in viewing algorithms from a nonlinear optimisation point of view.
Most well known and developed are the ideas of interior point methods, established at the
time of the first barrier methods of Dikin in 1967. Although the questions on the simplex
method originate from its beginning in 1947, there is still a lot of ongoing research; in the
last three years one can find publications such as [1–8], just to cite a few. Various aspects of
the method are investigated in these works, where Im and Wolkowicz [6] specifically also
focus on degeneracy and related issues. However, these recent works neither work with a
nonsquare basis, nor do they include a sparse linear algebra procedure to efficiently solve
the sparse least squares subproblems that we need in our algorithmic approach.

A generalization of the well-known dual simplex method can be found in [9,10],
which discuss relaxing operations toward nonsimplex steps. One can find more recent
considerations in this line in [11,12] with the incorporation of steepest-edge pivoting rules
(see also [13,14]). Gill and Murray [9] presented a nonsimplex active-set algorithm for
solving a problem (P) starting with a feasible point x0. Descriptions and analyses can also
be found in [14–16]. We investigated and developed a nonsimplex active-set (NSA) method
for a dual linear program in standard form (D), [17]. A challenge for the development
is to have to deal with high degeneracy, which for a simplex-like method provides basis-
deficiency, i.e., the dual variable set has less than n variables. Therefore, we aimed for the
development of a method, which is also called a basis deficiency-allowing (BDA) simplex
variation (see [11,12,18]).

This paper presents a study of the computational behavior of a MATLAB implementa-
tion on a set of extreme cases and sparse inequality-constrained linear programs customized
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from the literature. We compare two nonsimplex active-set methods with the commercial
solver of Holmström called TomLab LPSIMPLEX V3.0 sparse primal simplex implementa-
tion. Various numerical linear algebra procedures are used in MATLAB to keep a sparse
QR factorization of the tall-and-skinny basis matrix updated. To elaborate upon the ex-
periments, we introduce the notation and the main algorithm and its implementation
in Section 2. We report on computational findings in Section 3. Section 4 summarises
our findings.

2. Materials and Methods

Consider the nonsymmetric primal dual relation in linear programming, wherein we
deviate from the usual notation here in exchanging b and c, x and y, n and m, and (P) and
(D) in the notation of e.g., [14]. Now consider

(P) min `(x) := cTx , x ∈ Rn

s. t. ATx ≥ b
(D) max L(y) := bTy , y ∈ Rm

s. t. Ay = c , y ≥ 0
, (1)

where A ∈ Rn×m with m ≥ n and rank(A) = n. Let F and G denote the feasible region of
(P) and (D), respectively. Here, c and b are, respectively, the primal and dual gradient of
the cost functions to be optimized, whereas aj and bj are, respectively, the coefficient vector
and right-hand side value of the jth primal constraint aT

j x− bj ≥ 0.
The idea is the following. We start with a dual feasible point y0. From there, we

separate the index set [1 : m] := {1, 2, . . . , m} into an ordered basic set Bk with mk := |Bk|
elements, with mk ≤ n and its complement representing the columns in Nk := [1 : m] \ Bk,
which can have more than m− n zero elements. Let Ak ∈ Rn×mk and Nk ∈ Rn×(m−mk) be
submatrices of A formed by the columns corresponding to Bk and Nk, respectively. Notice
that rank(Ak) = mk. We will use the notationR(A) to represent the range of the columns
in A, while null(A) denotes its null space, and |A| denotes the number of its nonzeros.
Column j of A is denoted by aj. Similarly, aT

i is row i of matrix AT . Moreover, bBk represents
an mk vector with the elements of Bk of b and bNk has the nonbasic elements. The index
k will be left out if it is clear from the context, ‖ · ‖2

2 denotes the square of the Euclidean
2-norm, and symbol § will be used in citations as an abbreviation of chapter/section for
brevity purposes.

2.1. Algorithm

The algorithm works like the simplex method in determining in each iteration a
nonbasic variable that enters the basis and a basic variable(s) leaving the basis. The big
difference is that it can handle basis deficiency. This means that mk ≤ n and mk may reduce
and grow. A pseudocode is given in Algorithm 1.

• Notice that in line 4, if we have a complementary pair of primal dual feasible points,
then xk is optimal for (P).

• Line 15 determines step size and basis-leaving variable(s), unless in line 12 we found
that we have an unbounded dual objective function.

The algorithm does not require a primal feasible starting point. In that sense, it is an
exterior method. In earlier studies, we have shown [19] that the algorithm is equivalent
to the primal BDA simplex variation given by Pan in [11]. However, we put emphasis
on a description, which is easy to understand due to a geometrical interpretation and its
independence of implementation details. The algorithm also fits in the primal-feasibility
search loop of the Sagitta method described by Santos–Palomo [20], which is related to
a loop used in dual active-set methods for quadratic programming. Moreover, Li [21]
extended the algorithm to deal with upper and lower bounds on y.

Practically, one obtains the primal-feasibility phase I of Dax’s 1978 [22] idea for Rosen’s
1960 paper [10] when one replaces the min-ratio test by a most-obtuse-angle row rule to
determine the leaving variable and removing an objective function consideration. In this
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context, we focused earlier [23] on the classical example of Powell [24], which illustrates
the cycling behaviour of a most-obtuse-angle simplex pivoting rule described in [12,25].

Algorithm 1 Pseudocode active-set algorithm.

1: Set k← 0, y0 feasible point of (D) with corresponding B0 and A0
2: xk ← solves AT

k x = bBk with residuals rk following from rNk = NT
k xk − bNk

3: if rk ≥ 0 then
4: return xk is optimal
5: select p ∈ Nk with rkp < 0
6: if ap /∈ R(Ak) then
7: Bk+1 ← Bk ∪ {p}, Nk+1 ← [1 : m] \ Bk+1, set Ak+1
8: yk+1 ← follows from Ak+1yBk+1

= c, k← k + 1, goto step 2
9: else

10: solve Akδ = ap
11: if δ ≤ 0 then
12: return Unbounded L
13: else
14: Direction dk is initially unit vector ep and elements of Bk follow from −δ

15: Step-size τ ← minq∈Bk{
ykq
−dkq
|dkq < 0}, Q← argminq∈Bk

{ ykq
−dkq
|dkq < 0}

16: yk+1 ← yk + τdk,Bk+1 ← Bk \Q ∪ {p},Nk+1 ← Nk ∪Q
17: Set Ak+1, k← k + 1, goto step 2

The algorithm ends with an optimal solution for (P) and (D). However, the solution
does not necessarily correspond to a square basis. Notice that the algorithm maintains dual
feasibility and complementary slackness. In fact, two algorithmic strategies now emerge.
One of them, Reliable Sagitta, relies on starting Algorithm 1 from a dual feasible point. The
other one, Sparse Sagitta—abbreviated as Sagitta—starts Algorithm 1 as soon as a solution
of Ay = c is found with a suitable, linearly independent subset of columns of A where y is
possibly violating nonnegativity. These two alternatives, along with the chosen touchstone
for a fair comparison, are outlined in Section 2.2.

2.2. Implementation

To run the algorithm, we first find a feasible dual vertex, i.e., a vector y ≥ 0 such
that Ay = c with columns of A corresponding to positive components of y being linearly
independent. This is called a phase-I procedure. One option is to use the procedure of the
nonnegative least squares (NNLS) approach described in [19,26]. One can apply the NNLS
algorithm [27] or Dax algorithm [28] to the positive semidefinite quadratic problem

min
y≥0

1
2
‖Ay− c‖2

2, (2)

which implies solving a sequence of unconstrained least squares problems of the form
min ‖Akz− c‖2 (NNLS) or of the form min ‖Akw− sk‖2 (Dax). Such an approach does not
require artificial variables and obtains a feasible direction of the feasible region F (i.e., a
so-called direction of F ) or a dual basic feasible solution with mk ≤ n. It appears that
the computation can be described in terms of a primal null-space descent direction [29].
Instead of (2), one can focus on its Wolfe dual, which is a least-distance, strictly convex
quadratic problem

min
1
2
‖u‖2

2 s. t. ATu ≥ v, (3)

where v := ATc. This also implies solving a sequence of least squares problems. To solve (3),
one can use any of the primal, dual, and primal dual active-set methods introduced in [30].
Note that a primal direction d := u− c is easy to generate.
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Once a dual feasible vertex y∗ is obtained, a phase-II procedure is performed to reach
optimality. A traditional way to continue is to artificially enlarge B from mk to n columns
and then apply the primal simplex method to (D) starting from a degenerate dual vertex
of G. However, the interesting approach we follow is not to artificially enlarge B, but to use
y∗ as the starting point for a nonsimplex active-set method for linear programs in standard
form as sketched in Algorithm 1. We shall refer to this first algorithm for solving linear
programs, such as Reliable Sagitta (RELSAG V1.1), for which termination is guaranteed
under a dual nondegeneracy assumption (see [17]).

