
Citation: Haldar, S.; Capretz, L.F.

Interpretable Software Defect

Prediction from Project Effort and

Static Code Metrics. Computers 2024,

13, 52. https://doi.org/10.3390/

computers13020052

Academic Editors: Osvaldo Gervasi

and Damiano Perri

Received: 13 January 2024

Revised: 10 February 2024

Accepted: 12 February 2024

Published: 16 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Interpretable Software Defect Prediction from Project Effort and
Static Code Metrics
Susmita Haldar 1,*,†,‡ and Luiz Fernando Capretz 2,*,‡

1 School of Information Technology, Fanshawe College, London, ON N5Y 5R6, Canada
2 Department of Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada
* Correspondence: shaldar@fanshawec.ca (S.H.); lcapretz@uwo.ca (L.F.C.)
† Current address: Department of Electrical and Computer Engineering, Western University,

London, ON N6A 3K7, Canada.
‡ These authors contributed equally to this work.

Abstract: Software defect prediction models enable test managers to predict defect-prone modules
and assist with delivering quality products. A test manager would be willing to identify the attributes
that can influence defect prediction and should be able to trust the model outcomes. The objective
of this research is to create software defect prediction models with a focus on interpretability. Addi-
tionally, it aims to investigate the impact of size, complexity, and other source code metrics on the
prediction of software defects. This research also assesses the reliability of cross-project defect predic-
tion. Well-known machine learning techniques, such as support vector machines, k-nearest neighbors,
random forest classifiers, and artificial neural networks, were applied to publicly available PROMISE
datasets. The interpretability of this approach was demonstrated by SHapley Additive exPlanations
(SHAP) and local interpretable model-agnostic explanations (LIME) techniques. The developed
interpretable software defect prediction models showed reliability on independent and cross-project
data. Finally, the results demonstrate that static code metrics can contribute to the defect prediction
models, and the inclusion of explainability assists in establishing trust in the developed models.

Keywords: defect prediction; explainable machine learning; software quality; interpretability;
cross-project defect prediction

1. Introduction

Software testing demands a significant allocation of time, budget, and resources,
which can become expensive when the source code contains multiple faults, necessitating
additional retesting efforts. Additionally, test managers face the challenge of determining
which modules to test as allocating the same level of effort to all modules may not be
practical [1]. Identifying defective modules becomes a significant task during test planning.
This has led to the development of automated software defect prediction (SDP) processes
that utilize various metrics derived from historical information. Consequently, defect
prediction using machine learning techniques has emerged as a popular research area,
aiming to automate the manual efforts involved in identifying different types of defects in
software applications [2,3].

It is a daunting task to identify which attributes are good predictors for defect predic-
tion, and many different research studies have been conducted in identifying the metrics
to be used in the SDP models along with an efficient feature selection process [4,5]. Also,
the performance of defect classification models can be hindered by features that are redun-
dant, correlated, or irrelevant. To overcome this problem, researchers have often utilized
feature selection techniques to improve the SDP model’s performance through either trans-
forming the features or selecting a subset of them, aiming to enhance the classification
models’ effectiveness [6].

Computers 2024, 13, 52. https://doi.org/10.3390/computers13020052 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13020052
https://doi.org/10.3390/computers13020052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0009-0000-4566-1433
https://orcid.org/0000-0001-6966-2369
https://doi.org/10.3390/computers13020052
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13020052?type=check_update&version=2


Computers 2024, 13, 52 2 of 23

Test managers may face difficulty in placing trust in the results generated by predictive
models due to their limited understanding of the internal workings of the systems. Be-
fore allocating testing resources to modules identified as error-prone [7], test managers need
to comprehend the rationale behind the predictions. The development of an interpretable
defect prediction approach, coupled with the ability to understand the static code metrics
that are contributing to the identification of defect-prone modules, will allow test managers
to provide sufficient data for training the model. By choosing relevant static code metrics
obtained from previous projects of a similar nature, test managers can effectively facilitate
testing arrangements for new applications.

Considering the aforementioned points, our research aims to contribute to the research
community by addressing the following questions: RQ1 Can software defect prediction
models generated from different projects with varied sample sizes yield consistent results?
RQ2 Does it significantly impact the results if highly correlated independent features
are removed from the set of independent variables when developing software defect
prediction models? RQ3 Can we rely on prediction models developed using cross-project
metrics compared to models built from individual projects? RQ4 Can we consistently
interpret software defect prediction models after applying SMOTE techniques to balance
unbalanced data?

The main contribution of this paper is the development of software defect prediction
models that emphasize interpretability and the impact of various source code metrics,
including size and complexity. One of the objectives was to verify how the defect predic-
tion model performs when training with individual projects compared to training with
cross-project information. Another major contribution of this work was to analyze the
performance and interpretability of the SDP models when highly correlated independent
features are removed compared to retaining highly correlated features. This work per-
formed a comparison of the performance of the generation of SDP models with the original
imbalanced dataset, and with balanced data after applying the oversampling of minor-
ity class technique. Finally, the best-performing model was interpreted using LIME and
SHAP techniques.

This paper is organized into several sections. A literature survey on defect prediction
using machine learning techniques is presented in Section 2. This is followed by the
methodology used in this paper in Section 3. The developed SDP models and results are
presented in Section 4. Section 5 summarizes the results analysis, presents a discussion of
these, and considers threats to the validity of our work. Finally, the conclusions and future
work are described in Section 6.

2. Literature Review

A considerable amount of literature has been published on the software defect predic-
tion problem over the last few decades. When the NASA data defect repository became
publicly available, this dataset became a popular reference for many researchers [8–10].
To build these SDP models, researchers have utilized various regression [11] and classifica-
tion techniques, such as support vector machine [12], the k-nearest neighbor algorithm [13],
random forest algorithms [14], deep learning methods incorporating artificial neural net-
works [15], recurrent neural networks [16] and convolutional neural networks [17], en-
semble methods [18], and the transfer learning framework [19], etc. Like these studies,
our SDP models will be built using existing machine learning algorithms to support our
research questions.

Several studies have devoted time to cleaning the data due to low and inconsistent
data quality in SDP research [2], and one of the criteria for cleaning data was handling
outliers. One of the common techniques applied was removing outliers based on the inter-
quartile range (IQR) [20,21]. Outliers are considered as data points that are significantly
different from the remaining data, and IQR refers to the values that reside in the middle
50% of the scores [22].



Computers 2024, 13, 52 3 of 23

The main challenge often lies in identifying the modules that are prone to defects
rather than focusing solely on the non-defective modules since most of the modules have a
lower defect ratio compared to non-defective modules. Various techniques have been
analyzed in research studies to address this issue, including random undersampling
(RUS), random oversampling (ROS), and the synthetic minority oversampling technique
(SMOTE) [23,24]. These techniques aim to balance the data by giving equal weight to the
minority class (defective modules) as well as the majority class (non-defective modules).
In this research, the SMOTE technique was applied to balance the dataset as the maximum
defect ratio in this dataset was 28%, which can tend to give higher accuracy with predicting
non-defective modules, without identifying the defective modules. Since the efficacy of
SMOTE lies in its capability to create new instances instead of merely duplicating existing
ones, SMOTE has been applied in various studies in defect prediction problems [25–27].
This oversampling approach has demonstrated considerable success in the literature in
overcoming the difficulties associated with imbalanced classes. This approach utilizes an
oversampling approach in which the minority class is over-sampled by creating “synthetic”
examples rather than by oversampling with replacement.

Aleem et al. [8] explored various machine learning techniques for software bug detec-
tion and conducted a comparative performance analysis among these algorithms. The study
aimed to assess the effectiveness of different machine learning algorithms in detecting
software bugs. Once the machine learning techniques are identified, it becomes crucial to
determine which features should be selected for developing the SDP models. In this re-
gard, Balogun et al. [5] developed aggregation-based multi-filter feature selection methods
specifically for defect prediction.

One challenge when implementing a new software solution is obtaining the necessary
historical information from the software repository of similar projects. In some cases,
the available historical data may not be sufficient for training purposes, particularly when
dealing with similar types of projects. To address this issue, cross-project defect prediction
(CPDP) has emerged as a topic of interest in recent SDP research [28]. CPDP involves
leveraging data from different projects to predict defects in a new project. Challenges with
CPDP include variations in sizes, programming languages, development processes, etc.

