
Citation: And̄elić, N.; Baressi Šegota,

S. Achieving High Accuracy in

Android Malware Detection through

Genetic Programming Symbolic

Classifier. Computers 2024, 13, 197.

https://doi.org/10.3390/

computers13080197

Academic Editor: Paolo Bellavista

Received: 15 July 2024

Revised: 5 August 2024

Accepted: 13 August 2024

Published: 15 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Achieving High Accuracy in Android Malware Detection
through Genetic Programming Symbolic Classifier
Nikola And̄elić *,† and Sandi Baressi Šegota †

Department of Automation and Electronics, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia;
sandi.segota@riteh.uniri.hr
* Correspondence: nikola.andjelic@riteh.uniri.hr
† These authors contributed equally to this work.

Abstract: The detection of Android malware is of paramount importance for safeguarding users’
personal and financial data from theft and misuse. It plays a critical role in ensuring the security
and privacy of sensitive information on mobile devices, thereby preventing unauthorized access
and potential damage. Moreover, effective malware detection is essential for maintaining device
performance and reliability by mitigating the risks posed by malicious software. This paper introduces
a novel approach to Android malware detection, leveraging a publicly available dataset in conjunction
with a Genetic Programming Symbolic Classifier (GPSC). The primary objective is to generate
symbolic expressions (SEs) that can accurately identify malware with high precision. To address the
challenge of imbalanced class distribution within the dataset, various oversampling techniques are
employed. Optimal hyperparameter configurations for GPSC are determined through a random
hyperparameter values search (RHVS) method developed in this research. The GPSC model is
trained using a 10-fold cross-validation (10FCV) technique, producing a set of 10 SEs for each dataset
variation. Subsequently, the most effective SEs are integrated into a threshold-based voting ensemble
(TBVE) system, which is then evaluated on the original dataset. The proposed methodology achieves
a maximum accuracy of 0.956, thereby demonstrating its effectiveness for Android malware detection.

Keywords: Android malware detection; genetic programming symbolic classifier; oversampling
techniques; random hyperparameters values method

1. Introduction

Android malware detection (AMD) is crucial because it protects users’ sensitive in-
formation from being compromised. Android devices often store a wealth of personal
data, including financial details, personal communications, and location information. Mal-
ware can exploit vulnerabilities to steal these data, leading to identity theft, financial loss,
and privacy violations. Effective malware detection helps safeguard users by identifying
and mitigating threats before they can cause harm, ensuring the integrity and confidentiality
of personal information.

Moreover, robust malware detection enhances the overall security of the Android
ecosystem. As Android is the most widely used mobile operating system, it is a prime
target for cybercriminals. Widespread malware can degrade user trust and undermine
the platform’s reputation. By preventing the proliferation of malicious software, malware
detection tools help maintain a secure and reliable environment for both users and develop-
ers. This encourages continued innovation and adoption of Android devices, contributing
to a healthier digital landscape.

In the last decade, various artificial intelligence (AI) algorithms were applied for AMD.
In [1], the authors proposed deep convolutional neural network (CNN). Using this method,
the accuracy (ACC) achieved was 98%. The authors in [2] used an online deep-learning-
based AMD engine, which can automatically detect if the application is malware or not.

Computers 2024, 13, 197. https://doi.org/10.3390/computers13080197 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13080197
https://doi.org/10.3390/computers13080197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-0314-243X
https://orcid.org/0000-0002-3015-1024
https://doi.org/10.3390/computers13080197
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13080197?type=check_update&version=2

Computers 2024, 13, 197 2 of 31

Using this approach, the highest ACC achieved was 96.76%. The multi-level anomaly
detector for Android Malware (MADAM) was proposed in [3]. The detector was based
on the random forest classifier (RFC) that achieved 96.9%. In [4], the robustness of the
support vector machines (SVM) model for AMD against adversarial attacks was explored.
It demonstrates how secure SVM can be achieved by integrating adversarial training and
robust feature selection. The model achieved an ACC of 89%. Adversarial examples
that can fool any deep learning model (DNN) in various domains, including AMD, were
examined in [4]. The authors discussed various attack and defense strategies. The accuracy
of their adversarial trained models reached up to 92%. The paper [5] introduces a deep
learning-based approach for AMD using recurrent neural networks (RNN) to analyze
API call sequences. The model effectively distinguishes between benign and malicious
applications. The reported ACC is 98.2%. The paper [6] presents MAMADroid, a tool
that detects Android malware by constructing Markov chains of app behavior based on
API calls. The classification was performed using different classification algorithms: RFC,
artificial neural network (ANN), k-Nearest Neighbors (kNN), and support vector classifier.
The reported ACC was 99%. The Deep4maldroid was introduced in [7], a deep learning
framework that uses Linux kernel system call graphs for AMD. It combines CNNs with
graph embedding techniques. The model achieves an ACC of 94.6%. The paper [8] explores
the structural detection of Android malware using embedded call graphs, comparing the
graphs of benign and malicious apps. The approach is effective in identifying structural
anomalies. The reported accuracy is 96.5%. The paper [9] presents a machine learning-based
classification approach for Android malware, employing techniques like RFC and SVM.
The study highlights the importance of feature engineering. The model achieves an ACC of
96.2%. The deep learning framework for malware detection (DL4MD) was proposed in [10].
The DL4MD is a deep learning framework designed for intelligent malware detection in
Android applications, utilizing autoencoders and deep neural networks. The framework
emphasizes automatic feature learning. The reported accuracy is 95.8%. The study in [11]
presents a method for AMD based on bytecode image, transforming the app’s bytecode
into images and using CNNs for classification. This novel representation aids in effective
detection. The ACC reported is 94.9%.

The study presented in [12] employs a structured pipeline for reverse engineering-
based malware analysis, utilizing Call Graphs, Control Flow Graphs (CFGs), and Data Flow
Graphs (DFGs) in conjunction with Deep Learning (DL) models. The authors introduce
the Canonical Executable Graph (CEG) for Portable Executable (PE) files, which integrates
syntactical, semantic, and structural information. Additionally, they develop the Genetic
Algorithm-based Graph Explainer (GAGE) to enhance the interpretability of Explainable
Artificial Intelligence (XAI). Through this innovative approach, they achieve an accuracy
(ACC) of 87%, demonstrating the effectiveness of their methodology.

In [13], the authors propose a method for Android malware detection (AMD) known as
GA-StackingMD. This approach combines five different base classifiers using the Stacking
technique and optimizes the framework’s hyperparameters with a Genetic Algorithm. This
method addresses challenges related to high feature dimensionality and the limited accu-
racy of single classification algorithms. Experimental results show that GA-StackingMD
achieves accuracy rates of 98.43% and 98.66% on the CIC-AndMal2017 and CICMal-
Droid2020 datasets, respectively, underscoring its effectiveness and practical feasibility.

The research detailed in [14] underscores the growing importance of robust anti-
malware measures in the expanding Android smartphone market. The authors develop
a machine learning model designed to detect subtle malicious patterns, emphasizing the
significance of coexistence patterns in malware detection. They enhance data represen-
tativeness through the use of the SMOTE technique and optimize feature selection with
the Extra Trees Classifier (ETC). The proposed methodology achieves 98% accuracy using
a voting classifier, representing a significant advancement in adaptable and precise Android
malware detection.

Computers 2024, 13, 197 3 of 31

In response to the rising cyber-threats associated with increased smartphone usage,
the authors of [15] introduce a Time-Aware Machine Learning (TAML) framework for
Android malware detection. Utilizing the KronoDroid dataset, which comprises over
77,000 apps, their framework identifies the ’LastModDate’ feature as critical. The study
demonstrates that time-aware models significantly outperform traditional machine learning
models, achieving a 99.98% F1 score in a time-agnostic setting and up to a 99% F1 score in
annual evaluations. Moreover, the research highlights that real-device detection surpasses
emulator-based detection, underscoring the superior performance of their time-aware
classifier. The results of previously described research papers are summarized in Table 1.

Table 1. The summary of research papers.

Reference Methods Accuracy (%)

[1] CNN 98

[2] DNN 96.76

[3] RFC 96.9

[4] SVM 89

[4] DNN 92

[5] RNN 98.2

[6] RFC, ANN, kNN, SVC 99

[7] CNN 94.6

[8] embedded call graphs 94.6

[9] RFC, SVM 96.2

[10] autoencoders + DNN 95.8

[11] CNN 94.9

[12] GAGE 87

[13] GA-StackingMD 98.43, 98.66

[14] ETC 98

[15] TAML F1-Score: 99.98

The results presented in Table 1, derived from other research studies, indicate that
machine learning and deep learning methods can achieve high evaluation metrics for
malware detection. However, these approaches have notable drawbacks, including the
substantial computational resources required for training and model storage, as well as the
inability to express them in mathematical form. This is particularly relevant for large deep
learning neural networks, which consist of numerous interconnected neurons.