The second variant of phase I to solve (2) adapts the inner loop, called Loop B in [27]
and step S2 in [29]. This loop sequentially removes indices from B of those columns of
Ak corresponding to negative multiplier least-squares estimates ȳBi of actual Lagrange
multipliers yBi for (P). We substitute this loop by the following steps to determine the
search direction: Compute temporal variables ȳB solving

min ‖AkyB − c‖. (4)

Then we set y ← [ȳB; 0], and take d ← Ak ȳB − c and go on to prepare the next iteration.
Notice that ȳB is not constrained to be nonnegative.

This NNLS modification finishes with a dual solution y∗ verifying Ay = c, but non-
negativity does not hold in general. Hence the primal-feasibility search loop is not ensured
to start from a feasible solution y ∈ G, and termination is not guaranteed. In the event that
this loop ends, we can check whether y ≥ 0 stops with the optimal solution, or deletes a
negative element yBi to restart the whole process. Note that we have delayed the elimina-
tion of negative multipliers until they have become actual multipliers. We shall refer to this
second algorithm for solving linear programs such as Sparse Sagitta (SPASAG V1.1).

The comparison of the two nonsimplex active-set methods described above was done
with the commercial code of Holmström TomLab LPSIMPLEX V3.0 [31] sparse primal
simplex implementation, applied to solve (D). Details of this MATLAB solver can be found
in http://tomlab.biz/products/base/solvers/lpSimplex.php (accessed on 15 November
2022). This code was previously known as LPSOLVE, but should not be confused with the
freely available compiled code lp_solve from http://lpsolve.sourceforge.net/5.5/ (accessed
on 15 November 2022). To make results comparable, the input of the problems in all
the solvers are taken the same way. However, LPSIMPLEX deals with the columns of A,
whereas RELSAG and SPASAG deal with the rows of AT ; hence all of them are under the
same conditions when solving (P) and (D).

We also considered comparison with other available software, which appeared less
appropriate.

1. LINPROG V2.1 [32] included in MATLAB Optimization Toolbox v2.1. Its active-set
method does not allow sparse arithmetic as described above. Other available MATLAB

codes like those of Morgan [33] have not been considered because he ultimately re-
jected the sparse dynamic LU updating that he implemented in favour of a systematic
LU restart made from scratch on the basis matrix after each column exchange.

2. We did not compare our code to commercial or freely available compiled codes like
MOSEK [34] or MINOS [35], because the running time measurements are not compara-
ble with those of our interpreted MATLAB code. Although solution time is not the only
metric that we have used here (number of iterations, quality of solutions), we consider
that our solvers must be at least comparable in running time with implementations
developed under the same conditions.

3. It is not our aim to use the MATLAB environment to exclude alternative implementa-
tions like CPLEX, XPRESS-MP, COIN-OR, or lp_solve, to name just a few. We plan to
compare against them with larger problems when we develop our own implemen-
tation. Moreover, although it is part of the folklore that sparse QR-based methods
can suffer more fill-in than similar LU based ones, we expect that easier updating
and downdating techniques as those of CHOLMOD described recently by Davis and

http://tomlab.biz/products/base/solvers/lpSimplex.php
http://lpsolve.sourceforge.net/5.5/
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Hager in [36] can be used to show the scalability of the developed implementations to
larger models.

3. Results

This section first describes details of the used settings in Section 3.1 and then focuses
on the question of how to make use of specific sparse matrix computations. We discuss
results for small, extreme cases from the literature in Section 3.2 to find out which settings
are more appropriate for which type of instances. As we will show, this might provide some
advantage compared to a general commercial solver like Tomlab. In Section 3.3, we deal
with features to handle sparse instances. In earlier work, we also reported on computational
tests with 23 out of the smallest 31 NETLIB LP problems, which were originally put forward
in standard form (D) (i.e., those with no simple bounds on our dual variables), which are
currently being analyzed by Im and Wolkowicz [6]. The details of these tests can be found
in [37], and a summary of these tests has been included in [17].

3.1. Settings

The used implementation (called Sagitta) is intended to find a minimum feasible point of
(P), without using an initial feasible point. Default values for the parameters are

• maximum number of iterations (default is 5n);
• set of zero tolerances [38] tol (default is [5 · 10−5, 10−8, 10−6]); and
• character string named o with options. The length of this character string is 5, with

o(1), . . . , o(5) denoting each individual option. Their interpretation has been summa-
rized in Tables 1–3. The setting o(3) controls the choice between RELSAG (o(3)=‘s’)
and SPASAG (o(3)=‘n’, by default. Reporting of intermediate results and use of
updating formulae for residues and search direction are asserted, respectively, with
o(2)=‘s’ and o(4)=‘s’. The default is ‘n’ due to lack of a detailed rounding error
analysis for such formulae.

Table 1. Constraint selection criteria if descent direction d exists.

o(1) Meaning
‘s’ Most opposite to d no normalization
‘t’ Most opposite to d with normalization

‘a’ Among opposite to d, most opposite to (−c) no normalization
‘b’ Among opposite to d, most opposite to (−c) with normalization

‘o’ Among opposite to d, most opposite to d + (−c) no normalization
‘p’ Among opposite to d, most opposite to d + (−c) with normalization

Our implementation does not make use of simple bounds. Furthermore, it uses a
null-space steepest-descent direction d as the search direction. A constraint aT

j x ≥ bj

is said to be opposite to direction d if aT
j d < 0. In the presence of descent direction d

(see Table 1), one of the available addition criteria is to add the constraint aT
j x ≥ bj most

opposite with Euclidean normalization to the descent direction if o(1)=‘t’ by default. The
implementation chooses the opposite −c of the cost vector if o(1)=‘b’, or chooses the
difference between the descent direction and the cost vector if o(1)=‘p’. The selection is
made among those constraints opposite to d in the last two cases. The implementation
can also select not to normalize using the options o(1)=‘s’, o(1)=‘a’, and o(1)=‘o’,
respectively. It is worth noting that all criteria given in Table 1 have a strong geometrical
interpretation, trying to take advantage of the fact that both d and −c are descent directions.
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Table 2. Activation criteria in absence of descent direction.

o(5) Meaning

‘s’ Most violated aT
j x ≥ bj without normalization (Dantzig)

‘t’ Most violated with normalization

Table 3. Deactivation criteria.

o(5) Meaning

‘s’ Most negative multiplier (actual/estimate) without normalization (Dantzig)
‘t’ Most negative multiplier (actual/estimate) with normalization

Setting o(5) controls the choice of the addition criterion in the absence of a descent
direction (see Table 2). It chooses the most violated constraint with `2 norm if o(5)=‘t’
by default or without normalization if o(5)=‘s’. A constraint deletion (Table 3) can be
performed both in the presence or in the absence of a descent direction. The former (only
available for RELSAG) chooses the constraint with the most negative multiplier estimate
with `2 norm if o(5)=‘t’ by default or without normalization if o(5)=‘s’. The latter
(only available for SPASAG) works in a similar way by using actual multipliers instead
of multiplier estimates when there is no violated constraint. Moreover, in a constraint
exchange this eventuality may be needed in the case of primal feasibility; the constraint to
be deleted is chosen in both algorithms by using a min-ratio test similar to that used in the
primal simplex method [20,37].

The criteria shown in Table 2 can be thought of as being different ways by which to
weigh the residues of the violated constraints. When all of them have unit weight, the
classical Dantzig rule applies o(5)=‘s’ and when the weight for constraint i is ‖ai‖−1, rule
o(5)=‘t’ is selected. In this way, steepest-edge rules work with weight ‖δi‖−1 = 1√

1+‖δi
B‖2

,

with δi
B := A†

k ai. Note that, in the simplex case, ai ∈ R(Ak) for all nonbasic i because of the
regularity of Ak, but the compatibility of Akδi

B = ai is not guaranteed in the nonsimplex
case, and hence we have to rely on the pseudoinverse A†

k := (AT
k Ak)

−1 AT
k (see e.g., [39] (p.

17, Equation (1.2.27))). Thus,

‖δi
B‖ = ‖A†

k ai‖ ≤ ‖A†
k‖‖ai‖ implies

1
‖δi

B‖
≥ 1
‖A†

k‖‖ai‖
.