It is often observed that multicollinearity can impact the performance of developed
machine learning models. To overcome this limitation, various techniques, such as principal
component analysis (PCA), ridge regression, etc., have been applied [29,30] in SDP studies.
Yang and Wen [30] employed lasso regression and ridge regression in their study on
developing SDP models, which improved performance. In this study, we aim to conduct a
comparative study by removing the highly correlated features in classification models and
evaluating the impact on model performance when retaining the correlated features.

In recent years, the need for explainable machine learning models has increased due
to the growing need for explainable artificial intelligence (XAI). Gezici and Tarhan [31]
developed an interpretable SDP model using the traditional model-agnostic techniques of
SHAP, LIME, and EL5. They applied explainable techniques on the gradient boost classifier.
Our research aims to develop interpretable SDP models using four different classifiers
instead of a single one for comparability of explainability in different ML algorithms.

Jiarpakdee et al. [32] suggested that research practitioners need to invest more effort
in investigating ways to enhance the comprehension of defect prediction models and
their predictions.

3. Methodology

The implementation of the SDP model in this study is depicted in Figure 1. This
process involves multiple steps, including data collection, feature selection, data prepro-
cessing, model development using selected ML algorithms, and applying model-agnostic
techniques. As it is important to interpret the model, the application of model agnostic
technique has been highlighted in yellow. The detailed description of the SDP model
methodology used in this study can be found below.



Computers 2024, 13, 52 4 of 23

Figure 1. Methodology of developing interpretable SDP models.

3.1. Data Collection

We selected five different files, namely, jm1, pc1, kc1, kc2, and cm1, from the PROMISE
repository [33]. These datasets incorporate McCabe and Halstead static code measure met-
rics. The projects list modules from various programs written in the C or C++ programming
languages. Each of these selected files contains 21 independent variables, referred to as
features in this study, and one target variable. The target variable indicates whether the
selected module is defective or not. Some of the common measures include the total lines
of code available in the program, McCabe’s cyclomatic complexity, Halstead’s effort, etc.
The statistics of these selected datasets are presented in Table 1, followed by descriptions of
each feature available in Table 2.

Table 1. Overview of the selected datasets from the PROMISE repository.

Project Name Number of
Instances

Programming
Language

Number of
Features Defect Ratio

cm1 498 C 21 9.8%
kc2 512 C++ 21 28.0%
pc1 1109 C 21 7.3%
kc1 2109 C++ 21 26.0%
jm1 10,885 C 21 19.3%

Table 2. Individual field or feature description of the selected projects from the PROMISE dataset.

Feature Name Description

loc McCabe’s line count of code
l Halstead’s program length
e Halstead’s effort

loComment Halstead’s count of lines of comments
v(g) McCabe’s cyclomatic complexity
ev(g) McCabe’s essential complexity
iv(g) McCabe’s design complexity

n Halstead’s total operators + operands
v Halstead’s volume



Computers 2024, 13, 52 5 of 23

Table 2. Cont.

Feature Name Description

d Halstead’s program difficulty
i Halstead’s intelligence
b Number of delivered bugs
t Halstead’s time estimator

loCode Halstead’s line count
loBlank Halstead’s count of blank lines

locCodeAndComment Line of code and comment
uniq_Op Unique operators

uniq_Opnd Unique operands
total_Op Total operators

total_Opnd Total operands
branchCount Total branches in program

Defects Represents defective or non-defective module

3.2. Feature Selection and Preprocessing Steps

The process began with loading the stored data from the PROMISE repository. Sub-
sequently, an exploratory data analysis process was conducted, and the features were
cleaned and selected using the techniques described in Table 3. The categorical values
of the target variable “defects” were mapped to 0 or 1, representing non-defective and
defective modules, respectively.

Table 3. Data cleaning criteria applied on PROMISE dataset.

Criterion Data Cleaning Activity Explanation

1 Cases with missing
values

Instances that contain one or more missing values were
dropped from the dataset.

2
Cases with implausible
and conflicting feature

values

Instances that violated referential integrity constraints
were removed. The following conditions were applied:
(a) The total line of code is not an integer number.
(b) The program’s cyclomatic complexity is greater than
the total operators plus 1 [34].
(c) Halstead’s sum of total operators and operands is 0.

3 Outlier removals

Outliers rely on any value that lies within the range of the
1st and outside the range of the 3rd quartile, respectively.
Records within the range of (Q1 − 1.5 ∗ IQR) and outside
the range of (Q3 + 1.5 ∗ IQR) were dropped.

4 Removal of duplicates Duplicated observations were taken out from the dataset.

5

Removal of highly
correlated features

except for module size,
and effort metrics.

Calculated the correlation between independent features,
and the attributes with more than 70% of correlation were
removed in the first approach demonstrated in this study.

To validate the reliability of the cross-project defect prediction model, a separate
dataset was created by merging all the selected files and stored in a Python dataframe
named CP. A new field called “project” was introduced to identify whether the project
information can influence the prediction. The projects were assigned numbers from 1 to 5
for identification purposes.

The feature selection process involves selecting a subset of the original dataset by
removing irrelevant or redundant features from the original feature space. Feature selec-
tion algorithms have been used in various fields including in defect prediction [35–38].
The selection of feature subsets significantly affects the complexity and performance of
classification algorithms. The challenge with the feature selection process is that too many
features may increase the computational cost of the classifier, while too few features may



Computers 2024, 13, 52 6 of 23

reduce the model performance [39]. Feature selection methods have two major benefits
for classification tasks, which are reducing the data dimensionality and maintaining or
improving the performance of the classifier.

Two different approaches were employed during the feature selection process in this
study. Both of these approaches cleaned the dataset by removing records with missing
variables, duplicated entries, outliers, and implausible and conflicting feature values.
The outliers were removed to train the dataset by removing the extreme values and reducing
the noise for better performance. The technique for outlier removal was based on keeping
the value within the IQR range of Q1 and Q3, as shown in Table 3.

In addition to the above cleaning criteria, the first approach involved removing highly
correlated features from the datasets. Researchers attempted to select features from the orig-
inal feature space that have a high dependency on the class labels and low redundancy with
other features [35]. To ensure the features have low redundancy with other independent
features, except the field ’effort’, the features that had a correlation value higher than 70%
with other features, excluding the output variable of defective versus non-defective, were
dropped. Figure 2 shows the pairwise correlation matrix of the independent variables or
features of project pc1. Only the independent features were considered for comparing this
correlation matrix as the objective was not to remove the features that are highly correlated
with the output feature but rather to remove the duplicated information that is coming
from two different variables. The reason behind considering removing the highly inter-
nally correlated features is to ensure that the features do not contain the same information.
The impact of each feature in the model prediction should be interpretable and should be
prominent for the prediction. From this correlation matrix, only the features that had an
absolute value of 70% were retained for further comparison using this feature selection
approach. The same technique is applied to other projects.

Figure 2. Pairwise correlation matrix from pc1 dataset.

The alternative approach followed the same cleaning steps as the first approach.
However, they were retained during the SDP model development instead of removing the
highly correlated features to identify if keeping the highly correlated features impacts the
model performance.



Computers 2024, 13, 52 7 of 23

The common features among all datasets were e, loc, l, ev(g), and lOComment when
the highly correlated features were removed from each dataset. The selected features, along
with the project names, are shown in Table 4. It can be observed that the maximum number
of nine features, compared to the original 20 features, was available in the cross-project
dataset. At the same time, kc2 and jm1 had the minimum number of selected features.

Table 4. Features selection after removing highly correlated attributes.

File Name Selected Features

kc2 loc, ev(g), l, e, lOComment
cm1 loc, ev(g), l, e, lOCode, lOComment, lOBlank
pc1 loc, v(g), ev(g), l, e, lOComment, lOBlank
kc1 loc, ev(g), l,e, lOComment, lOBlank
jm1 loc, l, i, e, lOComment

Cross Project loc, v(g), ev(g), iv(g), l, i, e, lOComment, project

To develop SDP models, the data need to be divided between training and testing
such that enough samples are available for training and validating the model. Some of the
common approaches are an 80:20 or 70:30 split, and cross-validation. In several existing
defect prediction studies [40–42], 70:30 splits were considered. In this work, each dataset
was split into 70% for training and 30% for testing, which would give us a balance between
training and testing the model with sufficient data for training and a reasonable number
of records for evaluation. Finally, since this approach has been used in earlier research,
having a split of 70:30 would make it easier to compare and reproduce results across
different studies.