To address these limitations, this paper proposes the application of a Genetic Pro-
gramming Symbolic Classifier (GPSC) to generate symbolic expressions (SEs) capable of
detecting Android malware with high classification accuracy. The initial dataset used
in this research is the publicly available Android Malware Dataset, which is inherently
unbalanced. The primary challenge with an unbalanced dataset in machine learning is
the bias it introduces towards the majority class, leading to suboptimal performance and
inaccurate predictions, especially for the minority class.

Consequently, this paper explores whether the application of oversampling techniques
can balance the dataset and, in turn, improve the GPSC’s ability to generate SEs with supe-
rior classification performance. Given the extensive range of hyperparameters associated
with GPSC, a Random Hyperparameter Values Search (RHVS) method will be developed
and employed to identify optimal hyperparameter combinations, enabling the GPSC to
produce SEs with enhanced classification capabilities.

Computers 2024, 13, 197 4 of 31

The GPSC training process will utilize 10-fold cross-validation (10FCV) to generate
10 SEs per training session, as each SE corresponds to one split of the 10FCV. After deter-
mining the best SE sets for each balanced dataset variation, these SEs will be integrated into
a threshold-based voting ensemble (TBVE). The research will further investigate whether
adjusting the threshold value can enhance the classification performance of the TBVE.

Based on the review of other research papers, the disadvantages of other research
papers, and the idea and novelty in this paper, the following questions arise:

• Can the Genetic Programming Symbolic Classifier (GPSC) achieve high classification
performance in detecting Android malware?

• Do oversampling techniques effectively balance the dataset, thereby enabling GPSC to
produce symbolic expressions (SEs) with high classification performance in AMD?

• Is the development and application of the Random Hyperparameter Values Search
(RHVS) method justified in optimizing GPSC hyperparameters for achieving high-
performance SEs in AMD?

• Does the application of 10-fold cross-validation (10FCV) in training GPSC lead to the
generation of robust and highly accurate SEs for AMD?

• Can the combination of SEs using a threshold-based voting ensemble (TBVE) result in
even higher classification performance for AMD?

The structure of this paper is organized into the following sections: Materials and
Methods, Results, Discussion, and Conclusions. In the Materials and Methods section, the
research methodology is detailed, including the dataset description, statistical analysis,
oversampling techniques, GPSC and RHVS, evaluation metrics, training–testing proce-
dures, and threshold based-voting ensemble. The Results section presents the optimal
combinations of GPSC hyperparameter values obtained using the RHVS method, as well as
the classification performance of each of the best SEs. Additionally, this section reports the
classification performance of the TBVE ensemble consisting of the best SEs when applied
to the original dataset.

The Discussion section provides an in-depth analysis of the proposed research method-
ology and the results obtained. The Conclusions section addresses the hypotheses outlined
in the introduction, drawing on insights from the detailed discussion. It also highlights the
advantages and limitations of the proposed research methodology and suggests directions
for future research based on these limitations. Lastly, the Appendix provides supplemen-
tary information on the GPSC, along with instructions on how to download and utilize the
SEs generated in this study.

2. Materials and Methods

In this section, the research methodology, dataset description and statistical analysis,
oversampling techniques, genetic programming symbolic classifier, evaluation metrics,
training–testing procedure, and different ensemble methods of best mathematical expres-
sions are described.

2.1. Research Methodology

The research methodology is graphically represented in Figure 1.
As illustrated in Figure 1, the research methodology is composed of the following steps:

• The initial dataset contains a target variable with two classes, each with a different
number of samples. To address this imbalance, various oversampling techniques were
employed to create balanced dataset variations, ensuring equal representation of each
class in the target variable.

• Once the balanced dataset variations were established, each was utilized in the GPSC
to generate SEs capable of detecting Android malware with high classification per-
formance. The datasets were split into training and testing subsets in a 70:30 ratio.
The RHVS method was employed to identify the optimal combination of GPSC hy-
perparameters for each dataset variation. GPSC was trained using a 10FCV approach,
where each of the ten splits generated one SE. In each split, the GPSC was trained

Computers 2024, 13, 197 5 of 31

on nine folds and validated on one. Following the completion of 10FCV with the
optimal hyperparameters, the resulting 10 SEs were evaluated on the testing dataset.
If the classification performance on the testing dataset was consistent with that on the
training dataset, the training/testing procedure was deemed successful, resulting in
10 SEs with robust classification performance.

• After identifying the best SEs from each balanced dataset variation, they were com-
bined into a TBVE. The threshold was adjusted to determine if further improvements
in classification performance could be achieved.

Figure 1. The graphical representation of the research methodology.

2.2. Dataset Description and Statistical Analysis

As stated, in this paper, the publicly avaliable dataset for AMD was used (for reference,
see Data Availability at the end of the manuscript). The dataset consists of 327 input
variables, 1 target variable, and 4644 samples. The problem with the target variable is that
it consists of only strings, i.e., benign and malware values. Using the label encoder, the
string values benign and malware were transformed to classes 0 and 1.

Due to an extremely large number of input variables, the initial statistical analysis will
be avoided. Instead, the Pearson’s correlation analysis will be performed, and a scatter
plot will be shown in which input variables that exhibit some correlation (lower than
−0.3 and higher than 0.3) with the target variable will be shown. It should be noted that
GPSC will automatically label each input variable from the dataset as X variable, with the
corresponding index in the range of i = 0, . . . , 327.

Pearson’s correlation analysis [16] was performed to examine the relationship between
two variables, with correlation values ranging from −1 to 1. A value of −1 indicates
a perfect negative correlation, meaning that as one variable increases, the other decreases,
and vice versa. Conversely, a value of 1 signifies a perfect positive correlation, where an
increase in one variable corresponds to an increase in the other. A correlation value of
0 indicates no relationship between the variables, meaning that changes in one variable
have no effect on the other. Figure 2 presents the results of this analysis, showing the
correlation between each input variable and the target variable.

From Figure 2, it can be noticed that “android.permision.READ_PHONE_STATE” has
the highest positive correlation value (0.76) with the target variable. This high positive correla-
tion suggests that malware applications often request this permission, making it a significant
indicator of malicious behavior. The android.permission.RECEIVE_BOOT_COMPLETED
and RECEIVE_BOOT_COMPLETED variables have a 0.591 and 0.432 correlation value with
the target variable. This strong correlation indicates that malware often requests to start
after the device boots, likely to ensure persistence on the device. The INSTALL_SHORTCUT
has a 0.4518 correlation value with the target variable. The relatively high correlation value
indicates that malware apps might use this permission to place shortcuts on the home screen,

Computers 2024, 13, 197 6 of 31

possibly as part of a phishing or adware strategy. The ACCESS_COARSE_LOCATION and
ACCESS_FINE_LOCATION have 0.406 and 0.39 correlation values with the target variable.
Access to location data is moderately associated with malware, suggesting these apps might
track user movements. The RECEIVE_SMS and READ_SMS have a bot 0.307 correlation
value with the target variable. The SMS permissions are moderately correlated with mal-
ware, indicating that malicious apps might intercept or read messages. The GET_TASKS
have a 0.323 correlation value with the target variable. This permission allows an app to
see what tasks are running, which can be used by malware to monitor user activity or
other applications. The SEND_SMS has a correlation value of 0.306 with the target variable.
The ability to send SMS is associated with malware, potentially for sending premium SMS
messages or spreading spam.

Figure 2. The results of the Pearson’s correlation analysis between the input variables and the output
(target) variable are displayed. The plot highlights only those input variables that exhibit a correlation
value greater than 0.3 or less than −0.3 with the target variable.

The negative correlation indicates that the presence of certain permissions is more
common in the benign applications. The com.google.android.c2dm.permission.RECEIVE
has a correlation of −0.49 with the target variable. This correlation value suggests that
benign apps are more likely to use Google’s cloud messaging service, whereas malware
might avoid it to evade detection. The Ljava/net/URL;->openConnection variable has
a correlation value of −0.408 with the target variable. The benign apps might use stan-
dard network connections more frequently, while malware could use alternative methods
to avoid detection. The Landroid/location/LocationManager;->getLastKnownLocation
variable has a −0.376 correlation value with the target variable. Accessing the last known

Computers 2024, 13, 197 7 of 31

location is more common in benign apps, possibly for legitimate location-based services.
The WAKE_LOCK has a −0.317 correlation value with the target variable. The benign
applications might use this permission to keep the device awake for legitimate purposes,
whereas malware might not use it frequently.

The number of samples per class could indicate if the dataset is balanced or imbalanced.
In this dataset, there are two classes, i.e., benign (labeled 0) and malware (labeled 1). The
graphical representation of both class samples are shown in Figure 3.

Figure 3. The initial imbalance between class samples.

As seen from Figure 4, the initial investigation of target variable shows that class_0
has 1931 samples, while class_1 has 2533 samples. This is a huge imbalance between the
minority (class_0) class and majority (class_1) class, which suggests that the application of
dataset balancing techniques is mandatory.

Figure 4. The balance between class samples achieved using different oversampling techniques.

Computers 2024, 13, 197 8 of 31

2.3. Oversampling Techniques

In an unbalanced dataset for a binary classification problem, the two classes are
typically referred to as the minority and majority classes. The minority class has fewer
samples, while the majority class has a larger number of samples, leading to an imbalance.
Training a machine learning algorithm on such an imbalanced dataset is generally not
recommended, as it may result in the model becoming biased towards the majority class.
To mitigate this, it is considered best practice to balance the classes, either by increasing
the number of samples in the minority class or by reducing the number of samples in the
majority class.