One can approximate the weights of the steepest edges by

1
‖δi‖

=
1√

1 + ‖δi
B‖2
≈ 1
‖δi

B‖
≈ 1
‖A†

k‖‖ai‖
.

Notice that the factor ‖A†
k‖
−1 is shared for all i. This reasoning implies that rule

o(5)=‘t’ can be thought of as a rough approximate steepest-edge rule. An easier rule to
approximate 1

‖δi‖ in a simplex context has been described by Świȩtanowski [40].
Both nonsimplex active-set methods have been implemented by using range-space

techniques by maintaining the sparse QR factorization of Ak. Specifically, the purpose
of the modified sparse least squares (MSLS) toolbox v1.3 (that we have developed and
described in [29] (§3)) is the sparse updating and downdating of the Cholesky factor Rk
of AT

k Ak. The orthonormal factor of the QR factorization of the full column rank matrix
Ak ∈ Rn×mk (with mk ≤ n) is implicitly maintained as a product AkR−1

k . The triangular
factor Rk recurs in sparse form, and is recomputed from scratch by using the sparse MATLAB

QR factorization primitive qr when a refactorization is triggered due to an accumulation
of rounding errors. Our toolbox consists of the routines SqrIni (initialization of data
structures), SqrIns (addition of a constraint to the working set), SqrDel (deletion of a
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constraint from the working set), SqrRei (refactorization of Ak), Givens (computation of a
Givens rotation) and EjemMSLS (application example).

By using MATLAB notation, we store the working set B in a vector ACT. A call to
SqrIni(mode,scal) is used to initialize the use of NaNs as a lower triangular static data
structure L, such that L(ACT,ACT) is an upper bound for the transposed Cholesky factor
of A(:,ACT)’*A(:,ACT) independent of what ACT is. When mode=‘dmperm’, both the rows
and columns of A (and consequently b and c) are reordered for A to be in lower block
triangular form (LBTF). Hence, the static structure is tightly set up in L(ACT,ACT). With
mode=‘colmmd’, only the columns of A (and consequently b) are reordered for the static
structure set up in L(ACT,ACT) to be an upper bound for that Cholesky factor. Scaling
techniques can be a priori applied (scal=‘noscale’, by default), like that in which all
columns of A and c have a Euclidean norm unit (scal=‘txtbook’), or like that used in
CPLEX, where the columns of A are normalized in `∞ norm, and then the same is done
with the rows of A, when scal=‘cplex92’ (see Bixby [41] (p. 271)).

Because we are not using the orthogonal factor due to sparsity considerations, the
least squares subproblems are solved by using corrected seminormal equations (CSNE)
(see e.g., [39] (p. 126)). Thus, the descent direction d is computed by solving (4) with CSNE.
This requires us to perform an iterative refinement step after having found the solution ȳB
of the seminormal equations

RT
k RkyB = AT

k AkyB = AT
k c.

Then, d = Ak ȳB − c is determined as the orthogonal projection of −c onto null(AT
k ).

This means that d is a null-space steepest-descent direction. The same technique is used
to solve the compatible system AkyB = c when c ∈ R(Ak). To test whether v ∈ Rn is in
R(Ak), we check whether the residual of min ‖AkδB − v‖ is zero. As a solution x̄ of the
undetermined system AT

k x = bB we take that of the minimum norm by using corrected
seminormal equations of the second kind (e.g., [39] (pp. 7, 70, 126)). This requires an
iterative refinement step after having found a solution z̄ of the seminormal equations of the
second kind,

RT
k Rkz = AT

k (Akz) = bB and x̄ = Ak z̄.

The commercial program TomLab LPSIMPLEX V3.0 [31] enhances a refined MATLAB

implementation of the primal simplex method, in which sparse matrices can be handled
in the solution process. A sparse QR factorization of the basis matrix is maintained with
an explicit orthogonal factor. The updating and downdating is done with customized
slight modifications of the dense MATLAB primitives qrinsert and qrdelete, to facilitate
dealing with sparse operands. Notice that the authors of the software claim it handles
sparsity exploitation better. Default settings were chosen for LPSIMPLEX.

3.2. Extreme Cases

The question we have is what options of Sagitta are necessary to solve extreme cases
from the literature. This relates to the general question in the investigation of optimization
techniques of which type of algorithms are more appropriate to solve which type (defined
by their characteristics) of optimization problems. The investigation does not require big
instances, but extremely designed cases like the well-known Klee–Minty box. We report on
our finding here.

Gass mentioned in [42] that for any new LP code, it is good to find out which instances
may work badly. He specifically designed textbook examples. We gathered 27 from a
wealth of different sources in a MATLAB routine called ExampSag, which can be found in
the Appendix A.

We solved a first set of problems involving primal degenerate (problems 9 and 10)
and dual degenerate (problems 14 to 16) problems, corresponding, respectively, to [14]
(p. 61), [38] (p. 31), and [43] (p. 136). Sagitta solved all of them without any problem and
avoided cycling in the last three cases by using minimum-norm solutions instead of basic
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ones when solving the underdetermined compatible systems. It is interesting to note that in
the latter two cases, cycling appears if we use basic solutions. This illustrates perfectly that
the possibility of a cycle cannot be ruled out for some pivoting rules. We looked for cases
unfavourable for the EXPAND technique of solving the degeneration of [44]. We found
them in instances of [45] (§2, §4), where the Sagitta code appeared effective in obtaining
correct results (problems 19 to 22) for those with a nonzero cost vector.

The literature provides instances that are problematic for interior point methods
(Mészáros [46] (pp. 8, 9) and Stojković and Stanimirović [47] (pp. 436, 437)). These are
problems 23 to 26 in the Appendix A. Basically, they illustrate that approximate arithmetic
may lead to challenges for accepting the optimal solution.

The interesting two cases from Mészáros [46] (pp. 8, 9) could be solved by Sagitta
without adjusting the used tolerances. The case where the simplex method was pre-
dicted to encounter challenges has a unique solution of (1, 1, 1, 0)T . Tomlab provides as
solution (1, 2, 0, 0)T which implies a row residue ‖c − Ay‖∞ of 10−8 and Sagitta gives
(1− 10−8/3, 0, 2− 10−8/3, 0)T corresponding to a row residue of 10−8

3 .
Consider the two problems presented in Stojković and Stanimirović [47]. The authors

claim that by using their method in exact arithmetic they obtain the optimal solutions 0 and
−24,196,384 corresponding to active sets {1, 3, 12, 16, 17} and {1, 3, 6, 12, 14, 16, 17, 20, 21},
respectively. Their message is that using interior point methods and approximate arithmetic,
the problems cannot be solved. Tomlab, using approximate arithmetic, solves the first of
13 iterations (Iterats) up to−0.000021164 with a minimum residual (ResMin) value of 0 and
minimum multiplier (MulMin) value −6.12× 10−13 and is not able to solve the second one.

The results of Sagitta are given in Table 4. For the first problem with label 0, the
setting ‘annns’ provides active set {1, 3, 10, 12, 14, 16, 17, 20} with small values for y10,
y14, and y20. The setting ‘ansns’ results in active set {1, 2, 3, 10, 12, 16, 17, 20} with small
values for y2, y10, and y20. For the second problem with label 1, Sagitta cannot find the
optimal solution with settings ‘annns’ and ‘bnsnt’. Setting ‘ansns’ gives active set
{1, 3, 6, 12, 14, 16, 17, 20, 21}.

Table 4. Settings and results for Stojković and Stanimirović [47] problems.