To standardize the features by removing the mean and scaling to unit variance, Stan-
dardScaler from the Python scikit-learn library was used [43]. Furthermore, since the
dataset was imbalanced, it was crucial to employ techniques to prevent the SDP model
from being biased towards predicting the majority classes (non-defective value with 0)
only. Consequently, in the training dataset, the synthetic minority oversampling technique
(SMOTE) technique was applied to match the number of instances in the minority class
(defective) to the number of instances in the majority class (non-defective), while the testing
dataset remained unchanged for validation purposes.

The distribution of samples with defective versus non-defective modules in the final-
ized training dataset is presented in Table 5. For example, the kc2 dataset initially had
21 independent features with a total of 522 records or instances. After cleaning the data,
the number of available instances in the same dataset was reduced to 198. These records
were then split between training and testing with a 70:30 split, allocating 138 instances
towards training with the remaining 60 instances kept for testing. In the training dataset,
out of these 138 instances, 30 instances were classified as defective and the remaining 108
were marked as non-defective. Subsequently, SMOTE allowed the data to have an equal
distribution of 108 records for both defective and non-defective modules, which made
the training dataset oversampled with a total number of instances of 276. The SMOTE
technique has not been applied in testing datasets as the goal is not to train the dataset with
a balanced dataset but to test the overall performance without making any manipulation of
the original data.



Computers 2024, 13, 52 8 of 23

Table 5. Distribution of defective vs. non-defective samples before and after applying SMOTE in the
training dataset.

Project
Name Attributes

Number
of

Original
Instances

Number
of

Cleaned
Instances

Defective vs.
Non-Defective

Instances in
Training Dataset

Defective vs.
Non-Defective
instances after

Applying SMOTE

kc2 5 522 198 30, 108 108, 108
cm1 7 498 289 20, 182 182, 182
pc1 7 1109 601 23, 397 397, 397
kc1 6 2109 718 116, 386 386, 386
jm1 5 10,885 4574 509, 2692 2692, 2692
CP 9 15,123 4608 491, 2734 2734, 2734

3.3. Applied Machine Learning Algorithms

After the data preprocessing steps, we selected widely used machine learning (ML)
algorithms that have been applied in previous SDP studies on classification problems [8],
namely, support vector machine (SVM), k-nearest-neighbors (KNN), random forest clas-
sifiers (RF), and artificial neural networks (ANNs). To improve the performance of each
of these models, hyperparameter tuning [44,45] was performed using the grid search
method [43] with 3-fold cross-validation on the training dataset. The predictors of the
defect prediction models can be optimized by tuning the parameters of the algorithm.
Depending on the algorithm applied, the hyperparameter tuning involves tuning the pa-
rameters of the algorithms to improve the performance of the developed models. For the
SVM model, the parameters that were tuned were ‘C’, with values of 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, and 14, ‘gamma’, with values of 1, 0.1, 0.01, and 0.001, and the kernel parameter
was tuned with linear, ‘poly’, ‘rbf’, and ‘sigmoid’. The KNN algorithm depends on the
parameter n_neighbors. This algorithm was optimized with the values of 1, 2, 3, 4, 5,
10, 15, and 20 for n_neighbors. The random forest algorithm has several parameters that
can affect the performance of the algorithm. We have attempted the use of parameters of
‘n_estimators’, with corresponding values of 3, 10, and 12, ‘max_depth’, with values of 10,
20, 30, 40, and 100, while ‘min_samples_leaf’ was optimized with values of 1, 2, 4, and 8,
and the “criterion” parameter was attempted with ‘gini’, ‘entropy’ and ‘log_loss’. Finally,
for the ANN algorithm, the epochs, batch size, and hidden layers were tuned to obtain the
best performance.

Next, the paper attempts to analyze and compare various methodologies to tune the
defect predictors. Once the models were developed, LIME was applied for local prediction
on the best model for each of the projects and SHAP was applied for global explanations on
the same classifiers. Finally, all the projects were combined into a single dataset to examine
the impact of cross-project data and the obtained results were validated. Support vector
machine (SVM) is a supervised ML algorithm that defines a hyperplane to separate the data
most optimally, ensuring a wide margin between the hyperplane and the observations [8,46].
K-nearest-neighbors (KNN) is a supervised ML algorithm that utilizes proximity to classify
or predict the grouping of individual data points [47,48] due to its efficiency. Random forest
classifier (RF) is a supervised ensemble ML algorithm that incorporates a combination
of tree predictors, where each tree depends on the values of a random vector sampled
independently with the same distribution for all trees in the forest [49,50]. Artificial neural
networks (ANNs) [15] are a collection of neurons, where each of these neurons or layers
is vertically concatenated. An ANN model consists of an input layer and hidden layers
and the prediction is performed in the output layer.

3.3.1. Model Interpretability

LIME and SHAP techniques were employed as both of these techniques have been
popular in the field of machine learning explainability. Details of these techniques are
explained below.



Computers 2024, 13, 52 9 of 23

LIME (Local Interpretable Model-Agnostic Explanations)

The LIME [51] technique proposed by Ribeiro et al. constructs a surrogate sparse linear
model around each prediction to elucidate the workings of the black box model within that
local context [52]. The LIME model can work for tabular data, text, and images. The soft-
ware defect prediction models utilized in this study included tabular data, and LIME was
applied to explain the tabular data on the best-performing model. The LIME equation [51]
for interpretability can be expressed as follows:

ξ(x) = argming∈G[L( f , g, πx) + Ω(g)] (1)

In Equation (1), the term ξ(x) represents the explanation for the prediction made by
the SDP model for the instance x. It aims to select an interpretable explanation model for
software defect prediction g from the class G, minimizing a combination of fidelity to the
original SDP model f and complexity. The fidelity function L( f , g, πx) measures how well
g approximates f in the local neighborhood of x, while Ω(g) quantifies the simplicity of
g. By minimizing this combined objective, LIME ensures the explanation ξ(x) faithfully
represents f while being interpretable [53].

As explained in the LIME equation, The SDP model developed based on the random
forest model would generate a LIME explanation for a specific record or instance that
would start with randomly generated instances by perturbing the data surrounding the
instance of interest [54]. Next, LIME uses the black box model, which would be the SDP
model generated based on the random forest example that was taken in this scenario to
generate predictions of the generated random instances. Afterward, LIME constructs a local
regression model using the generated random instances and their generated predictions
from the black box model or the given random forest model used in this example. Finally,
the coefficients of the regression model indicate the contribution of each metric to the
prediction of defective or non-defective modules.

SHAP (SHapley Additive exPlanation)

Developed by Lundberg et al. [55], SHAP corresponds to the idea of Shapley values
for model feature influence scoring [55]. The Shapley value corresponds to the average
marginal contribution of a feature value over all possible coalitions [51,56]. SHAP can
quantitatively explain the prediction of a machine learning model. The Shapley value is a
mathematical theory used to determine the contribution of game participants to the game
results. It is a method to calculate the contribution of each eigenvalue to the predicted
value, which is expressed by the formula:

f (z) = f (z′) +
M

∑
j=1

θj(zj − z′j) (2)

Equation (2) represents the prediction made by the SDP model, where f (z) is the
output based on the input features z, and f (z′) is the output of a simpler linear model.
The term ∑M

j=1 θj(zj − z′j) captures the difference between the predictions of the SDP model
and the simpler linear model, with θj representing the Shapley value of each feature and
zj − z′j representing the deviation of the feature values from a reference point.

ϕi(v) = ∑
S⊆N\i

|S|!(|N| − |S| − 1)!
|N|! [v(S ∪ i)− v(S)] (3)

Equation (3) calculates the Shapley value ϕi(v) for a specific feature i, considering all
possible subsets S of features. It quantifies the marginal contribution of feature i to the
difference in predictions made by the model v for different subsets of features.



Computers 2024, 13, 52 10 of 23

Together, these equations illustrate how the Shapley values are used to explain the
contribution of individual features to the predictions of the SDP model, shedding light on
its working principle and factors influencing the output results.

3.4. Evaluation Strategy

This work verified the performance of the SDP models using effective evaluation
strategies for classification models in the literature using precision, recall, the F1-score,
accuracy, and the AUC score. For the final measurement before applying model-agnostic
explanations, the best performing SDP models evaluated based on accuracy and the AUC
score were selected. The selected evaluation metrics are widely used in the literature for
the evaluation of classification models’ performance [8].

Accuracyis the percentage of correctly classified results [8]. Accuracy can be calculated
using Equation (4).