Increasing the number of minority class samples is achieved through oversampling
techniques, while reducing the number of majority class samples is accomplished using
undersampling techniques. The advantage of oversampling methods is that they generate
additional samples for the minority class until its size is equal to or nearly equal to that of
the majority class. This process typically does not require extensive parameter tuning and
can be executed quickly, often within seconds.

In contrast, undersampling techniques reduce the number of samples in the majority
class to match or approximate the number of minority class samples. However, under-
sampling is more time-consuming, as it involves identifying which majority class samples
should be removed from the dataset. Additionally, undersampling methods usually require
careful parameter tuning to achieve an appropriate balance between the classes.

Given the ease of application, shorter execution time, and the ability to balance class
samples without extensive parameter tuning, the following oversampling techniques
were employed in this research: ADASYN, BorderlineSMOTE, KMeansSMOTE, SMOTE,
and SVMSMOTE.

2.3.1. ADASYN

The Adaptive Synthetic Sampling (ADASYN) technique, as described in [17], is
a method designed to address class imbalance in datasets, particularly in machine learning
classification tasks. ADASYN generates synthetic data samples for the minority class
to achieve a more balanced class distribution. Unlike other oversampling techniques,
ADASYN adaptively targets minority class samples that are more difficult to classify, pro-
ducing a higher number of synthetic samples in regions where the minority class density is
low and fewer samples where the density is high. This targeted approach enhances the
classifier’s performance on the minority class by focusing on the areas where the model is
most likely to struggle.

2.3.2. BorderlineSMOTE

The Borderline Synthetic Minority Oversampling Technique (BorderlineSMOTE) is an
advanced method for addressing class imbalance in datasets. Unlike traditional oversam-
pling techniques, BorderlineSMOTE specifically focuses on generating synthetic samples
for the minority class near the decision boundary between classes [18]. This approach is
designed to improve the classifier’s performance on difficult borderline instances that are
more likely to be misclassified.

BorderlineSMOTE identifies minority class samples that are at a higher risk of misclas-
sification—those situated close to the majority class—and generates new synthetic samples
around these critical points. By concentrating on these challenging regions, BorderlineS-
MOTE enhances the classifier’s ability to accurately differentiate between classes, making
it particularly effective for complex and imbalanced datasets.

2.3.3. KMeansSMOTE

The KMeans Synthetic Minority Oversampling Technique (KMeansSMOTE) is an
oversampling technique designed to handle class imbalance in datasets by combining
k-means clustering with the Synthetic Minority Oversampling Technique (SMOTE) [19].
The technique involves the following steps:

Computers 2024, 13, 197 9 of 31

1. Clustering: The minority class samples are clustered using the k-means algorithm.
2. SMOTE Application: Within each cluster, synthetic samples are generated using

SMOTE, which creates new instances by interpolating between existing minority
class samples.

This clustering step ensures that synthetic samples are generated in a more structured
manner, respecting the natural data distribution and improving the classifier’s perfor-
mance on the minority class. By focusing on local structures within clusters, KMeansS-
MOTE can produce more relevant and diverse synthetic samples, enhancing the overall
model accuracy.

2.3.4. SMOTE

The Synthetic Minority Oversampling Technique (SMOTE) is a widely used method
for addressing class imbalance in datasets, particularly in machine learning classification
tasks. SMOTE enhances class balance by generating synthetic samples for the minority
class. The process begins by selecting a sample from the minority class and identifying its
k-nearest neighbors within the same class [20]. Synthetic samples are then created along
the line segments connecting the original sample to its neighbors. This approach effectively
increases the diversity of the minority class, avoiding mere duplication of existing samples,
and thereby improving the model’s performance on imbalanced datasets.

2.3.5. SVMSMOTE

The Support Vector Machines–Synthetic Minority Oversampling Technique (SVMSMOTE)
is an oversampling technique that combines the principles of SVM and SMOTE to address
class imbalance in datasets [21]. The method focuses on generating synthetic samples for
the minority class, particularly around the decision boundary between classes.

The SVMSMOTE consists of the following steps:

1. SVM Training: An SVM classifier is trained on the dataset to identify the support
vectors, which are the samples that lie closest to the decision boundary.

2. Sample Selection: The support vectors of the minority class are identified, as they are
the most informative and challenging samples.

3. SMOTE Application: Synthetic samples are generated using SMOTE by interpolating
between these support vectors and their nearest neighbors within the minority class.

By concentrating on the support vectors, SVMSMOTE aims to improve the classifier’s
performance on the most difficult-to-classify minority class samples, thus enhancing the
overall model accuracy on imbalanced datasets.

2.3.6. The Results of Oversampling Techniques

After applications of oversampling techniques, the balanced dataset variations were
created. Some balanced dataset variations have a slight difference between class samples;
however, these imbalances are negligible compared to the initial imbalanced dataset. The
results of the application of balancing techniques is shown in Figure 4.

As seen from Figure 4, the application of BorderlineSMOTE, SMOTE, and SVMSMOTE
generated perfectly balanced datasets. However, the ADASYN generated class_0 with 2381
samples, which is a 6% lower number of samples than the class_1 number of samples. It
should be noted that, initially, class_0 has a 23.76% lower number of samples than class_1.
The KMeansSMOTE oversampled class_0; however, there is a slight difference between
samples: class_0 contains 2534, while class_1 contains 2533 samples.

2.4. Genetic Programming Symbolic Classifier

The Genetic Programming Symbolic Classifier (GPSC) is an evolutionary algorithm
that begins with an initialization phase of the population. This initial population is created
by randomly selecting mathematical functions, constant values, and input variables derived
from the dataset. These components are organized into a primitive set, which includes
terminals (i.e., input variables and constant values) and a function set (i.e., mathematical

Computers 2024, 13, 197 10 of 31

functions). The size of the initial population is determined by the GPSC hyperparameter
popSize. In this study, the constant values are defined within a range specified by the GPSC
hyperparameter constantRange. The mathematical functions utilized include addition,
subtraction, multiplication, division, natural logarithm, absolute value, square root, cube
root, and logarithms with bases 2 and 10. Notably, to ensure the correct execution of the
GPSC, some functions—specifically, division, square root, and logarithms with bases 2 and
10—were slightly modified to prevent errors; details of these modifications are provided
in Appendix A. Each member of the initial population in GPSC is represented as a three-
structure. For example, the symbolic expression add(mul(x0,x1), div(x5, 43)) is illustrated
in its three-structure form in Figure 5.

Figure 5. The tree structure of the population member in GP.

In Figure 5, the node labeled “Add” represents the root node, which is at depth 0.
The functions “mul” and “div” are positioned at depth 1, while the variables x0, x1, x5,
and the constant 43 are located at depth 2. The size of a symbolic expression (SE) is
quantified by its length, defined as the total number of elements it contains, including
mathematical functions, constants, and variables. For the SE shown in Figure 5, which
comprises 3 mathematical functions, 3 variables, and 1 constant, the total length is 7.

In GPSC, the initial population is generated using the ramped half-and-half method,
which merges two traditional genetic programming methods: the full method and the grow
method [22]. The term “ramped” refers to the range of depths for the population members.
For example, a depth range of 5–20 means that the initial population will include members
with tree depths varying between 5 and 20.

In the full method, half of the initial population is created by selecting nodes exclu-
sively from the function set until the maximum depth is achieved; only terminals (variables
and constants) are then used to fill the remaining nodes. This method often results in trees
where all leaves are at the same depth. Conversely, the grow method generates the other
half of the population by selecting nodes from the entire primitive set (function set plus
terminals) until the maximum depth is reached, at which point only terminals are randomly
selected. The grow method tends to produce trees with greater diversity compared to the
full method. The depth range used in the ramped half-and-half method is defined by the
hyperparameter InitDepth, which specifies the depth range for the population members.

After the initial population is created using the random half-and-half method, the
population members (SEs) are evaluated using the fitness function. This fitness function
consists of the following steps:

1. Using the training dataset to calculate the output of each SE.

Computers 2024, 13, 197 11 of 31

2. Using the output of SEs inside the sigmoid function, which can be written as:

S(x) =
1

1 + e−x (1)

where x is the output sample of the SE.
3. The final step is to calculate the Log-Loss function value, which is the fitness function

value, and can be written as:

LogLoss = − 1
N

N

∑
i=1

[yi log(pi) + (1 − yi) log(1 − pi)] (2)

where N represents the total number of samples or instances in the dataset. yi denotes
the true label or ground truth of the i-th instance. It is typically binary (0 or 1) for
binary classification tasks. pi represents the predicted probability that the i-th instance
belongs to the positive class (often denoted as class 1).

In GPSC, there are two primary termination criteria: the fitness function threshold,
known as stopCrit, and the maximum number of generations, denoted as maxGen. The
GPSC execution terminates if the fitness function value of any population member falls
below the stopCrit value. If this threshold is not reached, the algorithm continues until the
maxGen limit is achieved. In this study, all GPSC runs were concluded upon reaching the
maximum number of generations.