No Setting Optimal Value Iterats ResMin MulMin

0 ‘tnnnt’ −1.725308995636442× 10−5 6 −3.73× 10−9 +5.19× 10−10

0 ‘snnns’ +4.457393847569538× 10−5 8 −7.45× 10−9 −1.01× 10−9

0 ‘bnnnt’ +7.356378257536402× 10−5 9 −1.49× 10−8 −1.27× 10−12

0 ‘annns’ +1.560049165136415× 10−5 8 −7.45× 10−9 −1.01× 10−9

0 ‘tnsnt’ −1.725308995636442× 10−5 6 −3.73× 10−9 +5.19× 10−10

0 ‘snsns’ −2.117272130221947× 10−5 10 −2.27× 10−13 +1.62× 10−9

0 ‘bnsnt’ +7.356378257536402× 10−5 11 −1.49× 10−8 −1.27× 10−12

0 ‘ansns’ −2.115917629476000× 10−5 17 +0.00× 100 −1.27× 10−12

1 ‘tnnnt’ −2.419638386181237× 107 9 −1.53× 10−5 +1.00× 100

1 ‘snnns’ −2.419638389627836× 107 12 −1.53× 10−5 +4.01× 10−4

1 ‘bnnnt’ −2.419638415649983× 107 10 −3.82× 10−6 +4.44× 10−4

1 ‘tnsnt’ −2.419638386181237× 107 9 −1.53× 10−5 +1.00× 100

1 ‘snsns’ −2.419638389627836× 107 12 −1.53× 10−5 +4.01× 10−4

1 ‘ansns’ −2.419638396563628× 107 12 −7.63× 10−6 +1.00× 100

We focus now on problems designed by Powell [48] to provide challenges for interior
point methods

min x2 , x ∈ R2

s. t. cos(2kπ/m)x1 + sin(2kπ/m)x2 ≥ −1 , k ∈ {1, . . . , m},

with m ≥ 3. We focus on the problem for m ∈ {3, 4, . . . , 500}. We run Sagitta with tolerance√
ε and settings o(1)=‘b’ and o(1)=‘t’ by using o(5)=‘t’ in both cases. For the cases

where m is a multiple of 4, the algorithm requires only one iteration. For the cases where m
is not a multiple of 4, the setting o(1)=‘b’ requires two iterations. This good behaviour
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was also predicted by Sherali et al. [49] and Künzi and Tzschach [50], Pan [51], as it fits
the feasible set. However, the setting o(1)=‘t’, requires approximately log2(mA + B)
iterations with B ≈ 10.2 and A ≈ 0.9. Notice that this increases to nine iterations for
m = 499.

Klee and Minty [52] started a worst-case example for the simplex method, where
depending on the pivot rule chosen, the number of iterations is exponential in the dimension
n of the problem. We focus on the description given by Paparrizos et al. [53] with three
variants. For 0 < ε ≤ 1

3 , the first formulation of the problem is

max ∑n
j=1 εn−jyj , y ∈ Rn

s. t. y1 ≤ 1
2 ∑i−1

j=1 εi−jyj + yi ≤ 1 , i ∈ {2, . . . , n}
y ≥ 0.

The second formulation follows from reordering the columns of matrix A:

max ∑n
j=1 εn−jy2j−1 , y ∈ Rn

s. t. y1 ≤ 1
2 ∑i−1

j=1 εi−jy2j−1 + y2i−1 ≤ 1 , i ∈ {2, . . . , n}
y ≥ 0.

The third formulation adds a parameter µ := 1
ε ≥ 3:

max ∑n
j=1 µn−jyj , y ∈ Rn

s. t. 2 ∑i−1
j=1 µi−jyj + yi ≤ µ2(i−1) , i ∈ {1, . . . , n}

y ≥ 0.

We introduce a fourth variant (also with parameter µ) in order to obtain the second for-
mulation counterpart with the modified right-hand side. This seems to be a natural
generalization, but was not explicitly given by Paparrizos et al. [53]:

max ∑n
j=1 µn−jy2j−1 , y ∈ Rn

s. t. 2 ∑i−1
j=1 µi−jy2j−1 + y2i−1 ≤ µ2(i−1) , i ∈ {1, . . . , n}

y ≥ 0.

In the procedure KleMinSp in the Appendix A, we extend to the possibility to convert
the problem into standard form by adding dual variables in a negative or positive sense;
e.g., KleMinSp(3,10,-3) is the dual of the problem appearing in [43] (p. 270) and in [14]
(p. 61). We varied parameter µ ∈ N and activation criteria. The results of the experiments
are given in Table 5.

It is clear that without normalisation of the residuals (Dantzig), several instances show
an exponential number of iterations. Normalization provides for all combinations a linear
number of iterations of an order between n and 2n. The influence of the position taken by
adding the dual slack variables is also interesting. With the setting o=‘tnnns’ for µ ≥ 5,
with mode = −3, n + 2n − 1 iterations are required. Using mode = 3 only requires n. Such
differences may disappear with more sophisticated tie-breaking activation criteria. We use
for tie-breaking the minimum index criterion (Bland).

Goldfarb [54] designed another deformation of the cube such that steepest-edge rules
also require an exponential number of iterations. The parametric problem of Goldfarb [54],
with n ≥ 3, β > 2 and δ > 2β, is given by

max (βαn − αn−1)xn−1 + αnxn , x ∈ Rn

s. t. 0 ≤ x1 ≤ 1
βx1 ≤ x2 ≤ δ− βx1
βxj − xj−1 ≤ xj+1 ≤ δj − βxj + xj−1 , j ∈ {2, . . . , n− 1},
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with α1 = 1, α2 = β and αj+1 = βαj − αj−1, j ∈ {2, . . . , n − 1}. The generation of the
problem is provided by the procedure GoldfaSp in the Appendix A. The results obtained
by Sagitta without scaling and with ‘dmperm’ as ordering method, option setting ‘tnnnt’,
and tolerance

√
ε do not provide an exponential growth in the dimension of the number of

iterations (see Table 6). The computational time is given in centiseconds (CntSecs), which
represent hundredths of a second. This illustrates the requirement of careful numerical
procedure and the recoveries.

Table 5. Settings for Klee and Minty [52] problems.

o(5) o(1) Mode Number of Iterations (Iterats)

s t {−3,−4} n +

{
2n − 1 , for µ ≥ 5
2n−1 , for (µ = 3) ∨ (µ = 4)

}
s t {3, 4} n +

{
0 , for µ ≥ 5
2n−1 − 1 , for (µ = 3) ∨ (µ = 4)

}
s b {−3,−4} n + 1

3 (2
n+1 −

{
1, for n is odd
2, for n is even

}
)

s b {3, 4} n + 1
3 (2

n −
{

1, for n is odd
2, for n is even

}
)

t t {−3,−4} n +

{
1, for µ ≥ 5
2, for (µ = 3) ∨ (µ = 4)

}
t t {3, 4} n +

{
0, for µ ≥ 5
1, for (µ = 3) ∨ (µ = 4)

}
t s {±3,±4} n + 3

t {b, a} {−3,−4} 2n
t {b, a} {3, 4} 2n− 1

t {t, s, b, a} {±1,±2} nA + B (ε := 1
µ → 0⇒ (A→ 1) ∧ (B→ 0))

Table 6. Results for the parametrized Goldfarb [54] problems.

n β δ Iterats CntSecs

3 2 5 5 22
6 2 9 20 28
6 3 9 20 33
6 4 9 20 33
8 2 10 32 38
8 3 10 32 38

10 2 8 46 60
10 2 10 46 61
12 2 8 62 82
12 2 10 62 82

As a final extreme case, we consider the work of Clausen [55] to design an exponential LP,

max ∑n
j=1 αjyj , y ∈ Rn

s. t. 2 ∑i−1
j=1 βi−jyj + yi ≤ γi−1 , i ∈ {1, . . . , n}

y ≥ 0,

with α = 4/5, β = 5/4, and γ = 5. The idea of the designed problem is to have an
exponential number of iterations when using the slack basis for both the simplex method
for LPs in standard form and the simplex method for LPs in inequality form applied to
the dual of the given problem. The procedure ClauseSp in the Appendix A generates the
parameters. Let c, A, and b be the data of the original problem max{bTy : Ay ≤ c, y ≥ 0}
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and let c̄, Ā, and b̄ be the data of the problem max{b̄T ȳ : Āȳ = c̄, ȳ ≥ 0} at the output of
the routine; then we can select the following variants:

• If mode=1, then b̄ = (bT , 0)T , Ā = [A, In] and c̄ = c.
• If mode=0, then b̄ = (−cT , 0)T , Ā = [−AT , In] and c̄ = −b.
• If mode=2, then b̄ = (−cT , 0)T , Ā = [−AT , In] and c̄ = b.
• If mode=3, then b̄ = (−bT , 0)T , Ā = [A, In] and c̄ = c.

The variants facilitate applying Sagitta to problem min{c̄Tx : ĀTx ≥ b̄} in unfavourable
circumstances for the simplex method for LP in standard form (if mode=1) and for the
simplex method for LP problems in the inequality form (if mode=0). The other modes
play the same role with the original problem of minimization instead of maximization, as
noticed by Murty [56].

The results obtained by neither scaling nor preordering and with tolerances to
√

ε are
shown in Table 7 for varying values of o(5) and o(1). We use for the number of iterations

ut := 2t−1 + t, ∆ut :=
1 + ((t + 1)mod 2)

3

(
4b

t−3
2 c+1 − 1

)
. (5)

The number of iterations for modes 0 and 2 on the one hand, and 1 and 3 on the other
hand are very similar, separated by a comma in the last column. The last two experiment
rows of the table reflect exponential behaviour. For the first three rows, the behaviour of
Sagitta with o(3)=n was surprisingly polynomial, requiring at most n + 2 iterations by
using option setting ‘tnnnt’ in each mode.