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision measures the accuracy of positive predictions made by the model. It is the
ratio of true positives (correctly predicted positive instances) to the sum of true positives
and false positives (incorrectly predicted positive instances), whereas recall measures the
ability of the model to correctly identify all positive instances. It is the ratio of true positives
to the sum of true positives and false negatives (positive instances incorrectly classified as
negative). The F1-score is the harmonic mean of precision and recall. It provides a single
score that balances both precision and recall.

The area under the receiving operating characteristics (ROC) curve (AUC score) [46] is
a measure of how well a parameter can distinguish between two classes (defective/non-
defective). The “true positive rate” (TPR) is the proportion of instances labeled as defective
that were correctly predicted, and the “false positive rate” (FPR) is the proportion of
instances labeled as non-defective that are incorrectly predicted as defective. The higher
the AUC score, the better the model’s performance at distinguishing between the positive
and negative classes; the objective is to obtain an AUC score of greater than 0.50.

Finally, to compare the performance of defect prediction using cross-project metrics
with individual project metrics, the average accuracy and AUC scores were calculated.
The differences between the average scores and the cross-project defect prediction models
were examined for each classifier.

4. Results

This section presents the results in the order of the software defect prediction model
based on an original dataset with a comparison of retaining highly correlated features and
removing highly correlated features without attempting to adjust the imbalanced dataset.

4.1. Performance of Machine Learning Algorithms on Original Dataset

Table 6 presents the results obtained from the original dataset while keeping the
majority of the features, and Table 7 shows the performance of the SDP models on the
original dataset on the reduced features using a removal of highly correlated features
selection strategy.

Both of the tables show the project name, the machine learning techniques applied,
and the evaluation metrics of accuracy, precision, recall, F1-score, and AUC, respectively.
The numbers in bold format show the highest value of each of the evaluation metrics for
each of these selected projects.

When all the features were retained in the datasets, the accuracy of the models was in
a range between 67% and 96%. The maximum precision was 67% when the KNN algorithm
was applied in the jm1 project. The jm1 project had 4574 instances, which made this dataset
larger compared to the other datasets except the cross-project (cp) dataset used in this
study. The CP project had a precision value ranging from 21% to 34% depending on the
algorithm applied. The precision score among all the projects had a wide range starting



Computers 2024, 13, 52 11 of 23

from a zero value to a maximum score of 67%. The highest recall value found when applied
on these selected projects was 40% and this score was achieved when the SVM algorithm
was applied in the cp project. The maximum F1-score was 28% with zero or very low scores
found from the majority of the algorithms. The highest AUC score was 60%. Relatively,
the ANN algorithm and RF algorithms performed better than the other algorithms for the
selected datasets.

Table 6. Performance of the evaluation metrics on the original dataset with retention of highly
correlated features.

Project Name ML Technique Accuracy Precision Recall FI-Score AUC

SVM 0.75 0.00 0.00 0.00 0.50
KNN 0.75 0.00 0.00 0.00 0.50

RF 0.74 0.43 0.19 0.26 0.55kc1

ANN 0.79 0.43 0.21 0.29 0.57

SVM 0.91 0.00 0.00 0.00 0.48
KNN 0.67 0.04 0.25 0.06 0.47

RF 0.83 0.08 0.25 0.12 0.55cm1

ANN 0.90 0.14 0.25 0.18 0.59

SVM 0.73 0.40 0.13 0.20 0.53
KNN 0.75 0.00 0.00 0.00 0.50

RF 0.73 0.45 0.33 0.38 0.60kc2

ANN 0.75 0.00 0.00 0.00 0.50

SVM 0.96 0.00 0.00 0.00 0.50
KNN 0.96 0.00 0.00 0.00 0.50

RF 0.96 0.00 0.00 0.00 0.50pc1

ANN 0.95 0.25 0.14 0.18 0.56

SVM 0.82 0.22 0.06 0.09 0.51
KNN 0.84 0.67 0.01 0.02 0.50

RF 0.84 0.50 0.01 0.02 0.50jm1

ANN 0.85 0.62 0.04 0.07 0.52

SVM 0.69 0.21 0.40 0.28 0.57
KNN 0.75 0.24 0.29 0.26 0.56

RF 0.83 0.34 0.17 0.23 0.56CP

ANN 0.74 0.23 0.32 0.27 0.57
The numbers in bold represent the highest score in each of the evaluation metrics by projects.

The AUC score from most of the algorithms was around 50, apart from a few exceptions
with random forest or the ANN algorithm. This does not give us confidence that the
models are fully reliable as the majority of the predictions are probably biased toward
predicting the non-defective module. Applying feature selection algorithms in the datasets
by reducing the highly correlated features, as shown in Table 7, did not demonstrate a
significant difference from the results obtained in Table 6, where all the features were
retained. The accuracy score ranged from 72% to 95%. However, when the majority of the
features were kept, the accuracy ranged from 67% to 96%. The lower bound for accuracy is
higher compared to the dataset with reduced features.

The AUC score was slightly better for the pc1 project with reduced features when the
random forest algorithm was applied, which showed an AUC score of 63% and an accuracy
score of 95%. In terms of precision, except for the random forest model, which was able
to detect all the positive instances on the cm1 project, the score varied for other projects,
ranging from zero to 50%. The maximum recall value of the reduced features datasets was
29% compared to 40% when all the features were retained.

The maximum F1-score was 31% when the random forest algorithm was applied in
the pc1 project with reduced features. On the other hand, the highest F1-score was 38%
when the random forest algorithm was applied in the kc2 project with all features, but had
a score of zero on the pc1 project when the random forest algorithm was applied. On the



Computers 2024, 13, 52 12 of 23

reduced features datasets, the random forest algorithm worked better compared to the
other algorithms with relatively higher accuracy and AUC score in all projects. To see the
interpretation of this random forest model on the original dataset with reduced features,
the LIME technique was applied on a single instance of the pc1 project to illustrate the
local explanation, whereas SHAP was applied on the same project when the random forest
algorithm was applied.

Table 7. Performance of the evaluation metrics on the original dataset with reduced features through
the feature selection process of removing highly correlated features.

Project Name ML Technique Accuracy Precision Recall FI-Score AUC

kc1

SVM 0.81 0.00 0.00 0.00 0.50
KNN 0.72 0.24 0.21 0.23 0.53

RF 0.81 0.50 0.17 0.25 0.56
ANN 0.80 0.43 0.07 0.12 0.52

cm1

SVM 0.85 0.00 0.00 0.00 0.46
KNN 0.92 0.00 0.00 0.00 0.50

RF 0.93 1.00 0.14 0.25 0.57
ANN 0.92 0.50 0.14 0.22 0.56

kc2

SVM 0.77 0.00 0.00 0.00 0.50
KNN 0.77 0.00 0.00 0.00 0.50

RF 0.73 0.25 0.07 0.11 0.50
ANN 0.75 0.00 0.00 0.00 0.49

pc1

SVM 0.93 0.20 0.29 0.24 0.62
KNN 0.95 0.00 0.00 0.00 0.49

RF 0.95 0.33 0.28 0.31 0.63
ANN 0.93 0.22 0.29 0.25 0.62

jm1

SVM 0.83 0.16 0.02 0.03 0.50
KNN 0.84 0.00 0.00 0.00 0.50

RF 0.84 0.00 0.00 0.00 0.50
ANN 0.84 0.00 0.00 0.00 0.50

CP

SVM 0.83 0.22 0.05 0.08 0.51
KNN 0.85 0.50 0.00 0.01 0.50

RF 0.85 0.33 0.01 0.02 0.50
ANN 0.85 0.40 0.02 0.04 0.51

The numbers in bold represent the highest score in each of the evaluation metrics by projects.

Figure 3 demonstrates the local and global interpretation of the pc1 project when
the random forest algorithm was applied to the dataset with reduced features. Figure 3a
demonstrates the local interpretation by the LIME technique for the selected instance.
The LIME model predicted the outcome of this instance as 0, with a confidence of 77%
of this instance not being defective and 23% probability of this instance being defective.
The orange color shows the probability of being defective, and the blue represents the
probability of being non-defective. The right-hand side of the picture shows the values
of loc (line of code), l (length), LOComment, and IOBlank are contributing towards the
module being defective, whereas the cyclomatic complexity, essential complexity, and effort
values are contributing to the model for predicting this instance as defective. Since the total
feature ranking of the model as non-defective is higher, this instance is considered as 0
or non-defective.