After evaluating the population, the Tournament Selection (TS) process is repeatedly
conducted to determine which members advance to the next generation. Each TS involves
randomly selecting a subset of population members, where the size of the subset is defined
by the GPSC hyperparameter TS. The member with the lowest fitness value within this
subset is chosen as the winner of the tournament.

Genetic operations, such as crossover and mutation, are then applied to these TS
winners to produce offspring for the next generation. The crossover operation requires two
TS winners. It involves randomly selecting subtrees from both winners and exchanging
these subtrees to generate new population members. In GPSC, three types of mutations are
utilized: subtree mutation, hoist mutation, and point mutation.

• Subtree Mutation (subMute): Involves selecting a random subtree from a TS winner
and replacing it with a newly generated subtree from the primitive set. This operation
requires only one TS member.

• Hoist Mutation (hoistMute): Randomly selects a subtree from the TS winner and
replaces it with a random node, resulting in the creation of a new subtree and, conse-
quently, a new population member.

• Point Mutation (pointMute): Randomly selects nodes within the TS winner and
replaces them with nodes from the primitive set. This includes replacing constants
with other constants, variables with other variables, and mathematical functions with
equivalent functions of the same arity (number of arguments).

The stopping criterion stopCrit is a predefined fitness value. If any population member
achieves this value, GPSC terminates. In this study, stopCrit was set to a very low value to
ensure that the algorithm would terminate only upon reaching maxGen.

The constant range, constRange, defines the range of constant values used in GPSC
for both initializing the population and during genetic operations. The maximum samples
parameter, maxSamples, specifies the percentage of the training dataset used for each
generation. For example, a value of 0.99 means that 99% of the dataset is used for training,
while the remaining 1% is used for additional evaluation. The fitness value obtained from
the 99% of the data is compared with the out-of-bag fitness value from the remaining 1% to
ensure consistency in the evolution of GPSC.

Lastly, the parsimony coefficient, parsCoeff, is a crucial hyperparameter used to
manage the size of the population members and mitigate the bloat phenomenon—where

Computers 2024, 13, 197 12 of 31

members grow excessively without improving fitness. During the TS process, if a member’s
length is 50 times greater than another but has a lower fitness value, its fitness is penalized
by its size multiplied by the parsimony coefficient. A high parsCoeff value prevents growth,
while a low value may exacerbate bloat. Thus, careful tuning of parsCoeff is essential to
balance the growth of population members and maintain effective evolution.

Since the GPSC has a lot of hyperparameter values, the problem is how to find the
optimal combination of its hyperparameters, in which the use of the GPSC will produce
the SEs that will generate high classification performance. Developing the RHVS method
from scratch consists of the following steps:

1. Define initial lower and upper boundary value for each hyperparameter;
2. Test the GPSC with each boundary and see it will successfully execute;
3. If the GPSC execution in the previous step fails, then adjust the boundaries.

The boundaries of GPSC hyperparameter values used in the RHVS method is shown
in Table 2.

Table 2. The boundaries of GPSC hyperparameter values used in the RHVS method.

GPSC Hyperparameter Lower Boundary Higher Boundary

popSize 1000 2000

maxGen 100 200

InitDepth (3, 7) (12, 18)

TS 100 500

Cross 0.001 0.1

subMute 0.95 1

hoistMute 0.001 0.1

pointMute 0.001 0.1

stopCrit 1 × 10−6 1 × 10−3

maxSamp 0.99 1

constRange −10,000 10,000

parsCoeff 1 × 10−4 1 × 10−3

It should be noted that the sum of genetic operations should be equal to or less than
1. If the value is lower than 1, then some population members enter the next generation
unchanged. As seen from Table 2, it can be noticed that the subMute coefficient will be a
dominating genetic operation when compared to others. The initial investigation showed
that the subMute greatly reduces the fitness function value. The benefit of using this genetic
operation is that it does not require two TS winners, i.e., only one, and due to the large
population in every GPSC execution, it is not memory intensive. On the other hand, this
genetic operation can be described as more aggressive when compared to other genetic
operations, such as hoistMute or pointMute, due to the fact that it replaces the entire subtree
of the TS winner with a randomly generated subtree. The parsCoeff range initially proved
to be a suitable range for this research since the coefficient value did not prevent the growth
of the population members and the bloat phenomenon did not occur.

2.5. Evaluation Metrics

In this research, the accuracy score (ACC), area under receiver operating characteristics
curve (AUC), precision score, recall score, F1 − score, and confusion matrix were used
to evaluate the obtained SEs and TBVE. Before explaining each evaluation metric, it is
important to define the basic elements—which are used to calculate the aforementioned
evaluation metrics—and these are true positive (TP), false positive (FP), true negative (TN),
and false negative (FN).

Computers 2024, 13, 197 13 of 31

• TP are instances where the model (trained ML model or SE) correctly predicts the
positive class. In the case of AMD, this could be a sample that is classified as Android
malware (actual positive) and the model correctly identifies this is Android malware
(predicted positive). TP is the count of such correct positive predictions.

• FN are instances where the model (trained ML model or SE) incorrectly predicts
the negative class for a true positive case. In the case of AMD, this is the sample
that is classified as Android malware (actual positive) but the model fails to detect it
(predicted negative). FN is the count of incorrect negative predictions.

• FP are instances where the model (trained ML model or SE) incorrectly predicts the
positive class for the true negative case. In this case, the sample is not classified as An-
droid malware (actual negative) but the model incorrectly predicts the sample as being
Android malware (predicted postivie). FP is the count of incorrect positive predictions.

• TN are instances where the model (trained ML model or SE) correctly predicts the neg-
ative class. In this investigation, the sample is not classified as Android malware and
the model correctly identifies that this is not Android malware (predicted negative).
The TN is the count of correct negative predictions.

The ACC, according to [23], can be defined as the ratio of correctly predicted obser-
vations to the total number of observations. The ACC is the basic evaluation metric that
gives the information about the overall effectiveness of the trained ML model or obtained
SE. The equation for calculating the ACC can be written as:

ACC =
TP + TN

TP + TN + FP + FN
(3)

The range of ACC is between 0 and 1, where one is the perfect accuracy of the model or, in
other words, that the trained model or obtained SE predicts all dataset samples correctly.
The AUC score, according to [24], is the evaluation metric used in classification problems.
This is the area under the ROC curve, and the ROC is the probability curve. The AUC
represents the degree or measure of separability. This metric provides the information of
how much the model is capable of distinguishing between classes. The components of
ROC are the true positive rate (TPR) or recall and false positive rate (FPR). The TPR is
calculated using the expression written as:

TPR =
TP

TP + FN
(4)

while the FPR can be calculated using the expression

FPR =
FP

FP + TN
(5)

The AUC value can be between 0 and 1, where 1 is the perfect ML model or obtained SE.
The AUC of 0.5 is the model with no discriminative ability, which is similar to random
guessing. A higher AUC value indicates a better performing model in distinguishing
between the positive and negative class.

According to [25], the precision score is the ratio of correctly predicted positive obser-
vations to the total predicted positives. The precision score measures the accuracy of the
positive predictions. The precision score is calculated using the expression written as:

Precision =
TP

TP + FP
(6)

A high precision means that the model has a low FPR. This evaluation metric is very impor-
tant in scenarios where FP are more costly than FN (example: email spam detection, AMD).

Computers 2024, 13, 197 14 of 31

According to [25], the recall score, also known as the sensitivity or TPR, is the ratio of
correctly predicted positive observations to all observations from the dataset. The recall
score is calculated using the expression:

Recall =
TP

TP + FN
(7)

A high recall score means that the model captures most of the positive samples. This
evaluation metric is crucial in situations where FN are more costly than the FP, for example,
in disease detection.

The F1-score is the harmonic mean of the precision and recall score, according to [25].
This evaluation metric is the balance between precision and recall and is useful when
a single metric that balances both concerns is required.

The confusion matrix [26] is a table used to describe the performance of a classification
model on a set of test data, of which the true values are known. The components of the
confusion matrix are TP, TN, FP, and FN, and are usually represented in a table, as in Table 3.

Table 3. The general form of the confusion matrix.

Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

The CM provides a complete picture of how the classification model is performing. It
helps in identifying not just errors made by the model, but also provides the information
on the error type (FP and FN).

2.6. Training–Testing Procedure

The training–testing procedure used in this research is graphically shown in Figure 6.

Figure 6. The graphical representation of the train/test procedure used in this research.

The training and testing procedure (Figure 6) outlined in this paper involves the
following steps:

1. Dataset Splitting: Each balanced dataset variation is divided into training and testing
subsets with a 70:30 ratio. The training subset is used for GPSC training with a 10-fold
cross-validation (10FCV), while the testing subset is reserved for final evaluation. The
SEs are tested only if the training metrics exceed a threshold of 0.9.