Table 7. Settings for Clausen [55] problems, un and ∆un according to (5).

o(5) o(1) Mode Number of Iterations (Iterats)

{s, t} {s, t, a, b} 0, 2 n, n
t t 1, 3 n + 1, n + 2
t {a, b} 1, 3 2n− 1, 2n
s t 1, 3 un − 1, un
s {a, b} 1, 3 1 + un−1 + ∆un−1, un + ∆un

3.3. Dealing with Sparse Instances

Preliminary experiments were carried out on classical problems with sparse matrices
to compare the Sagitta sparse treatment with the one used by TomLab LpSolve v3.0. Initial
problems of interest at the time of the appearance of the simplex method [57] (first published
in) in 1947 were diet problems, such as the favorite Stigler 9-variable, 77-constraint [58]
(p. 3), [59] (pp. 551–567) problem. Instead, we focus on the problems by Andrus and
Schäferkotter [60] (p. 582), consisting of

max ∑n
i∈{1(3i− 1)xi , x ∈ Rn

s. t. 1 ≤ 2xi + xi+1 ≤ 2 , i ∈ {1, . . . , n− 1}
1 ≤ 2xn ≤ 2.

Procedure AndSchSp in the Appendix A generates the problem data given the chosen
input parameters. The number of iterations and the computation time (in centiseconds) for
different values of n can be found in Table 8. We chose ‘dmperm’ as the ordering option as it
allows A to be banded, and we did not scale ‘noscale’ the problem, using default options
for Sagitta with all tolerances to

√
ε. LpSolve needs to perform n + 1 iterations and was

unable to solve problems with n = 1000 and n = 2500 after 9 h of execution due to time
limits and memory problems. Sagitta uses typically n iterations and took 20 s compared
to almost 6 min that LpSolve needed to solve the problem with n = 500. The problems
with n = 1000 and n = 2500 were solved in almost a one and a half minutes and just over
13 min, respectively. Note that Sagitta needed n iterations, whereas TomLab needed n + 1.



Computers 2023, 12, 3 12 of 23

Table 8. Andrus and Schäferkotter [60] diet problems.

TOMLAB V3.0 SAGITTA V1.1
n Iterats CntSecs Iterats CntSecs

50 51 258 50 60
100 101 807 100 126
200 201 4048 200 379
500 501 52,531 500 1972

1000 • • 1000 8634
2500 • • 2500 79,296

A widely used class of problems to test the performance of a new LP method is due to
Quandt and Kuhn [61]:

max eTy , y ∈ Rn

s. t. Qy ≤ 104e , Q ∈ Nn×n

y ≥ 0,

with e the all-ones vector and qij ∈ N+ randomly chosen in {1, 2, . . . , 103}. This causes
matrix Q to be dense. The procedure KunQuaSp in the Appendix A generates the data of the
problem from a nonsingular sparse Q of density 10−5 and condition number 20 by means
of round(1000*sprand(n,n,1e-5,1/20)), such that |Q| ≈ n. Running the Sagitta routine,
we choose ‘colmmd’ as the ordering option and not to scale ‘noscale’ the problem and
used default option settings. For each value of n, 10 problems were solved; the average
number of iterations and the average computation time (in hundredths of a second) for
different values of n are reported in Table 9. Note that as before, Sagitta requires n iterations
whereas TomLab needs n + 1.

Table 9. Sparse Quandt and Kuhn [61] problems.

TOMLAB V3.0 SAGITTA V1.1
n Iterats CntSecs Iterats CntSecs

50 51 215 50 43
100 101 835 100 86
250 251 8199 250 400
500 501 60,136 500 1531

1000 • • 1000 6660
2500 • • 2500 59,098

Chen et al. [62] (§8) presented a new primal-dual method and coded it in MATLAB. To
test it, they generated sparse random testing problems where the constraints are tangential
to the unit ball. Consider a matrix A ∈ Rn×m with Gaussian-distributed elements generated
in MATLAB according to sprandn(n,m,dens,1). Consequently, A is a nonsingular, well-
conditioned matrix with random normally distributed elements. Moreover, let index
number g be uniformly selected from {1, 2, . . . , m}. In the Appendix A, procedure ChPaSaSp
generates a sparse problems of the form

max yg , y ∈ Rm

s. t. ∑m
j=1 Aijyj = 1 , i ∈ {1, . . . , n}

y ≥ 0.

As in Chen et al. [62] (§8), for each of the combinations of interest of number of rows
n, number of columns, m and density d, we generate blocks of 20 problems and average the
number of required iterations. Moreover, we also average the elapsed time (in hundredths
of a second). In Sagitta, we set ‘colmmd’ as the ordering option, and we do not scale
‘noscale’ the problem by using default options.
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As combinations of interest we first chose the same combinations as Chen et al. [62]
§8, and obtained the results shown in Table 10. One can observe that, although Sagitta had
a slight advantage in terms of number of iterations, TomLab is clearly faster. This is due
to the fact that the problems are not large (n ≤ 150) and above all due to the fact that the
maximum skeleton L is not sparse at all, i.e. |L| is between 75% and 85%.

Table 10. High-density sparse problems of Chen et al. [62].

TOMLAB V3.0 SAGITTA V1.1
m n d Iterats CntSecs Iterats CntSecs
50 25 0.3 39 95 39 117

100 25 0.3 46 110 46 162
150 25 0.3 53 133 50 191
200 25 0.3 54 145 49 196
100 50 0.1 71 271 67 381
150 50 0.1 83 328 79 594
200 50 0.1 92 379 89 774
150 100 0.1 137 1041 128 2686
200 100 0.1 158 1237 153 3975
200 150 0.1 210 2673 185 8547

To know the behavior for sparser combinations, i.e., |L| does not exceed 10%, we reran
the experiments for such instances. The results are given in Table 11. The results of these
sparse experiments show that that Sagitta has a slight advantage in terms of number of
iterations, but is also faster. The dimension n = 250 is the largest of those solved with
TomLab. It took Sagitta 4 s to solve the problem compared to the 83 s required by TomLab.
The two largest problems were solved by Sagitta in n iterations requiring 14 and 57 s,
respectively.

Table 11. Low-density sparse problems of Chen et al. [62].

TOMLAB V3.0 SAGITTA V1.1
m n d Iterats CntSecs Iterats CntSecs
50 25 0.06 27 73 27 24

100 25 0.06 30 85 30 40
150 25 0.06 31 92 30 53
200 25 0.06 32 101 31 68
100 50 0.02 51 222 50 37
150 50 0.02 51 233 51 40
200 50 0.02 51 243 51 41
150 100 0.02 103 885 102 288
200 100 0.02 107 938 103 357
200 150 0.02 161 2339 154 1865
500 250 0.001 251 8333 250 400
750 500 0.001 • • 500 1374

1500 1000 0.0001 • • 1000 5706

4. Discussion

A code has been presented for linear programming to take care of sparsity and basis
deficiency. Extreme cases have been taken from the literature, and the performance has been
investigated by using a commercial MATLAB solver Tomlab as benchmark. We structured
this article as shown in Figure 1 and found that

• the code is numerically robust (cf. Section 3.2), despite the fact that it dispenses
with the orthogonal factor of the QR factorisation and in no case uses more than one
iterative refinement step;
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• the computational effort in choosing suitable pivoting rules is quite encouraging; and
• the code reveals advantages for problems that are really sparse (cf. Section 3.3), both

in terms of iterations and computational time, compared to a commercial software
with comparable features.

Questions on the simplex method originate from its beginning in 1947. However, there
is still a lot of ongoing research; in the last three years one can find many publications,
including [1–8], just to cite a few. Although they mainly focus on the simplex method (the
second volume of forthcoming renewed edition of Pan’s book [8] being the exception),
some of the ideas they pointed out could be of interest to be incorporated into a deficient
basis framework, thus reducing even more the necessary number of iterations.