Figure 3b shows the global explanation of the same project when SHAP was applied.
This graph shows IOBlank makes the most contribution towards the model followed by
loc, effort, length, and the other features. The blue and red color distribution shows that
there was no bias towards predicting defective versus non-defective modules.



Computers 2024, 13, 52 13 of 23

(a) LIME model—dataset contains reduced features.

(b) SHAP model—dataset contains reduced features.
Figure 3. SDP model interpretation on the original dataset of project pc1 with reduced features.

4.2. Performance of Machine Learning Algorithms on Balanced Dataset

Table 8 presents the results obtained from the dataset after the oversampling technique
SMOTE was applied while keeping the majority of the features, and Table 9 shows the
performance of the SDP models on the balanced dataset where highly correlated features
were removed.

Both of the tables show the header table information of the project name, the machine
learning techniques applied, and the evaluation metrics of accuracy, precision, recall, F1-
score, and AUC, respectively, as demonstrated in the model performance on the original
datasets. When all the features were retained in the datasets, the accuracy of the models
was in a range between 61% and 96%. The maximum precision was 47% when the KNN
algorithm was applied in the kc2 project. The maximum recall value was 71%, which is
much higher than the recall value that was found in the original dataset. The F1-score
ranged from 16% to 53%, whereas in the original dataset, the maximum F1-score was 28%,
with zero or very low scores found from the majority of the algorithms. The highest AUC
score in the balanced dataset was 77% for the pc1 project when the ANN algorithm was
applied, whereas the maximum AUC score on the all features’ original dataset was 60%.
The performance of the algorithms varied. For different projects with varying numbers of
instances, the applied algorithms performed differently.



Computers 2024, 13, 52 14 of 23

Table 8. Performance of the models after applying SMOTE on datasets that retained highly corre-
lated features.

Project Name ML Technique Accuracy Precision Recall FI-Score AUC

SVM 0.65 0.28 0.50 0.36 0.60
KNN 0.66 0.18 0.21 0.20 0.50

RF 0.67 0.16 0.17 0.16 0.48kc1

ANN 0.61 0.25 0.53 0.34 0.58

SVM 0.84 0.11 0.14 0.35 0.52
KNN 0.64 0.14 0.71 0.24 0.68

RF 0.82 0.09 0.14 0.11 0.51cm1

ANN 0.89 0.29 0.29 0.29 0.61

SVM 0.63 0.32 0.40 0.35 0.56
KNN 0.73 0.47 0.60 0.53 0.69

RF 0.67 0.37 0.47 0.41 0.60kc2

ANN 0.65 0.36 0.53 0.43 0.61

SVM 0.96 0.43 0.43 0.43 0.70
KNN 0.88 0.18 0.57 0.28 0.73

RF 0.93 0.25 0.43 0.32 0.69pc1

ANN 0.95 0.40 0.57 0.47 0.77

SVM 0.71 0.23 0.38 0.29 0.57
KNN 0.77 0.29 0.35 0.32 0.60

RF 0.77 0.30 0.34 0.31 0.59jm1

ANN 0.69 0.24 0.47 0.32 0.60

SVM 0.69 0.21 0.40 0.28 0.57
KNN 0.75 0.24 0.29 0.26 0.56

RF 0.83 0.34 0.17 0.23 0.56CP

ANN 0.73 0.24 0.53 0.29 0.58
The numbers in bold represent the highest score in each of the evaluation metrics by projects.

Applying feature selection algorithms in the datasets by reducing the highly correlated
features, as shown in Table 9, did not demonstrate a significant difference from the results
obtained in Table 8, where all the features were retained. The accuracy score ranged from
56% to 92%. However, when the majority of the features were kept, the accuracy ranged
from 61% to 96%.

The minimum AUC score was 53% and the highest score for this metric was 71%.
The minimum precision score was 18% and the maximum precision score was 38%. For the
original dataset, several algorithms showed zero values for precision, which means the
accuracy of predicting defective instances of the model was not satisfactory in the origi-
nal dataset.

The recall has all positive values ranging from 15% to 71%. The F1-score also shows
all positive values, unlike the original dataset, where a couple of the algorithms returned
zero scores on these projects.

Table 10 demonstrates the final evaluation by summarizing the content obtained from
Tables 8 and 9. We considered accuracy and the AUC score before selecting a model for
applying the model-agnostic technique. Although having a high AUC score does not
guarantee high value for precision, recall, and the F1-score, we note from this table that
when the AUC was high, the accuracy, precision, recall, and F1-score were in an acceptable
range in the balanced dataset with non-zero values.



Computers 2024, 13, 52 15 of 23

Table 9. Evaluation metrics after SMOTE was applied in the training dataset after removing the
highly correlated features.

Project Name ML Technique Accuracy Precision Recall FI-Score AUC

SVM 0.68 0.29 0.45 0.35 0.59
KNN 0.69 0.27 0.33 0.30 0.56

RF 0.73 0.21 0.29 0.29 0.56kc1

ANN 0.70 0.29 0.38 0.33 0.58

SVM 0.56 0.08 0.43 0.14 0.50
KNN 0.70 0.17 0.71 0.28 0.71

RF 0.90 0.38 0.43 0.40 0.68cm1

ANN 0.83 0.17 0.29 0.21 0.58

SVM 0.75 0.50 0.53 0.52 0.68
KNN 0.73 0.48 0.67 0.56 0.71

RF 0.70 0.42 0.53 0.47 0.64kc2

ANN 0.73 0.47 0.53 0.25 0.67

SVM 0.90 0.18 0.43 0.25 0.67
KNN 0.85 0.14 0.57 0.22 0.71

RF 0.90 0.17 0.43 0.24 0.67pc1

ANN 0.92 0.21 0.43 0.29 0.68

SVM 0.64 0.19 0.40 0.26 0.54
KNN 0.58 0.19 0.53 0.28 0.56

RF 0.66 0.21 0.43 0.28 0.57jm1

ANN 0.63 0.20 0.44 0.27 0.55

SVM 0.66 0.21 0.46 0.29 0.58
KNN 0.71 0.18 0.27 0.22 0.53

RF 0.80 0.25 0.15 0.19 0.54CP

ANN 0.70 0.24 0.48 0.32 0.61
The numbers in bold represent the highest score in each of the evaluation metrics by projects.

In Table 10, the projects are listed in order of the dataset size where the number of
instances available in the cleaned dataset are as shown in Table 5. The numbers in bold
format show the highest accuracy score and the AUC score of each of the projects, whereas
the highlighted yellow fields represent the model where the AUC score was highest for the
selected project. Since this was an imbalanced dataset, rather than prioritizing the accuracy
score, we considered the classifiers with the highest AUC score as the best-performing
model for the referred project. For instance, when the cm1 project with all features was
considered, a higher accuracy score was observed in the ANN classifier with a value of 89%
compared to an accuracy value of 64% in the KNN classifier. However, we considered the
KNN classifier as the best performing model, as the AUC score was highest among all the
classifiers, with a value of 68%, as our primary goal was to identify the defective modules
rather than detecting non-defective modules only.

It appears in both cases of selecting all features versus selecting reduced features that
the KNN algorithm performed well for relatively smaller projects, namely kc2 and cm1.
Also, it is worth noting that the KNN model achieved a higher accuracy score of 75% in
the cross-project model, surpassing the average accuracy of the independent project scores
of 74%. On the other hand, the obtained AUC score of 56% applied in the same classifier
can be treated as relatively poor. Taking into consideration the overall AUC and accuracy,
the ANN model outperformed the other classifiers in the cross-project models.

The top half of this Table 10 illustrates the accuracy and AUC score of each of the
projects on the selected machine learning algorithms. These algorithms have been applied
in the full-feature datasets except for the LocCodeAndComment feature. The bottom half
of the figure followed the same strategy except that the SDP models were created on the
reduced-feature datasets, which were obtained after removing the highly correlated inde-
pendent features. The row denoted "Average" calculates the average of the accuracy and



Computers 2024, 13, 52 16 of 23

AUC score for each of the projects on the SVM, KNN, RF, and ANN models. The average
score has been compared with the cross-project(CP) SDP model scores.

Table 10. Comparison of the performance of each project along with an average of individual project
scores with cross-project scores for the approach selected with the most features and reduced features.