Computers 2024, 13, 197 15 of 31

2. GPSC Training with 10FCV: Training begins after determining the GPSC hyperparam-
eters using the Random Hyperparameter Values Search (RHVS) method. For each
fold of the 10FCV, one SE is generated, resulting in a total of 10 SEs after complet-
ing all folds. Evaluation metrics, including Accuracy (ACC), Area Under the Curve
(AUC), Precision, Recall, and F1-score are calculated for each SE on both training and
validation folds.

3. Evaluation of Training Metrics: Once training is complete, the mean and standard de-
viation of the evaluation metrics are computed. If all metrics exceed the 0.9 threshold,
the process advances to the testing phase. If any metric falls below this threshold, the
procedure restarts with a new set of hyperparameters determined through RHVS.

4. Testing Phase: The set of 10 SEs is evaluated on the testing dataset, which was not
used during training. The performance is assessed by comparing the SEs’ predictions
with the actual values in the testing dataset using the same evaluation metrics. If the
metrics remain above 0.9, the process concludes. If not, the procedure is restarted
with new hyperparameters selected via RHVS.

2.7. Threshold-Based Voting Ensemble

After the set of best SEs are obtained using GPSC on each balanced dataset variation,
the threshold-based voting ensemble (TBVE) will be formed based on these SEs [27]. The
TBVE is a method used in ensemble learning where multiple ML models/SEs (classifiers)
vote on the classification of a sample, and a decision is made based on the predefined
threshold of votes. The threshold could be defined as the minimum number of accurate
predictions made by SEs in an ensemble per sample. This threshold must be investigated
to find for which threshold value the classification performance is the highest possible.

So, the TBVE consists of multiple SEs that were, in this case, trained on multiple
balanced dataset variations. Each of the SEs in the TBVE makes a prediction for a given
dataset sample. The predictions are usually in the form of class labels. A threshold is set to
determine how many SEs need to agree on a particular class label for it to be assigned to
the sample. The threshold can be a majority vote, i.e., more than 50% of models, a plurality
vote (most votes), or a fixed number of votes. However, in this paper, the threshold will be
investigated from the minimum (one SE accurate prediction) to the maximum threshold
(maximum number of SEs obtained). The idea is to find the threshold interval or specific
threshold value for which the classification performance has the maximum value. The class
label that meets or exceeds the threshold of votes is assigned to the sample.

3. Results

The results of the conducted investigation will be presented in the following order.
First, the best SE performance obtained using GPSC on each balanced dataset variation will
be presented. Then, the classification performance of the best SEs combined in TBVE will
be presented.

3.1. Classification Performance Analysis of Obtained SE on Balanced Dataset Variations

For the best SEs obtained from each balanced dataset variation, first, the optimal
combination of GPSC hyperparameter values will be listed using which of the GPSC
generated the SEs with the highest possible classification accuracy.

From Table 4, it can be noticed that the popSize and the maxGen vary significantly
across optimal combinations of GPSC hyperparameters obtained from each balanced
dataset variation. The highest popSize (1691) and the high number of maxGen (146) were
used to obtain SEs on the ADASYN dataset. The moderate popSize (1193) and the highest
maxGen (197) were used to obtain SEs on the BorderlineSMOTE dataset. The SEs obtained
from KMeansSMOTE, SMOTE, and SVSMOTE used a similar popSize value (1200–1600)
but with a different maxGen value. The maxGen in the case of the SMOTE dataset used the
lowest value to obtain SEs.

Computers 2024, 13, 197 16 of 31

Table 4. The optimal combination of GPSC hyperparameters obtained from each balanced dataset
variation using the RHVS method.

Dataset Name
GPSC Hyperparameters (popSize, maxGen, InitDepth, TS, Corss,
subMute, hoistMute, pointMute, stopCrit, maxSamp, constRange,
parsCoeff)

ADASYN 1691, 146, 436, (5, 13), 0.0089, 0.979, 0.001, 0.0093, 0.000656, 0.998, (−7285.5,
6882.54), 0.0004

BorderlineSMOTE 1193, 197, 281, (3, 13), 0.021, 0.96, 0.0096, 0.0071, 0.000176, 0.996, (−9967.55,
97.21), 0.00091

KMeansSMOTE 1557, 145, 423, (5, 18), 0.0031, 0.966, 0.016, 0.013, 0.000214, 0.998, (−4757.9004,
9024.429), 0.00054

SMOTE 1561, 100, 349, (3, 18), 0.0056, 0.955, 0.0015, 0.036, 0.00099, 0.994, (−3247.41,
8602.23), 0.00041

SVMSMOTE 1234, 103, 120, (7, 15), 0.022, 0.958, 0.0028, 0.015, 0.000647, 0.997, (−5775.98,
291.91), 0.0006

The cross rates are consistently low (0.0031 to 0.022), which is expected since the initial
range in Table 2 is very small and narrow. The same is valid of the hoistMute and poitMute
coefficients. The subMute coefficients dominate across in all optimal GPSC hyperparameter
value combinations in the range (0.955 to 0.979).

The stoppCrit was extremely low and was not used as one of the GPSC termina-
tion criteria. Instead, all GPSC executions stopped after the maxGen value was reached.
MaxSamp are almost constant across all datasets (around 0.994 to 0.998). The constRange
shows significant variability, suggesting different ranges of constants’ values used in GPSC
executions on different balanced dataset variations. The parsCoeff is very low across all bal-
anced dataset variations (0.0004 tp 0.00091), which enabled the stable growth of population
members in all GPSC executions without the occurrence of the bloat phenomenon.

As seen from Figure 7, the ACC ranges from approximately 0.9402 to 0.9526 across
different datasets and sampling techniques. The standard deviation of ACC is relatively
low, which indicates consistent performance with minor variability (ranging from 0.0002
to 0.00031). The AUC ranges from about 0.9402 to 0.9524, showing a consistently high
discriminating ability of the classifier. The standard deviation of AUC is similarly low,
which indicates a stable performance (ranging from 0.0004 to 0.003). The Precision ranges
from 0.9405 to 0.9595, which indicates a high accuracy in positive instance predictions.
The standard deviation of Precision is generally low, with values ranging from 0.0005
to 0.0042, suggesting a relatively consistent precision performance. The Recall varies
slightly from 0.9366 to 0.9495, showing the classifier’s ability to correctly identify positive
instances. The standard deviation of Recall ranges from 0.0001 to 0.002, which indicates
stable performance across datasets. The F1 − Score ranges from 0.9405 to 0.952, combining
the precision and recall into a single metric. The standard deviation F1 − Score ranges from
0.0006 to 0.0032, showing consistent performance across datasets.

The depth and length as well as the average depth and length of obtained SEs in this
investigation are listed in Table 5.

The classification performance of the best SEs obtained from balanced dataset varia-
tions is graphically shown in Figure 7.

As seen from Table 5, the SEs obtained from the ADASN dataset showed moderately
high values for both depth and length. The high variation in length (32 to 132) could
indicate some instances in bloat, where certain SEs have grown excessively large without
a corresponding increase in depth. In the case of SEs obtained from the BorderlineSMOTE
dataset, the SEs showed a more balanced profile with relatively consistent lengths and
depths. However, the average length is higher than KMeansSMOTE and SMOTE. The
SEs obtained from the KMeansSMOTE dataset achieved the lowest average depth and
a relatively low average length. The obtained SEs are relatively simple when compared

Computers 2024, 13, 197 17 of 31

to the SEs obtained from other balanced dataset variations. The SEs obtained from the
SMOTE dataset exhibit a low average depth and length, similar to KMeansSMOTE. The
SEs obtained from the SVMSMOTE dataset achieved high average values for both depth
and length, similar to ADASYN. The SEs obtained from SVMSMOTE also exhibit higher
variability in length (32 to 98 range).

Figure 7. Classification performance of the best sets of SEs obtained from balanced dataset variations.

Computers 2024, 13, 197 18 of 31

Table 5. The depth and length of SEs obtained from balanced dataset variations.

Dataset Depth/Length SE1 SE2 SE3 SE4 SE5 SE6 SE7 SE8 SE9 SE10 Average

ADASYN Depth 14 11 14 11 20 20 6 21 12 15 14.4
Length 54 39 97 53 123 86 33 32 51 40 60.8

BorderlineSMOTE Depth 13 13 11 7 14 13 14 9 18 17 24.7
Length 44 35 40 35 45 42 45 32 49 42 40.9

KMeansSMOTE Depth 8 10 14 11 8 15 8 9 11 10 10.4
Length 22 50 51 38 33 27 28 32 45 43 36.9

SMOTE Depth 9 12 12 9 12 18 6 11 12 7 10.8
Length 23 69 49 29 39 41 20 41 48 23 38.2

SVMSMOTE Depth 13 12 20 23 15 12 11 10 9 18 14.3
Length 80 55 92 91 98 32 34 41 41 47 61.1

The most effective (have the highest classification performance) set of SEs obtained
from balanced dataset variations were those obtained from the dataset balanced with the
KMeansSMOTE technique.

y0 = X258 − 1. sec
(

4
√

tan(X266)
)(

X280 − 1. max(X149, tan(X306))
X262

(8)

− 1.4427 log(cos(X220)) + X280

)
.