§2 Algorithm and benchmark software
description

§1 Introduction with recent publica-
tions and main bibliographical sources

§3.1 Numerical and algorithmical set-
tings, along with sparsity-related op-
tions for preordering and scaling

§3.2 Extreme Cases §3.3 Sparsity Exploitation

Small LPs with primal or dual degeneracy
and/or problematic for EXPAND, cf. Gill et
al. (1989) and Hall & McKinnon (2004)

Andrus & Schäferkotter (1996) diet prob-
lems (n ≤ 2500), cf. Table 8

Small LPs problematic for interior-point
methods, cf. Mészáros (1998), Stojković
& Stanimirović (2001) (Table 4) and Pow-
ell (1993)

Sparsified Quandt & Kuhn (1964) prob-
lems (n ≤ 2500), cf. Table 9

Exponential worst-case examples
for several simplex rules, cf. Klee &
Minty (1972), Paparrizos et al. (2001)
(Table 5), Goldfarb (1994) (Table 6) and
Clausen (1979) (Table 7)

Chen et al. (1994) with density d ≥ 10%
(Table 10) and density d ≤ 6% (Table 11)

Further tests with 23 out of the 31 small-
est NETLIB LPs in standard form, cf.
Guerrero-García & Santos-Palomo (2003)
and Guerrero-García & Hendrix (2022)

Figure 1. Concluding graph of the article, with references Gill et al. [44], Hall and McKinnon [45],
Mészáros [46], Stojković and Stanimirović [47], Powell [48], Klee and Minty [52], Paparrizos et al.
[53], Goldfarb [54], Clausen [55], Andrus and Schäferkotter [60], Quandt and Kuhn [61], Chen et al.
[62], Guerrero-García and Santos-Palomo [37] and Guerrero-García and Hendrix [17].
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Abbreviations
The following abbreviations are used in this manuscript:

LP Linear Programming
BDA Basis-Deficiency-Allowing
NSA Non-Simplex Active-set
NNLS Nonnegative Least Squares
MSLS Modified Sparse Least Squares
CSNE Corrected Semi-Normal Equations

Appendix A. MATLAB Code to Reproduce the Used Instances

function [c,A,b,equations]=ExampSag(n)
switch n
case 1 % Example 1, no feasible solution
c=[-1 -3 1]’; b=[-4 4 3 zeros(1,3)]’;
A=[-1 -1 -2; -1 0 1; 0 0 1; eye(3)]’;
case 2 % Example 2, unbounded solution
c=[1 4 0 -1]’; b=[-2 4 -4 2 0 0 0]’;
A=[1 -2 1 -1; 2 1 2 -2; -2 -1 -2 2; 1 0 -3 1; 1 0 0 0; 0 1 0 0; 0 0 0 1]’;
case 3 % Example 3, bounded solution
c=[-4 -2 -6]’; b=[-3 -2 -1 0 0]’;
A=[-1 0 -1; -1 -1 -1; -1 1 -2; 1 0 0; 0 -1 0]’;
case 4 % [Gill, Murray and Wright, 91, p. 381]
c=[1, 10]’; b=[3, 1, -2]’;
A=[1 5; 5 -1; -1 -1]’;
case 5 %simplicial case [Gill, Murray and Wright, 91, p. 345]
c=[1, 10]’; b=[2.5, -1, 1, -4.7, -10.2]’;
A=[4 1; 1 -1; -1 3; -1 -2; -5 -1]’;
case 6 % Cycle example with textbook rule [Gill, Murray and Wright, 91, p. 351]
c=[-2, -3, 1, 12]’; b=zeros(6,1);
A=[eye(4); 2 9 -1 -9; -1/3 -1 1/3 2]’;
case 7 % Myopic example [Gill, Murray and Wright, 91, p. 397]
c=[-1.2, -1]’; b=[-2.5, -1.4, 0, 0]’;
A=[-1.5 -1; -1 0; 1 0; 0 1]’;
case 8 % One restriction parallel and the other perpendicular to objective gradient
c=[1, 2]’; b=[4, 8]’;
A=[-2 1; 1 2]’;
case 9 % Problem KM02
c=[-1.2 -1.0]’; b=[-2.20 -3.25 -2.50 -1.40 0.00 0.00]’;
A=[2.2 -1.0; -1.5 -1.2; -1.5 -1.0; -1.0 0.0; 1.0 0.0; 0.0 1.0];
v=[A([5 6],:)\b([5 6]) A([4 6],:)\b([4 6]) ...
A([3 4],:)\b([3 4]) A([1 3],:)\b([1 3]) A([1 5],:)\b([1 5])]’;
case 10 % Problem KM03
c=[-1.2 -1.0]’; b=[-2.50 -2.20 -3.25 -2.50 -1.40 0.00 0.00 -2.40]’;
A=[1.25 -1.00; 2.20 -1.00; -1.50 -1.20; -1.50 -1.00; ...
-1.00 0.00; 1.00 0.00; 0.00 1.00; -1.20 -1.00];
v=[A([6 7],:)\b([6 7]) A([5 7],:)\b([5 7]) A([4 5],:)\b([4 5]) ...
A([4 8],:)\b([4 8]) A([2 8],:)\b([2 8]) A([2 6],:)\b([2 6])]’;
case 11 % Problem LP4
c=[7 20 21 5]’; b=[-5 1 7 2 -2 14 2 -3]’;
A=[-5 -3 1 8; -1 4 2 0; 5 3 5 1; -1 4 6 1; ...
5 0 6 1; 4 6 4 2; 0 1 0 0; 0 0 0 1]’;
case 12 % [Vanderbei, 97] page 234, exercise 14.2
c=-[7 -3 9 2]’; b=sparse([-1 -1 1 1 zeros(1,4)]’);
A=sparse([-1 -1 0 0; 0 0 -1 -1; 1 0 1 0; 0 1 0 1; eye(4)])’;
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case 13 %Exponential example [Osborne, 85, p. 61], dual Klee-Minty [Nash and Sofer, 96, p. 270]
c=sparse([1 100 10000]’); b=sparse([zeros(1,3) 100 10 1]’);
A=sparse([speye(3); 1 20 200; 0 1 20; 0 0 1])’;
case 14 % Example degeneracy [Osborne, 85, p. 76]
A=sparse([1 0 0 1 1 1 1; 0 1 0 1/2 -1/2 -5/2 9; 0 0 1 1/2 -3/2 -1/2 1]);
b=sparse([0 0 0 -1 7 1 2])’; c=sparse([1 0 0])’;
case 15 % Example degeneracy [Chvatal, 83, p. 31];
A=sparse([1 0 0 1/2 -11/2 -5/2 9; 0 1 0 1/2 -3/2 -1/2 1; 0 0 1 1 0 0 0]);
b=sparse([0 0 0 10 -57 -9 -24])’; c=sparse([0 0 1])’;
case 16 % Example degeneracy [Nash and Sofer, 96, p. 136];
c=sparse([0 0 1]’); b=sparse([zeros(1,3) 3/4 -150 1/50 -6]’);
A=sparse([eye(3); 1/4 1/2 0; -60 -90 0; -1/25 -1/50 1; 9 3 0])’;
case 17 % [Vanderbei, 97] page 231, exercise 2.11
Aorig=sparse([ 1 1 1 0 0 0 -1 0; ...
-1 0 0 1 1 0 0 0; ...
0 -1 0 -1 0 1 0 0; ...
0 0 1 0 1 1 0 1]);
borig=sparse([-1 -8 -9 -2 -7 -3 0 0]’);
corig=sparse([1 0 0 1]’);
p=colmmd(Aorig’); % p = 1 3 2 4
for k=1:size(Aorig,2), normas(k)=norm(Aorig(p,k)); end; normas
for k=1:size(Aorig,2)
priyults(:,k)=[min(find(Aorig(p,k)));max(find(Aorig(p,k)))];
end;
[foo,q]=sort(priyults(1,:));
A=Aorig(p,q); b=borig(q); c=corig(p); spy(A);
case 18 % criss-cross example [Zionts, 69, p. 430]
c=[-2 -4 1 3]’; b=[3 -4 zeros(1,4)]’;
A=[-1 -3 1 1; -2 -1 -1 1; eye(4)]’;
case 19 % Example 2/6-cycle, for EXPAND [Hall and McKinnon, 04, S2]
% for Dantzig rule unbounded
c=[0 0]’; b=[2.3 2.15 -13.55 -0.4 0 0]’;
A=[[0.4 0.2 -1.4 -0.2; -7.8 -1.4 7.8 0.4] eye(2)];
case 20 % Example 2/6-cycle, for EXPAND [Hall and McKinnon, 04, S2]
% for Dantzig rule bounded
c=[0 0 1 1]’; b=[2.3 2.15 -13.55 -0.4 0 0 0 0]’;
A=[[0.4 0.2 -1.4 -0.2; -7.8 -1.4 7.8 0.4; 1 0 0 0; 0 1 0 0] eye(4)];
case 21 % Example 2/6-cycle, for EXPAND: [Hall and McKinnon, 04, S4], infeasible
c=[0 0 1]’; b=[2.3 2.15 -13.55 -0.4 0 0 0]’;
A=[[0.4 0.2 -1.4 -0.2; -7.8 -1.4 7.8 0.4; 0 -20 156 8] eye(3)];
case 22 % Example 2/6-cycle, for EXPAND: [Hall y McKinnon, 04, S4], bounded
c=[0 0 1 1 1]’; b=[2.3 2.15 -13.55 -0.4 0 0 0 0 0]’;
A=[[0.4 0.2 -1.4 -0.2; -7.8 -1.4 7.8 0.4; 0 -20 156 8; ...
1 0 0 0; 0 1 0 0] eye(5)];
case 23 % Example interior point challenge [Meszaros, 98, p. 8]
c=[1 2 3+1e-8]’; b=[0 0 0 -1]’;
A=[1 0 0 0; 0 1 1 0; 1 1 1+1e-8 1];
case 24 % Example interior point challenge [Meszaros, 98, p. 9]
c=[1e5 1e-5 2e-5]’; b=[0 0 -1]’;
A=[1 0 0; 1 -1 1; 1 -1 2];
case 25 % Example interior point challenge [Stojkovic and Stanimirovic, 01, p. 436]
c=[-9791 9789 -9790 -9790 9791 -9789 9789 -9872 -8790]’;
b=sparse([1 2 6 10 11 14 15 17 18 19 20],ones(1,11),...
[-8919 -5981 -9892 -3 -9800 -9989 -993 9978 -9687 -9993 9800],22,1);
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A=[8919 -4788 -2 -9733 -3993 0 -1 -1 -9002 -9789 ...
1 -3 -9971 1 -1 -1 -9978 9687 9993 -1 0 0; ...
-8919 -4790 2 -9733 -3993 -2 1 1 -9002 9789 ...
1 -3 -9971 4902 -1 1 9978 -9687 -9993 -1 0 0; ...
8919 -1 -2 0 0 -2 -1 -1 0 9789 ...
-1 0 0 4901 0 -1 -9978 9687 9993 1 0 0; ...
0 -4788 -2 0 0 0 -1 -1 0 -9789 ...
0 0 0 1 -1 -1 0 0 0 0 0 0; ...
8919 -4789 2 9733 3993 0 1 1 9002 0 ...
0 3 9971 1 -1 1 -9978 9687 9993 0 0 0; ...
-8919 4789 -2 9733 3993 2 -1 -1 9002 0 ...
1 3 9971 -4902 1 -1 9978 -9687 -9993 -1 0 0; ...
0 4788 2 -9733 -3993 -2 1 1 -9002 9789 ...
1 -3 -9971 4900 1 1 0 0 0 -1 0 0];
A=[sparse(A); sparse([1 1 2 2],[1 21 16 22],[-1 1 -1 1])];
case 26 % Example interior point challenge [Stojkovic and Stanimirovic, 01, p. 437]
c=[-9791 9789 -9790 -9790 9791 -9789 9782 -9872 -8790]’;
b=sparse([1 2 6 10 11 14 15 17 18 19 20],ones(1,11),...
[-8919 -5981 -9892 -3 -9800 -9989 -993 9978 -9687 -9993 9800],23,1);
A=[8919 -4788 -2 -9733 -3993 0 -1 -1 -9002 -9789 ...
1 -3 -9971 1 -1 -1 -9978 9687 9993 -1 1 0 0; ...
-8919 -4790 2 -9733 -3993 -2 1 1 -9002 9789 ...
1 -3 -9971 4902 -1 1 9978 -9687 -9993 -1 0 0 0; ...
8919 -1 -2 0 0 -2 -1 -1 0 9789 ...
-1 0 0 4901 0 -1 -9978 9687 9993 1 0 0 0; ...
0 -4788 -2 0 0 0 -1 -1 0 -9789 ...
0 0 0 1 -1 -1 0 0 0 0 0 0 0; ...
8919 -4789 2 9733 3993 0 1 1 9002 0 ...
0 3 9971 1 -1 1 -9978 9687 9993 0 0 0 0; ...
-8919 4789 -2 9733 3993 2 -1 -1 9002 0 ...
1 3 9971 -4902 1 -1 9978 -9687 -9993 -1 0 0 0; ...
0 4788 2 -9733 -3993 -2 1 1 -9002 9789 ...
1 -3 -9971 4900 1 1 0 0 0 -1 0 0 0];
A=[sparse(A); sparse([1 1 2 2],[1 22 16 23],[-1 1 -1 1])];
case 27 %Instance with equations [Best and Ritter, 85, p. 231]
K = ones(20,1); F0=sparse(8,1); W=1;
F=sparse([1,3,4,6],1,[W,W,2*W,2*W],8,1); C=sparse(10,8,28);
C(:,1)=sparse([1,3,5,6,7],1,[-1/sqrt(65),7/sqrt(113),1,1/sqrt(65),...
5/sqrt(89)],10,1);
C(:,2)=sparse([1,3,6,7],1,[8/sqrt(65),8/sqrt(113),-8/sqrt(65),...
-8/sqrt(89)],10,1);
C(:,3)=sparse([6,8,10],1,[-1/sqrt(65),5/sqrt(89),1],10,1);
C(:,4)=sparse([6,8],1,[8/sqrt(65),8/sqrt(89)],10,1);
C(:,5)=sparse([7,9,10],1,[-5/sqrt(89),1/sqrt(65),-1],10,1);
C(:,6)=sparse([7,9],1,[8/sqrt(89),8/sqrt(65)],10,1);
C(:,7)=sparse([2,4,5,8,9],1,[-7/sqrt(113),1/sqrt(65),-1,-5/sqrt(89),...
-1/sqrt(65)],10,1);
C(:,8)=sparse([2,4,8,9],1,[8/sqrt(113),8/sqrt(65),-8/sqrt(89),...
-8/sqrt(65)],10,1);
N = sparse(0,0);
for k = 1:10
[p1,m1] = size(N); N = sparse([N zeros(p1,2); zeros(1,m1) [1 -1]]);
end;
c = sparse(11,1,1); A = [-C -N; F’ zeros(1,20)]; b = [F0;-K];