Projects with 20 Common Features

Project Name SVM KNN RF ANN

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

kc2 0.63 0.56 0.73 0.69 0.67 0.60 0.65 0.61

cm1 0.84 0.52 0.64 0.68 0.82 0.51 0.89 0.61

pc1 0.96 0.70 0.88 0.73 0.93 0.69 0.95 0.77

kc1 0.65 0.59 0.66 0.49 0.67 0.48 0.62 0.58

jm1 0.71 0.57 0.77 0.60 0.77 0.59 0.69 0.60

Average 0.76 0.59 0.74 0.64 0.77 0.57 0.76 0.63

CP 0.69 0.57 0/75 0.56 0.82 0.56 0.73 0.58

Projects with Reduced Features

Project Name SVM KNN RF ANN

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

kc2 0.75 0.68 0.73 0.71 0.70 0.64 0.73 0.67

cm1 0.56 0.50 0.70 0.71 0.90 0.68 0.83 0.58

pc1 0.90 0.67 0.85 0.71 0.90 0.67 0.92 0.68

kc1 0.68 0.59 0.69 0.56 0.73 0.56 0.69 0.58

jm1 0.64 0.54 0.58 0.56 0.66 0.57 0.63 0.55

Average 0.71 0.60 0.71 0.65 0.78 0.62 0.76 0.61

CP 0.66 0.58 0.71 0.53 0.80 0.54 0.70 0.61
The numbers in bold represent either the highest accuracy or AUC for the referred project among the applied
algorithms. The numbers highlighted in yellow represent the models with the highest AUC score.

The SVM model performed better on the kc1 project, which consists of a dataset with
718 instances available after filters were applied. Compared to the other datasets, this one
is considered mid-size (Table 5).

In terms of the cross-project datasets, the ANN model developed on the reduced
features achieved a slightly higher AUC score of 61% compared to 58%. For the pc1 project,
which had mid-sized samples, the ANN classifier showed higher accuracy, with values
of 95% and 92% for the all features and reduced features datasets, respectively. Although
for the pc1 dataset, the same ANN model with all features showed the highest AUC of 77%,
there was a reduction in the AUC score, with a value of 68% on the reduced feature dataset.

Figure 4a demonstrates the cross-project defect prediction model developed using
SHAP on the ANN model incorporating all features on the balanced dataset. The highest
ranking of the mean SHAP value for this project is for branchcount followed by IOBlank.
This model has all the features, but the impact of the attribute effort “e” is in the lowest
position compared to the other source code and size metrics. In the same ANN classifier
with reduced features, SHAP was applied to provide the global explanation, as shown in
Figure 4b. This figure illustrates that in the SDP model constructed with the ANN classifier,
the “loc” attribute makes the highest contribution towards the prediction outcome followed
by cyclomatic complexity and intelligence. “Effort” is considered a predictor that has more
importance than program length and lines of code, but less than program complexity-



Computers 2024, 13, 52 17 of 23

related features. Additionally, the “project” field is shown to have the lowest importance.
This indicates that the project source, which includes cross-project information, does not
significantly impact the development of this model.

(a) SHAP model—dataset contains all features.

(b) SHAP model—dataset contains reduced features.
Figure 4. SHAP applied on cross-project dataset developed using ANN model.

Figure 5 demonstrates the interpretation of a local observation of the same ANN-
based model using LIME. The LIME model predicted this record as non-defective with a
confidence level of 71%. In this figure, the blue color represents the feature contribution
towards being predictive as a non-defective instance compared to the orange color moving
toward a defective module. The effort attribute was one of the important contributors in
this prediction model; a value of less than −0.61 pushes the prediction towards a value
of 0 (non-defective). Similarly, the cyclomatic complexity of the code was less than −64,
and intelligence also contributes to the prediction of non-defectiveness. It seems that the
attribute “intelligence”, which determines the amount of intelligence presented in the
program, was lower than the given threshold of −75 to be considered defective. This local
prediction explains that the selected module had a lower value than the set threshold for
intelligence, cyclomatic complexity, and intelligence to be considered defective. At the same
time, the same prediction shows the probability of 29% of this module being defective as
the loc, l, and LOComments are higher and ev(g) is less than the given threshold. The test



Computers 2024, 13, 52 18 of 23

lead can better reflect the outcome by observing the impact of each of the attributes on this
prediction. This aligns with the logical concept that software that requires less effort and is
not very complex may have relatively fewer bugs compared to a complex system.

The interpretability of the kc1 project with mid-sample size (based on the number of
instances available) is examined in Figures 6 and 7. Both models interpreted with LIME and
SHAP show the importance of the “effort” feature for this algorithm. The local prediction
using the LIME method was able to explain the observation with 60% confidence that this
module is not likely to be defective. In both models, the “loc” feature is less important
compared to the effort metrics. We observe that there can be slight differences between
these predictions—the global agnostic model provides generic information, while the LIME
method offers insight into individual predictions.

Figure 5. Demonstration of local interpretation of selected records from cross-project data when ANN
was applied on reduced-feature-based model.

Figure 6. Model interpretation of SDP model generated from kc1 file with LIME on SVM classifier.
The green color bar shows the features that are contributing to increasing the probability of this
instance being defective, and red represents the feature’s probability of not being defective.



Computers 2024, 13, 52 19 of 23

Figure 7. Model interpretation of SDP model generated from kc1 file with SHAP on SVM classifier.

5. Analysis and Discussion

In this study, we aimed to address multiple research questions and the findings are
as follows:

Regarding RQ1, the predicted models provided consistent results, with slight vari-
ations depending on the sample size and selected features. For example, the smallest
sample size after cleaning the data was project kc2, and the KNN model performed the
best in both feature selection approaches. Additionally, the cross-project data yielded good
results for the ANN classifier, as deep learning models tend to perform better with larger
datasets. It was observed that there were trade-offs between accuracy and AUC; project pc1
demonstrated the highest performance with an accuracy above 90% and an AUC score close
to 70%. It was observed that the “effort” attribute was not necessarily the most influential
of all the outcomes. The SHAP and LIME models applied to the developed classifiers
showed that for cross-project defect prediction, “effort” ranked lower in terms of feature
importance. However, for a few individual projects, “effort” ranked second in terms of
importance. This finding aligns with the understanding that project size and complexity
are crucial factors in defect prediction.

RQ2 investigated the impact of removing highly correlated independent features. It
was found that this removal improved the average AUC score for the SVM, KNN, and RF
models with a slight decrease in the ANN model. This indicates that removing correlated
features had varying effects on model performance but did not significantly alter the overall
outcomes. The SDP models became easier to interpret with the SHAP and LIME techniques,
as having more features would show blank values for features that did not contribute to
the predicted outcomes. Although the SVM and KNN models’ accuracy decreased slightly
with reduced features, this was compensated by a relatively higher AUC score.

To address RQ3, we compared the cross-project (CP) model score with an average
score from the models built from individual projects. It appears that the CP models
performed slightly lower than the individual projects’ average performance. However,
the performance did not go down drastically, and the results were very close to the average
score. For instance, the ANN model with reduced features shows the average accuracy and
AUC score as 76% and 61%, whereas the cross-project model had accuracy and AUC values
of 70% and 61%, respectively. CP can be useful when historical information is not available
for similar projects.

Finally, RQ4 focused on interpreting the predictions even after applying oversam-
pling using SMOTE. It was found that both SHAP and LIME successfully explained the
predictions, providing insights into the contributing features.

For the feature selection algorithm, we used a threshold of 70%. Further
experiments can be conducted to find the best threshold for selecting features when
multicollinearity exists.



Computers 2024, 13, 52 20 of 23

We experimented with both imbalanced data and after applying the SMOTE technique
for creating synthetic data for the minority class. Training the model with more balanced
data would enhance confidence in generalizing the model.

Also, for comparison, five projects were merged from the same source to observe the
impact of cross-project defect prediction. This can be extended by using data from various
sources to bring more variation to the dataset.

6. Conclusions and Future Work

This study aimed to develop software defect prediction models with a focus on
interpretability, using individual projects and by combining the individual projects with a
cross-project dataset. Feature selection was applied by reducing and retaining the highly
correlated data for developing comparative studies. Test managers may need to work
with a subset of features rather than having all the features due to not having historical
information on various metrics. Our research indicates that removing the multicollinear
features yielded consistent results.

The findings indicate that the cross-project defect prediction model does not signifi-
cantly compromise performance. While the average of the individual projects generally
achieved better AUC scores, the results were comparable to the scores of the cross-projects.
This implies that when historical information for an exact similar project is unavailable,
users can still utilize the cross-project dataset for predicting defective outcomes in new
software applications.