In Equation (8), the secans function was used to shorten the equation. Initially, the GPSC
generated an SE where sec

(
4
√

tan(X266)
)

was 1
cos
(

4
√

tan(X266)
) .

y1 = − tan(X220)− 2X228 − X246 + 2X247 − 2X254
X262

+ 2 tan(X258)− X304
X262

(9)

+ X262 + tan(X275)− X280 − tan(X280) + X306 + 2X308 − 2X310,

y2 = − cos(X149)− tan(X220)− tan(X228)− X253 + 2X258 + 4X262 − X266 (10)

+ tan(X275)− 3X280 + X295 − X304 + X306 − X307 + X308 − X309

− tan(X310)− tan(X316),

y3 = −2(X280 − X149)
X262

− 2X220 − X228 − tan(X246) + 2X258 − 2X280 + X285 (11)

− X304 + X306 + X308 − X310,

y4 = −X314 − X149
X306

− tan(X220)− X246 + tan(X258) + 3X262 − X266 (12)

− 2 tan(X280)− X304 + X308 + X325,

y5 = 1.4 log

(
0.43 log

(
log

(
0.43

log

(
cos

(
log(0.43 log(tan(min(X152−X228,X258−X280,X280−X316))))

X262

)))

+ X262

))
+ X149 + X262,

(13)

Computers 2024, 13, 197 19 of 31

y6 = −1. sec(X266)(X228 − 1.X294 + X310)
X149

+ tan(X258) (14)

− 1.(tan(X280)− 1.X306) sec(X322 − 0.43 log(cos(cos(X298))))
X262

,

y7 = − 3

√
sec(tan(X228))max

(
np.abs(X237)

X306 , tan(tan(X280))
)

− 1.4427 log(cos(X149+sin(cos(X258))))
X262 − 1.X246 + X308 + X325 +

√
X325,

(15)

y8 = − tan(max(X220, X280)) + 3

√
−X250 + X316

X149
+ sin(X262)− X280 (16)

− cos(X149)− X228 − 1.X246 + 3
√

X258 − cos(X262) + 2.X262 − X280

+ X285 − 1.X304 + X306 + X308 − X310,

y9 = −max
(

X287
X149

+ X316,− tan(X275 − X304)
)
− max(X228, (17)

− tan(X275 − X304))− (−X149 + tan(X254)− X306 + X316)
X262

− tan(X220)− X280
X262

+ X262 − 2X280 + X306.

Equations (8)–(17) are the SEs obtained using GPSC on the dataset balanced with the
KMeansSMOTE technique. To determine if the new sample is Android malware or not, the
output of each equation must be input to a sigmoid function (Equation (1)). The output
of the sigmoid function provides the information if the initial sample is Android malware
(value near 1) or not (value near 0). After an output is obtained from all 10 equations and
sigmoid functions using the average value, the final decision is made. The confusion matrix
based on the previously described procedure is shown in Figure 8.

Figure 8. The confusion matrix for the best SEs obtained from KMeansSMOTE dataset.

Computers 2024, 13, 197 20 of 31

As illustrated in Figure 8, the set of 10 symbolic expressions (SEs) generated using the
KMeansSMOTE balancing technique successfully identified 2381 out of 2533 samples as
Android malware and 1881 out of 1931 samples as benign.

To compute the output from these SEs (Equations (8)–(17)), 30 input variables are
required. These variables, denoted in GPSC as X149, X152, X220, X228, X237, X246, X247,
X250, X253, X254, X258, X262, X266, X275, X280, X285, X287, X294, X295, X298, X304, X306,
X307, X308, X309, X310, X314, X316, X322, and X325, correspond to the following Android
permissions and methods:

• RECEIVE_BOOT_COMPLETED: Allows an application to receive the BOOT_COMPLETED
broadcast after the system finishes booting, enabling the app to perform operations
when the device starts.

• RECEIVE_SMS: Allows an application to receive and read SMS messages, and trigger
actions based on their content.

• Ljava/net/URL;->openConnection: Method reference for opening a connection to
a specified URL.

• Landroid/location/LocationManager;->getLastKnownLocation: Method reference for
retrieving the device’s last known location.

• Landroid/telephony/TelephonyManager;->getSimOperatorName: Method reference
for obtaining the name of the mobile network operator associated with the SIM card.

• android.permission.READ_EXTERNAL_STORAGE: Allows an application to read
from external storage such as an SD card.

• android.permission.RECEIVE_SMS: Similar to RECEIVE_SMS above, allows the ap-
plication to receive and process SMS messages.

• com.google.android.providers.gsf.permission.READ_GSERVICES: Allows reading
Google service configuration data.

• android.permission.WRITE_EXTERNAL_STORAGE: Allows writing to external stor-
age for saving files.

• android.permission.RECORD_AUDIO: Enables recording audio using the device’s
microphone.

• com.android.launcher.permission.INSTALL_SHORTCUT: Allows creating home screen
shortcuts without user intervention.

• android.permission.READ_PHONE_STATE: Allows access to the phone’s state, in-
cluding phone number and cellular network information.

• android.permission.INTERNET: Allows the application to access the internet by open-
ing network sockets.

• android.permission.CHANGE_CONFIGURATION: Enables changing the current
configuration, such as locale or orientation.

• com.google.android.c2dm.permission.RECEIVE: Allows receiving messages from
Google Cloud Messaging (GCM) or Firebase Cloud Messaging (FCM).

• android.permission.SEND_SMS: Enables sending SMS messages programmatically.
• android.permission.REQUEST_INSTALL_PACKAGES: Allows requesting the installa-

tion of packages.
• android.permission.ACCESS_COARSE_LOCATION: Allows accessing approximate

location data based on network sources.
• android.permission.READ_LOGS (X295): Allows reading system log files used for

debugging.
• android.permission.SYSTEM_ALERT_WINDOW: Allows creating windows that ap-

pear on top of all other applications.
• com.android.vending.BILLING: Allows using in-app billing through Google Play.
• android.permission.RECEIVE_BOOT_COMPLETED: Allows receiving the

BOOT_COMPLETED broadcast (same as RECEIVE_BOOT_COMPLETED above).
• android.permission.WAKE_LOCK: Prevents the device from going to sleep, keeping

the screen on, or performing tasks in the background.

Computers 2024, 13, 197 21 of 31

• android.permission.ACCESS_FINE_LOCATION: Allows accessing precise location
data using GPS.

• android.permission.BLUETOOTH: Enables connecting to paired Bluetooth devices.
• android.permission.CAMERA: Allows accessing the device’s camera for taking photos

or recording videos.
• android.permission.VIBRATE: Controls the device’s vibration for notifications

and alerts.
• android.permission.RECEIVE_USER_PRESENT: Detects when the user is present after

the device wakes up.
• android.permission.ACCESS_NETWORK_STATE: Views the state of all network con-

nections to check internet connectivity.
• android.permission.READ_SMS: Allows reading SMS messages (similar to RE-

CEIVE_SMS above).

3.2. Classification Performance of TBVE

The previously described best SEs obtained from balanced dataset variations were
used to develop the TBVE. The idea of TBVE is to see if the classification performance
can be improved when compared to the individual SE. This investigation is performed by
adjusting the threshold value or, in other words, the number of correct SE predictions per
dataset sample. Since there are 50 SEs, the threshold value can be in a 1 to 50 range. The
classification performance of the TBVE, which consists of 50 SEs, versus threshold value is
shown in Figure 9.

From Figure 9, it can be noticed that ACC, AUC, and F1-Score have a similar perfor-
mance. The ACC, AUC, and F1-Score value increases from 0.5 up to 0.94 as the threshold
value increases fro 1 to 10. In a 10 to 40 threshold value range, the ACC, AUC, and F1-Score
values increase to almost 0.959, and then they begin to decrease. The Precision score value
increases from an initial 0.57 for the threshold value of 1 and increases as the threshold
value increases; and when the threshold value reaches 50, the precision score value is equal
to 0.995. The recall score is equal to 1 when the threshold value is equal to 1, and as the
threshold value increases, the recall score value decreases and reaches a minimum of 0.855
for the threshold value of 50.

The challenge in this TBVE is to determine the range in which the classification
performance is the highest. If the ACC, AUC, and F1-Score maximum values are examined,
it can be noticed that for threshold values in the 27–29 (the red dashed lines in Figure 9)
range, these evaluation metric values are the highest. The Precision and Recall do not
have the highest values in that range butare rather acceptable. The highest classification
performance in terms of ACC, AUC, and F1-Score is recorded for a threshold value of 28,
and the confusion matrix for this threshold value is shown in Figure 10.

As seen from Figure 10, the TBVE was able to accurately predict the 2409 samples
out of 2533 dataset samples classified as malware. This means that 124 samples were
misclassified as benign. The TBVE was also able to accurately predict 1863 benign samples
out of 1931 samples in total, which means 68 dataset samples were misclassified as malware.

Computers 2024, 13, 197 22 of 31

Figure 9. Classification performance of TBVE consisting of 50 SEs versus threshold value. The red
dotted lines represents the interval with high classification performance while blue line represents
the highest classification performance achieved.