Computers 2023, 12, 3 18 of 23

equations = logical(sparse(1:8,1,1,28,1)’);
case 28 %Experimental case for testing NNLS
A =[ 1 -2 3 1 0; 0 2 0 0 1; -1 6 5 -3 3; -1 -3 -5 2 -2; ...
-2 -4 -4 2 -5; -3 -1 -2 1 2; 1 0 0 0 0; 0 0 1 0 0; ...
0 0 0 1 0]’;
b =[ 2 1 -1 -4 -5 -1 0 0 0]’; c=[ -1 6 6 -3 2]’;
case 29 %Experimental case for testing NNLS
A =[ 1 -2 3 1 0; 0 2 0 0 1; -1 6 5 -3 3; -1 -3 -5 2 -2; ...
-2 -4 -4 2 -5; -3 -1 -2 1 2; 1 0 0 0 0; 0 0 1 0 0; ...
-3 -2 -7 1 -5]’;
b =[ 2 1 -1 -4 -5 -1 0 0 -7]’; c=[ -1 6 6 -3 2]’;
case 30 % Example for IMAJNA
A=[-1 0 0 0 0 -1; 0 1 0 -1 0 0; 1 0 -1 0 0 0 ; 0 1 0 -1 0 1; ...
0 0 0 0 1 1 ; 1 0 0 0 0 2 ; 0 0 -1 -1 0 0; 0 1 0 3 0 0 ]’;
b=[-7 -1 3 -1 -1 6 7 -6]’; c=[5 0 -2 1 0 4]’;
case 31 % Example for IMAJNA
A=[ 1 0 0 0.5 0 1; 0 1 0 -1 0 0; 1 0 -1 0 0 0 ; 0 1 0 -1 0 1; ...
0 0 0 0 1 1 ; 1 0 0 0 0 2 ; 0 0 -1 -1 0 0; 0 1 0 3 0 0 ]’;
b=[-7 -1 3 -1 -1 6 7 -16]’; c=[5 0 -2 1 0 4]’;
case 32 % [Chvatal, 1983, pp. 180--181]
b = sparse([139 88 133 137 165 zeros(1,6) zeros(1,15)]’);
c = sparse([420 415 355 345 160 95 380 395 270 230 310 420 5200 5200 ...
3600 0]’);
filas = [1*ones(1,5) 2*ones(1,5) 3*ones(1,5) ...
4*ones(1,6) 5*ones(1,6) 6*ones(1,6) 7*ones(1,6) 8*ones(1,6) ...
9*ones(1,4) 10*ones(1,5) 11*ones(1,5) 12*ones(1,5) ...
13*ones(1,5) 14*ones(1,5) 15*ones(1,5) 16*ones(1,10)];
columnas = [1:5 1:5 1:5 [1:5 6] [1:5 7] [1:5 8] [1:5 9] [1:5 10] ...
[1:3 11] 1:5 1:5 1:5 [1 4 5 6 7] [1 4 5 8 9] [1 4 5 10 11] 2:11];
valores = [1.4 1.8 1.5 1.4 1.4 9.8 2.4 1.4 1.4 1.4 4.0 0.4 1.4 1.4 1.4 ...
2.8 0.6 1.3 1.4 1.5 5.5 2.2 0.4 1.3 1.5 1.2 5.5 2.2 0.4 1.3 1.3 1.2 5.5 ...
2.2 0.6 1.3 1.3 1.2 5.5 2.6 5.8 1.5 1.5 1.2 5.5 0.6 4.0 1.3 5.5 ...
0.6 1.2 1.3 1.3 2.6 0.6 1.8 1.2 1.2 1.2 0.6 1.8 1.5 1.4 1.4 ...
16 12 35 50 50 20 36 50 50 50 16 12 35 50 50 ...
0.1 0.9 0.8 2.3 -ones(1,6)];
A = sparse(filas,columnas,valores,16,26);
A(1:15,12:26)=speye(15);
case 33 %testing NNLS
c = [0.1 0 0.1 0 -1]’; b=zeros(8,1);
A = [1 -2 1 0 -1 -2 1 0; 0 1 -2 1 0 -1 -2 1; 0 0 1 -2 0 0 -1 -2; ...
0 0 0 1 0 0 0 -1; 0 -1 0 -3 0 -24 -4 -128];
otherwise
disp(’unknown instance’); c=[]; A=[]; b=[];
end;