Model-agnostic techniques, such as SHAP and LIME, were employed to explain the
models. Despite the use of SMOTE for data oversampling, the SHAP model demonstrated
unbiased predictions and the data re-balancing approach did not affect the interpretability.
Regarding feature importance, both the feature selection processes provided interpretations
that aligned with expectations. Occasionally, there were slight differences between local
predictions and global predictions. This can be attributed to the fact that local predictions
consider individual records and certain features may contribute differently to specific
outcomes, resulting in slight variations from the global prediction. Notably, it was possible
to predict defects using only five attributes in one of the datasets.

In the future, there is room for research to be conducted on applying PCA and other
methods to tackle multicollinearity issues and to consider their impact on interpretability.

In conclusion, it was possible to develop a defect prediction model without bias. It
appears that both source code and effort metrics can be important for defect prediction.

Author Contributions: Conceptualization, S.H. and L.F.C.; methodology, S.H. and L.F.C.; software,
S.H. and L.F.C.; writing, reviewing and editing, S.H. and L.F.C.; supervision, L.F.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Data Availability Statement: The original data used in this study can be accessed from the PROMISE
Data Repository at the following URL: http://promise.site.uottawa.ca/SERepository/datasets-page.
html (accessed on 11 February 2024).

Acknowledgments: The authors would like to thank Mary Pierce, Dean of Faculty of Business, Informa-
tion Technology and Part-time Studies, Fanshawe College, and Dev Sainani, Associate Dean of School
of Information Technology of Fanshawe College, London, Ontario for supporting this research work.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LIME Local Interpretable Model-Agnostic Explanations
SHAP SHapley Additive Explanations
SDP Software Defect Prediction

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html


Computers 2024, 13, 52 21 of 23

References
1. Punitha, K.; Chitra, S. Software defect prediction using software metrics—A survey. In Proceedings of the 2013 International

Conference on Information Communication and Embedded Systems (ICICES), Chennai, India, 21–22 February 2013; pp. 555–558.
[CrossRef]

2. Shepperd, M.; Song, Q.; Sun, Z.; Mair, C. Data quality: Some comments on the nasa software defect datasets. IEEE Trans. Softw.
Eng. 2013, 39, 1208–1215. [CrossRef]

3. Li, Z.; Jing, X.Y.; Zhu, X. Progress on approaches to software defect prediction. Iet Softw. 2018, 12, 161–175. [CrossRef]
4. He, P.; Li, B.; Liu, X.; Chen, J.; Ma, Y. An empirical study on software defect prediction with a simplified metric set. Inf. Softw.

Technol. 2015, 59, 170–190. [CrossRef]
5. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Capretz, L.F.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Kumar, G.

Empirical analysis of rank aggregation-based multi-filter feature selection methods in software defect prediction. Electronics 2021,
10, 179. [CrossRef]

6. Ghotra, B.; McIntosh, S.; Hassan, A.E. A large-scale study of the impact of feature selection techniques on defect classification
models. In Proceedings of the 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), Buenos
Aires, Argentina, 20–21 May 2017; pp. 146–157.

7. Haldar, S.; Capretz, L.F. Explainable Software Defect Prediction from Cross Company Project Metrics using Machine Learning. In
Proceedings of the 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India,
17–19 May 2023; pp. 150–157.

8. Aleem, S.; Capretz, L.; Ahmed, F. Benchmarking Machine Learning Techniques for Software Defect Detection. Int. J. Softw. Eng.
Appl. 2015, 6, 11–23. [CrossRef]

9. Aydin, Z.B.G.; Samli, R. Performance Evaluation of Some Machine Learning Algorithms in NASA Defect Prediction Data Sets. In
Proceedings of the 2020 5th International Conference on Computer Science and Engineering (UBMK), Diyarbakir, Turkey, 9–11
September 2020; pp. 1–3.

10. Menzies, T.; Greenwald, J.; Frank, A. Data mining static code attributes to learn defect predictors. IEEE Trans. Softw. Eng. 2007,
33, 2–13. [CrossRef]

11. Nassif, A.B.; Ho, D.; Capretz, L.F. Regression model for software effort estimation based on the use case point method. In
Proceedings of the 2011 International Conference on Computer and Software Modeling, Singapore, 16–18 September 2011;
Volume 14, pp. 106–110.

12. Goyal, S. Effective software defect prediction using support vector machines (SVMs). Int. J. Syst. Assur. Eng. Manag. 2022,
13, 681–696. [CrossRef]

13. Ryu, D.; Jang, J.I.; Baik, J. A hybrid instance selection using nearest-neighbor for cross-project defect prediction. J. Comput. Sci.
Technol. 2015, 30, 969–980. [CrossRef]

14. Thapa, S.; Alsadoon, A.; Prasad, P.; Al-Dala’in, T.; Rashid, T.A. Software Defect Prediction Using Atomic Rule Mining and
Random Forest. In Proceedings of the 2020 5th International Conference on Innovative Technologies in Intelligent Systems and
Industrial Applications (CITISIA), Sydney, Australia, 25–27 November 2020; pp. 1–8. [CrossRef]

15. Jayanthi, R.; Florence, L. Software defect prediction techniques using metrics based on neural network classifier. Clust. Comput.
2019, 22, 77–88. [CrossRef]

16. Fan, G.; Diao, X.; Yu, H.; Yang, K.; Chen, L. Software defect prediction via attention-based recurrent neural network. Sci. Program.
2019, 2019, 6230953. [CrossRef]

17. Tang, Y.; Dai, Q.; Yang, M.; Du, T.; Chen, L. Software defect prediction ensemble learning algorithm based on adaptive variable
sparrow search algorithm. Int. J. Mach. Learn. Cybern. 2023, 14, 1967–1987. [CrossRef]

18. Balasubramaniam, S.; Gollagi, S.G. Software defect prediction via optimal trained convolutional neural network. Adv. Eng. Softw.
2022, 169, 103138. [CrossRef]

19. Bai, J.; Jia, J.; Capretz, L.F. A three-stage transfer learning framework for multi-source cross-project software defect prediction. Inf.
Softw. Technol. 2022, 150, 106985. [CrossRef]

20. Cao, Q.; Sun, Q.; Cao, Q.; Tan, H. Software defect prediction via transfer learning based neural network. In Proceedings of the
2015 First International Conference on Reliability Systems Engineering (ICRSE), Beijing, China, 21–23 October 2015; pp. 1–10.

21. Joon, A.; Kumar Tyagi, R.; Kumar, K. Noise Filtering and Imbalance Class Distribution Removal for Optimizing Software Fault
Prediction using Best Software Metrics Suite. In Proceedings of the 2020 5th International Conference on Communication and
Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 1381–1389. [CrossRef]

22. Aggarwal, C.C.; Aggarwal, C.C. An introduction to Outlier Analysis; Springer: Cham, Switzerland, 2017.
23. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
24. Balogun, A.; Basri, S.; Jadid Abdulkadir, S.; Adeyemo, V.; Abubakar Imam, A.; Bajeh, A. Software Defect Prediction: Analysis Of

Class Imbalance and Performance Stability. J. Eng. Sci. Technol. 2019, 14, 3294–3308.
25. Pelayo, L.; Dick, S. Applying novel resampling strategies to software defect prediction. In Proceedings of the NAFIPS 2007—2007

Annual Meeting of the North American Fuzzy Information Processing Society, San Diego, CA, USA, 24–27 June 2007; pp. 69–72.
[CrossRef]

http://doi.org/10.1109/ICICES.2013.6508369
http://dx.doi.org/10.1109/TSE.2013.11
http://dx.doi.org/10.1049/iet-sen.2017.0148
http://dx.doi.org/10.1016/j.infsof.2014.11.006
http://dx.doi.org/10.3390/electronics10020179
http://dx.doi.org/10.5121/ijsea.2015.6302
http://dx.doi.org/10.1109/TSE.2007.256941
http://dx.doi.org/10.1007/s13198-021-01326-1
http://dx.doi.org/10.1007/s11390-015-1575-5
http://dx.doi.org/10.1109/CITISIA50690.2020.9371797
http://dx.doi.org/10.1007/s10586-018-1730-1
http://dx.doi.org/10.1155/2019/6230953
http://dx.doi.org/10.1007/s13042-022-01740-2
http://dx.doi.org/10.1016/j.advengsoft.2022.103138
http://dx.doi.org/10.1016/j.infsof.2022.106985
http://dx.doi.org/10.1109/ICCES48766.2020.9137899
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1109/NAFIPS.2007.383813


Computers 2024, 13, 52 22 of 23

26. Dipa, W.A.; Sunindyo, W.D. Software Defect Prediction Using SMOTE and Artificial Neural Network. In Proceedings of the
2021 International Conference on Data and Software Engineering (ICoDSE), Bandung, Indonesia, 3–4 November 2021; pp. 1–4.
[CrossRef]

27. Yedida, R.; Menzies, T. On the value of oversampling for deep learning in software defect prediction. IEEE Trans. Softw. Eng.
2021, 48, 3103–3116. [CrossRef]

28. Chen, D.; Chen, X.; Li, H.; Xie, J.; Mu, Y. Deepcpdp: Deep learning based cross-project defect prediction. IEEE Access 2019,
7, 184832–184848. [CrossRef]

29. Altland, H.W. Regression analysis: Statistical modeling of a response variable. Technometrics 1999, 41, 367–368. [CrossRef]
30. Yang, X.; Wen, W. Ridge and Lasso Regression Models for Cross-Version Defect Prediction. IEEE Trans. Reliab. 2018, 67, 885–896.