Computers 2024, 13, 197 23 of 31

Figure 10. The confusion matrix of TBVE for a threshold value of 28.

4. Discussion

In this paper, the publicly available dataset for AMD was used in GPSC to obtain
SEs that could detect Android malware with a high detection accuracy. The initial dataset
consists of 328 variables, where 327 are input variables and 1 is a target variable. The
dataset contains 4464 samples in total. Due to a large number of input variables, sta-
tistical analysis is almost impossible. The problem was that initially, the research was
conducted with all input variables to see which one would end up in the SEs. So only the
Pearson’s correlation analysis was performed, and only correlated variables with target vari-
ables are shown. From Figure 2, the highly positive correlation permissions, permissions
like READ_PHONE_STATE and RECEIVE_BOOT_COMPLETED, are strong indicators
of malware. Security systems should flag apps requesting these permissions for further
inspection. The moderate positive correlation permissions are permissions related to loca-
tion (ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION), SMS (RECEIVE_SMS,
READ_SMS, SEND_SMS), and task management (GET_TASKS) and suggest a higher likeli-
hood of the app being malware, warranting closer scrutiny. The negative correlation permis-
sions are permissions and methods like com.google.android.c2dm.permission.RECEIVE,
openConnection, and getLastKnownLocation and are more common in benign apps; their
presence might indicate a lower risk of the app being malware. These correlations provide
valuable insights into which permissions and features are most indicative of malware,
helping in the development of better heuristics and machine learning models for mal-
ware detection.

The problem with this dataset is that it was imbalanced, so the application of dataset
balancing methods was necessary. In this investigation, oversampling techniques were
chosen due to the fact that they are easily executed and usually do not require additional
parameter tuning. The chosen oversampling techniques (ADASYN, BorderlineSMOTE,
KMeansSMOTE,SMOTE, and SVMSMOTE) achieved a balanced dataset variation. How-
ever, it should be noticed that ADASYN has a slight imbalance. However, this slight
imbalance was over the initial imbalance, so this dataset was used in further investigations.

On each balanced dataset variation, the GPSC with the RHVS method was applied
and the GPSC was trained using the 10FCV. This means that the GPSC was trained 10 times
on 10 split variations of the train dataset. Each time the GPSC was trained, the SE was
obtained by the GPSC; so in total, after one 10FCV training, 10 SEs were obtained. The
evaluation metric values obtained during the training determine if the SEs will continue
to the testing phase, i.e., where the test dataset will be applied on obtained SEs. If the
evaluation metric values were all higher than 0.9, the process was completed and the best
SEs for that balanced dataset variation were obtained.

Computers 2024, 13, 197 24 of 31

The variability of optimal GPSC hyperparameter values across different balanced
dataset variations shows the importance of the application of an RHVS method that can
quickly find optimal GPSC hyperparameter values. As seen from Table 4, the larger
popSizes (e.g., ADASYN dataset) may help in exploring a more extensive solution space,
while a higher number of generations (e.g., BorderlineSMOTE) allows more time for
evolution, potentially leading to better optimization. The variation in TS and tree depth
settings suggest that different datasets benefit from varying selection pressures and model
complexities. This could be due to the intrinsic complexity and noise levels within each
dataset. The near-constant training size implies a consistent approach to utilizing the
full capacity of the training data. The wide range of constant values reflects the need for
different numerical constants to fit various datasets optimally. A low parsCoeff across all
datasets emphasizes the focus of enabling the growth of the population members, which
could improve the diversity between population members.

So after the application of the training–testing procedure, a total of 50 SEs were ob-
tained. These SEs were all used in TBVE to see if the classification performance could be
improved. The investigation showed that using TBVE, the highest classification perfor-
mance was achieved. The best SEs obtained from balanced dataset variations (Figure 7)
showed consistency across metrics. The best SEs show robust performance across all eval-
uated metrics (ACC, AUC, Precision, Recall, and F1-Score). The low standard deviation
indicates that the best SEs’ performance is relatively stable across different datasets and
oversampling techniques. The balanced dataset variations were obtained using different
oversampling techniques, and from each dataset, the SEs achieved high classification per-
formance. This suggests that the SEs can generalize well across different distributions of
data achieved by these oversampling methods. The high mean values across all metrics in-
dicate that the best SEs are effective in distinguishing between classes and making accurate
predictions. This effectiveness is crucial in practical applications, where high accuracy and
reliable predictions are essential.

To compute the output of TBVE, the best SEs require 101 input dataset variables, and
these are: X1, X6, X7, X8, X13, X14, X17, X20, X28, X29, X31, X34, X39, X41, X47, X49, X55,
X62, X72, X78, X86, X87, X89, X95, X99, X103, X105, X108, X114, X118, X119, X128, X131,
X134, X138, X140, X147, X149, X152, X154, X155, X156, X165, X167, X175, X180, X181, X188,
X191, X200, X213, X216, X218, X219, X220, X228, X236, X240, X246, X247, X249, X253, X254,
X257, X258, X262, X266, X267, X268, X269, X270, X272, X275, X278, X280, X282, X284, X285,
X286, X289, X293, X294, X295, X298, X301, X302, X303, X304, X306, X307, X308, X309, X310,
X312, X313, X314, X316, X319, X322, X323, X325.

These input variables are: ACCESS_CACHE_FILESYSTEM, ACCESS_LOCATION_
EXTRA_COMMANDS, ACCESS_MOCK_LOCATION, ACCESS_MTK_MMHW, ACCESS_
SUPERUSER, ACCESS_ SURFACE_FLINGER, ACTIVITY_ RECOGNITION, ANT, BIND_ AP-
PWIDGET, BIND_ CARRIER_ MESSAGING_ SERVICE, BIND_ DREAM_ SERVICE, BIND_
NFC_ SERVICE, BIND_ TV_ INPUT, BIND_ VPN_ SERVICE, BRICK, BROADCAST_ SMS,
CAMERA, CHANGE_ NETWORK_ STATE, DEVICE_ POWER, EXPAND_ STATUS_ BAR,
GET_ TASKS, GET_ TOP_ ACTIVITY_ INFO, GOOGLE_ AUTH, INSTALL_ SHORTCUT,
JPUSH_ MESSAGE, MANAGE_ APP_ TOKENS, MAPS_ RECEIVE, MEDIA_ CONTENT_
CONTROL, NFC, PLUGIN, PROCESS_ OUTGOING_ CALLS, READ_ DATABASES, READ_
GMAIL, READ_ INPUT_ STATE, READ_ PHONE_ STATE, READ_ SETTINGS, REBOOT, RE-
CEIVE_ BOOT_ COMPLETED, RECEIVE_ SMS, RECEIVE_ WAP_ PUSH, RECORD_ AUDIO,
REORDER_ TASKS, SET_ ALARM, SET_ ANIMATION_ SCALE, SET_ WALLPAPER, SUB-
SCRIBED_ FEEDS_ READ, SUBSCRIBED_ FEEDS_ WRITE, USE_ FINGERPRINT, WAKE_
LOCK, WRITE_ EXTERNAL_ STORAGE, WRITE_VOICEMAIL, Ljava/lang/Runtime;->exec,
Ldalvik/system/DexClassLoader;->loadClass, Ljava/lang/ System;->loadLibrary, Ljava/net/
URL;->openConnection, Landroid/location/LocationManager;->getLastKgoodwarewn Loca-
tion, Landroid/telephony/TelephonyManager;->getSimOperator, Lorg/apache/ http/impl/
client/DefaultHttpClient;->execute, android. permission. READ_ EXTERNAL_ STORAGE,
android. permission. RECEIVE_ SMS, android. permission. WRITE_ SETTINGS, android.

Computers 2024, 13, 197 25 of 31

permission. WRITE_ EXTERNAL_ STORAGE, android. permission. RECORD_ AUDIO,
android. permission. CHANGE_ NETWORK_ STATE, com. android. launcher. permission.
INSTALL_ SHORTCUT, android. permission. READ_ PHONE_ STATE, android. per-
mission. INTERNET, android. permission. MOUNT_ UNMOUNT_ FILESYSTEMS, com.
majeur. launcher. permission. UPDATE_ BADGE, android. permission. AUTHENTICATE_
ACCOUNTS, com. htc. launcher. permission. READ_ SETTINGS, android. permission.
FLASHLIGHT, android. permission. CHANGE_ CONFIGURATION, com. anddoes.
launcher. permission. UPDATE_ COUNT, com. google. android. c2dm. permission.
RECEIVE, com. sonymobile. home. permission. PROVIDER_ INSERT_ BADGE, android.
permission. WRITE_ CALENDAR, android. permission. SEND_ SMS, com. huawei. an-
droid. launcher. permission. WRITE_ SETTINGS, android. permission. SET_ WALLPAPER,
android. permission. ACCESS_ MOCK_ LOCATION, android. permission. ACCESS_
COARSE_ LOCATION, android. permission. READ_ LOGS, android. permission. SYS-
TEM_ ALERT_ WINDOW, me. everything. badger. permission. BADGE_ COUNT_ READ,
android. permission. CHANGE_ WIFI_ STATE, android. permission. READ_ CONTACTS,
com. android. vending. BILLING, android. permission. RECEIVE_ BOOT_ COMPLETED,
android. permission. WAKE_ LOCK, android. permission. ACCESS_ FINE_ LOCATION,
android. permission. BLUETOOTH, android. permission. CAMERA, android. permission.
FOREGROUND_ SERVICE, android. permission. BLUETOOTH_ ADMIN, android. per-
mission. VIBRATE, android. permission. RECEIVE_ USER_ PRESENT, com. sec. android.
iap. permission. BILLING, android. permission. ACCESS_ NETWORK_ STATE, com.
google. android. finsky. permission. BIND_ GET_ INSTALL_ REFERRER_ SERVICE,
and android. permission. READ_ SMS.