function [c,A,b]=AndSchSp(n)
% Returns sparse diet problem of size n [Andrus and Schaferkotter, 1996]
%
c = -(2:3:3*n-1)’; b = [ones(n,1); -2*ones(n,1)];
A = sparse([],[],[],n,n); A(n,n)=2;
for i=1:n-1, A(i,i)=2; A(i,i+1)=1; end; A = [A’ -A’];

% Testing recipe for TomLab v3.0
clear all; global L ACT NAC A b c;
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% [c,A,b]=AndSchSp(1000); TomLab cannot solve it!!
[c,A,b]=AndSchSp(25); A=sparse(A); b=sparse(b); c=sparse(c);
Prob = lpAssign(-b,A,c,c,sparse(size(A,2),1)); Prob.SolveAlg = 2;
rkeyk=zeros(size(A,2),1); tic; Result = lpSolve(Prob);
ACT=find(Result.x_k)’; NAC=setdiff(1:size(A,2),ACT); R=qr(A(:,ACT),0);
dkoxk=A(:,ACT)*(R\(R’\b(ACT)));
dkoxk=dkoxk + A(:,ACT)*(R\(R’\(b(ACT)-A(:,ACT)’*dkoxk)));
rkeyk(ACT)=Result.x_k(ACT); rkeyk(NAC)=A(:,NAC)’*dkoxk-b(NAC);
k=Result.Iter; toc, k, full(c’*dkoxk), min(rkeyk(ACT)), min(rkeyk(NAC))

function [c,A,b]=ChPaSaSp(m,n,dens)
%Generates sparse random problems [Chen, Pardalos and Saunders, 94, S6]
%
A = sprandn(n,m,dens,1);
for k = 1:size(A,1)
denom = norm(A(k,:),2);
if denom > eps
A(k,:) = A(k,:)/denom;
else
error(’Row of A too small in size’);
end;
end;
b = sparse(randi(m),1,1,m,1); c = sparse(n,1); c(:) = 1;

function [c,A,b]=ClauseSp(n,mode)
% To generate sparse problems as those of [Clausen, 1979]
%
if nargin < 2, mode = 0; end;
alfa = 4/5; beta = 5/4; gama = 5; A = speye(n);
for k=1:n-1, A = A + diag(2*beta^k*ones(n-k,1),-k); end;
if rem(mode,2)
b = sparse([alfa .^ (1:n)’;zeros(n,1)]);
% Errata in [Murty, 1983, p. 437]: chaning sign b of interest
if mode > 1, b = -b; end;
c = sparse([gama .^ (0:n-1)’]); A = [A speye(n)];
else
c = -sparse(alfa .^ (1:n)’);
% Errata in [Murty, 1983, p. 437]: changing sign c not interesting
if mode > 1, c = -c; end;
b = -sparse([gama .^ (0:n-1)’;zeros(n,1)]);
A = [-A; speye(n)]’;
end;

function [c,A,b,s]=GoldfaSp(n,beta,delta,a)
%Generates extreme case of Golfarb with n variables, sparse
%
if nargin < 1
n = 3; beta = 3; delta = 7; a = 0;
elseif nargin < 2
beta = 3; delta = 7; a = 0;
elseif nargin < 3
delta = floor(2*beta+1); a = 0;
elseif nargin < 4
a = 0;
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end;
if (n <= 2) | (beta < 2) | (delta <= 2*beta) | (a-floor(a)~=0) | (a < 0) | (a > 2^n-1)
return;
end;
% As an example, for beta = 3 and delta = 7 we get:
% c=-[0 21 8]; b=[0; 0; 0; -1; -7; -49];
% A=[1 0 0; -3 1 0; 1 -3 1; -1 0 0; -3 -1 0; 1 -3 -1];
c = sparse([],[],[],n,1); A = [speye(n); -speye(n)];
b = sparse([],[],[],2*n,1); b(n+1,1)=-1;
for i=2:n
A(i,i-1)=-beta; A(i+n,i-1)=-beta; b(n+i,1)=b(n+i-1,1)*delta;
if i > 2, A(i,i-2)=1; A(i+n,i-2)=1; end;
end;
a2=zeros(1,n); for i=n:-1:1, a2(i)=rem(a,2); a=floor(a/2); end;
alfa(1)=1; alfa(2)=beta; a2=a2-(~a2);
for i=3:n+1
alfa(i)=beta*alfa(i-1)+a2(i-2)*alfa(i-2);
end;
c(n-1,1)=-alfa(n+1); c(n,1)=a2(n)*alfa(n);
if nargout > 3
for j=0:2^n-1
k=j; k2=zeros(1,n); for i=n:-1:1, k2(i)=rem(k,2); k=floor(k/2); end;
for i=1:n
if rem(sum(k2(i:n)),2)==0, d2(i)=0; else, d2(i)=1; end;
end;
d2=fliplr(d2); s(j+1)=polyval(d2,2);
end;
end;
A=A’;

function [c,A,b]=KleMinSp(n,base,mode)
%Generates sparse variants of Klee-Minty, cf. [Floudas and Pardalos, 2001, pp. 193--199]
%
A=speye(n);
if abs(mode)<3
c=sparse(ones(n,1));
else
c=sparse(base.^(2*((1:n)’-1)));
end;
for i=1:n
A(i,1:i-1)=A(i,1:i-1)+2*base.^(i-(1:i-1));
end;
if mode > 0,
b=sparse([base.^(n-(1:n)) zeros(1,n)]’); A=[A speye(n)];
else
b=sparse([zeros(1,n) base.^(n-(1:n))]’); A=[speye(n) A];
end;
if rem(abs(mode),2)==0
p=[1:2:(2*n-1) 2:2:2*n]; A(:,p)=A; b(p)=b;
end;

function [c,A,b]=KuhQuaSp(n,dens)
%Generates Kuhn-Quandt sparse problem [Chvatal, 83, p. 46]
%



Computers 2023, 12, 3 21 of 23

if nargin < 2, dens = 1e-5; end;
N = round(1000*sprand(n,n,dens,1/20));
while sprank(N)~=n, N = round(1000*sprand(n,n,dens,1/20)); end;
A = [N speye(n)]; c = sparse(n,1); c(:) = 1e4; b = sparse(2*n,1); b(1:n) = 1;

function [c,A,b]=Powell(m)
%Returns a dense 2D problem with m constraints, challenge for interior point
%
c = [0 1]’; b = -ones(m,1); A = [cos((1:m)*2*pi/m); sin((1:m)*2*pi/m)];
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