[CrossRef]
31. Gezici, B.; Tarhan, A.K. Explainable AI for Software Defect Prediction with Gradient Boosting Classifier. In Proceedings of the

2022 7th International Conference on Computer Science and Engineering (UBMK), Diyarbakir, Turkey, 14–16 September 2022;
pp. 1–6.

32. Jiarpakdee, J.; Tantithamthavorn, C.K.; Grundy, J. Practitioners’ Perceptions of the Goals and Visual Explanations of Defect
Prediction Models. In Proceedings of the 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR),
Madrid, Spain, 17–19 May 2021; pp. 432–443. [CrossRef]

33. Sayyad Shirabad, J.; Menzies, T.J. The PROMISE Repository of Software Engineering Databases. School of Information Technology
and Engineering, University of Ottawa, Canada. Available online: http://promise.site.uottawa.ca/SERepository (accessed on 11
February 2024).

34. Gray, D.; Bowes, D.; Davey, N.; Sun, Y.; Christianson, B. The misuse of the NASA metrics data program data sets for automated
software defect prediction. In Proceedings of the 15th Annual Conference on Evaluation & Assessment in Software Engineering
(EASE 2011), Durham, UK, 11–12 April 2011; pp. 96–103. [CrossRef]

35. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature Selection: A Data Perspective. ACM Comput. Surv.
2017, 50, 94. [CrossRef]

36. Rahman Khan Mamun, M.M.; Alouani, A. Arrhythmia Classification Using Hybrid Feature Selection Approach and Ensemble
Learning Technique. In Proceedings of the 2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
Virtual Event, ON, Canada, 12–17 September 2021; pp. 1–6. [CrossRef]

37. Rosati, S.; Gianfreda, C.M.; Balestra, G.; Martincich, L.; Giannini, V.; Regge, D. Correlation based Feature Selection impact on the
classification of breast cancer patients response to neoadjuvant chemotherapy. In Proceedings of the 2018 IEEE International
Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–5. [CrossRef]

38. Abualigah, L.; Dulaimi, A.J. A novel feature selection method for data mining tasks using hybrid sine cosine algorithm and
genetic algorithm. Clust. Comput. 2021, 24, 2161–2176. [CrossRef]

39. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
40. Thant, M.W.; Aung, N.T.T. Software defect prediction using hybrid approach. In Proceedings of the 2019 International Conference

on Advanced Information Technologies (ICAIT), Yangon, Myanmar, 6–7 November 2019; pp. 262–267. [CrossRef]
41. Rajnish, K.; Bhattacharjee, V.; Chandrabanshi, V. Applying Cognitive and Neural Network Approach over Control Flow Graph

for Software Defect Prediction. In Proceedings of the 2021 Thirteenth International Conference on Contemporary Computing
(IC3-2021), Noida, India, 5–7 August 2021; pp. 13–17.

42. Jindal, R.; Malhotra, R.; Jain, A. Software defect prediction using neural networks. In Proceedings of the 3rd International
Conference on Reliability, Infocom Technologies and Optimization, Noida, India, 8–10 October 2014; pp. 1–6.

43. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

44. Rana, G.; Haq, E.u.; Bhatia, E.; Katarya, R. A Study of Hyper-Parameter Tuning in The Field of Software Analytics. In Proceedings
of the 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India,
5–7 November 2020; pp. 455–459. [CrossRef]

45. Osman, H.; Ghafari, M.; Nierstrasz, O. Hyperparameter optimization to improve bug prediction accuracy. In Proceedings of the
2017 IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE), Klagenfurt, Austria, 21–21
February 2017; pp. 33–38.

46. Shan, C.; Chen, B.; Hu, C.; Xue, J.; Li, N. Software defect prediction model based on LLE and SVM. IET Conf. Publ. 2014, 2014, CP
653. [CrossRef]

47. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
48. Nasser, A.B.; Ghanem, W.; Abdul-Qawy, A.S.H.; Ali, M.A.H.; Saad, A.M.; Ghaleb, S.A.A.; Alduais, N. A Robust Tuned K-

Nearest Neighbours Classifier for Software Defect Prediction. In Proceedings of the 2nd International Conference on Emerging
Technologies and Intelligent Systems, Sanya, China, 20–22 January 2022; Al-Sharafi, M.A., Al-Emran, M., Al-Kabi, M.N., Shaalan,
K., Eds.; Springer: Cham, Switzerland, 2023; pp. 181–193.

49. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
50. Soe, Y.N.; Santosa, P.I.; Hartanto, R. Software defect prediction using random forest algorithm. In Proceedings of the 2018 12th

South East Asian Technical University Consortium (SEATUC), Yogyakarta, Indonesia, 12–13 March 2018; Volume 1, pp. 1–5.
[CrossRef]

http://dx.doi.org/10.1109/ICoDSE53690.2021.9648476
http://dx.doi.org/10.1109/TSE.2021.3079841
http://dx.doi.org/10.1109/ACCESS.2019.2961129
http://dx.doi.org/10.1080/00401706.1999.10485936
http://dx.doi.org/10.1109/TR.2018.2847353
http://dx.doi.org/10.1109/MSR52588.2021.00055
http://promise.site.uottawa.ca/SERepository
http://dx.doi.org/10.1049/ic.2011.0012
http://dx.doi.org/10.1145/3136625
http://dx.doi.org/10.1109/CCECE53047.2021.9569067
http://dx.doi.org/10.1109/MeMeA.2018.8438698
http://dx.doi.org/10.1007/s10586-021-03254-y
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.1109/AITC.2019.8921374
http://dx.doi.org/10.1109/ICECA49313.2020.9297613
http://dx.doi.org/10.1049/cp.2014.0749
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/SEATUC.2018.8788881


Computers 2024, 13, 52 23 of 23

51. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144. [CrossRef]

52. Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018,
6, 52138–52160. [CrossRef]

53. Biecek, P.; Burzykowski, T. Local interpretable model-agnostic explanations (LIME). In Explanatory Model Analysis; Chapman and
Hall/CRC: New York, NY, USA, 2021; pp. 107–123. [CrossRef]

54. Jiarpakdee, J.; Tantithamthavorn, C.K.; Dam, H.K.; Grundy, J. An empirical study of model-agnostic techniques for defect
prediction models. IEEE Trans. Softw. Eng. 2020, 48, 166–185. [CrossRef]

55. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing
Systems 30; Neural Information Processing Systems Foundation, Inc.: La Jolla, CA, USA, 2017.

56. Esteves, G.; Figueiredo, E.; Veloso, A.; Viggiato, M.; Ziviani, N. Understanding machine learning software defect predictions.
Autom. Softw. Eng. 2020, 27, 369–392. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1109/ACCESS.2018.2870052
http://dx.doi.org/10.1201/9780429027192-11
http://dx.doi.org/10.1109/TSE.2020.2982385
http://dx.doi.org/10.1007/s10515-020-00277-4

	Introduction
	Literature Review
	Methodology
	Data Collection
	Feature Selection and Preprocessing Steps
	Applied Machine Learning Algorithms
	Model Interpretability

	Evaluation Strategy

	Results
	Performance of Machine Learning Algorithms on Original Dataset
	Performance of Machine Learning Algorithms on Balanced Dataset

	Analysis and Discussion
	Conclusions and Future Work
	References