The dataset variables represent various Android permissions and API functionalities.
ACCESS_ CACHE_ FILESYSTEM allows an application to read from the file system cache,
while ACCESS_ LOCATION_ EXTRA_ COMMANDS provides access to additional location
provider commands. ACCESS_ MOCK_ LOCATION enables applications to create mock
locations for testing, and ACCESS_ MTK_ MMHW is related to MediaTek hardware
features, typically requiring special hardware. ACCESS_ SUPERUSER provides elevated
access levels for superuser operations, and ACCESS_ SURFACE_ FLINGER allows access
to low-level graphics operations. ACTIVITY_ RECOGNITION allows applications to
recognize physical activities, like walking or cycling.

ANT is related to the ANT wireless protocol used in health and fitness devices. BIND_
APPWIDGET and BIND_ CARRIER_ MESSAGING_ SERVICE are used to bind to specific
system services, like widgets or carrier messaging services. BIND_ DREAM_ SERVICE
and BIND_ NFC_ SERVICE bind are applications for the dream service (screensavers) and
NFC service, respectively. BIND_ TV_ INPUT and BIND_ VPN_ SERVICE are used for TV
input and VPN services. BRICK is a dangerous permission that can permanently disable
a device.

BROADCAST_ SMS allows applications to send SMS messages, and CAMERA grants
access to the device’s camera. CHANGE_ NETWORK_ STATE allows applications to
change network connectivity states, and DEVICE_ POWER allows for managing device
power settings. EXPAND_ STATUS_ BAR lets applications expand or collapse the status
bar. GET_ TASKS provides access to information about running tasks, and GET_ TOP_
ACTIVITY_ INFO provides access to information about the top activity.

GOOGLE_ AUTH is related to Google authentication services. INSTALL_ SHORTCUT
allows apps to install shortcuts on the home screen, and JPUSH_ MESSAGE is specific to
the JPush messaging service. MANAGE_ APP_ TOKENS allows for managing app tokens,
and MAPS_ RECEIVE is used to receive map data. MEDIA_ CONTENT_ CONTROL
allows controlling media playback, and NFC enables NFC communication.

PLUGIN supports plugin integration, and PROCESS_ OUTGOING_ CALLS allows
for managing outgoing calls. READ_ DATABASES allows for reading databases, READ_
GMAIL allows for reading Gmail, and READ_ INPUT_ STATE allows for reading input
state. READ_ PHONE_ STATE grants access to phone state information, and READ_

Computers 2024, 13, 197 26 of 31

SETTINGS permits reading system settings. REBOOT allows the app to reboot the device,
and RECEIVE_ BOOT_ COMPLETED allows apps to start after the device boots. RECEIVE_
SMS and RECEIVE_ WAP_ PUSH allow for receiving SMS and WAP push messages.
RECORD_ AUDIO grants access to record audio, and REORDER_ TASKS allows for the
reordering of running tasks.

SET_ ALARM allows for setting alarms, SET_ ANIMATION_ SCALE allows for setting
animation scale, and SET_ WALLPAPER allows for setting wallpapers. SUBSCRIBED_
FEEDS_ READ and SUBSCRIBED_ FEEDS_ WRITE enable the reading and writing of
subscribed feeds. USE_ FINGERPRINT allows for using fingerprint hardware, and WAKE_
LOCK keeps the device from sleeping. WRITE_ EXTERNAL_ STORAGE and WRITE_
VOICEMAIL allow for writing to external storage and voicemail.

API calls like Ljava/lang/Runtime;->exec, Ldalvik/system/DexClassLoader;->loadClass,
Ljava/lang/System;->loadLibrary, and Ljava/net/URL;->openConnection are related to
executing commands, loading classes, loading native libraries, and opening network con-
nections. Landroid/location/LocationManager;->getLastKnownLocation provides the last
known location, Landroid/telephony/TelephonyManager;->getSimOperator provides SIM
operator information, and Lorg/apache/http/impl/client/DefaultHttpClient;->execute
executes HTTP requests.

Permissions such as android.permission.READ_ EXTERNAL_ STORAGE, android.
permission. RECEIVE_ SMS, android.permission.WRITE_ SETTINGS, and android. per-
mission. RECORD_ AUDIO grant essential access to storage, SMS, settings, and audio
recording. Other permissions like com.android. launcher. permission. INSTALL_ SHORT-
CUT and android.permission.MOUNT_ UNMOUNT_ FILESYSTEMS handle shortcut
installation and file system mounting. Various permissions like com.majeur.launcher.
permission. UPDATE_ BADGE, android. permission. AUTHENTICATE_ ACCOUNTS,
and com. htc. permission. READ_ SETTINGS manage badges, account authentication,
and settings for specific launchers.

android.permission.FLASHLIGHT controls the flashlight, and android.permission.
CHANGE_ CONFIGURATION allows for changing system configuration. com. anddoes.
launcher. permission. UPDATE_ COUNT and com. google. android. c2dm. permission.
RECEIVE enable badge count updates and receive data messages. Manufacturer-specific
permissions like com.sonymobile. home.permission.PROVIDER_ INSERT_ BADGE and
android.permission. WRITE_ CALENDAR handle badge insertion and calendar writing.

android.permission.SEND_ SMS allows for sending SMS messages, and com.huawei.
android.launcher. permission.WRITE_ SETTINGS allows for writing settings for Huawei
launchers. android.permission.SET_ WALLPAPER allows for setting the wallpaper, an-
droid.permission. ACCESS_ MOCK_ LOCATION allows for creating mock locations, and an-
droid.permission. ACCESS_ COARSE_ LOCATION provides access to coarse location data. an-
droid.permission. READ_ LOGS allows for reading system logs, android.permission.SYSTEM_
ALERT_ WINDOW allows for creating alert windows, and me.everything.badger.permission.
BADGE_ COUNT_ READ allows for reading badge counts.

android.permission.CHANGE_ WIFI_ STATE allows for changing the Wi-Fi state, an-
droid.permission.READ_ CONTACTS allows for reading contacts, and com.android.vending.
BILLING enables in-app billing. android.permission.RECEIVE_ BOOT_ COMPLETED
allows apps to start after booting, android.permission.WAKE_ LOCK keeps the device from
sleeping, and android.permission.ACCESS_ FINE_ LOCATION provides access to precise
location data. android.permission.BLUETOOTH and android.permission.BLUETOOTH_
ADMIN manage Bluetooth connections and settings. android.permission.CAMERA grants
access to the camera, android.permission.FOREGROUND_ SERVICE allows for starting
foreground services, and android.permission.VIBRATE enables vibration control.

android.permission.RECEIVE_ USER_ PRESENT detects when the user is present,
and com.sec.android.iap.permission.BILLING enables in-app billing for Samsung devices.
android.permission.ACCESS_ NETWORK_ STATE allows access to the network state,
and com.google.android.finsky.permission.BIND_ GET_ INSTALL_ REFERRER_ SERVICE

Computers 2024, 13, 197 27 of 31

binds to the install referrer service. Finally, android.permission.READ_ SMS grants access
to read SMS messages.

The final comparison of classification performance is given in Table 6.

Table 6. Comparison of accuracy achieved in other research papers with accuracy achieved in this
research paper.

Reference Methods Accuracy (%)

[1] CNN 98

[2] DNN 96.76

[3] RFC 96.9

[4] SVM 89

[4] DNN 92

[5] RNN 98.2

[6] RFC, ANN, kNN, SVC 99

[7] CNN 94.6

[8] embedded call graphs 94.6

[9] RFC, SVM 96.2

[10] autoencoders + DNN 95.8

[11] CNN 94.9

[12] GAGE 87

[13] GA-StackingMD 98.43, 98.66

[14] ETC 98

[15] TAML F1-Score: 99.98

This research GPSC + 10FCV + RHVS, TBVE 95.76

As seen from Table 6, this research outperforms the majority of research reported in
other literature. Although it is not the highest classification performance achieved, the
benefit of utilizing this approach is that SEs are obtained that can easily be integrated and
can execute using lower computational resources when compared to CNN and DNNs.

5. Conclusions

In this paper, the AMD dataset was used in GPSC to obtain SEs with high detection
performance. The initial dataset was imbalanced, so various oversampling techniques
were chosen to achieve the balance between class samples. The following oversampling
techniques were chosen: ADASYN, BorderlineSMOTE, KMeansSMOTE, SMOTE, and
SVMSMOTE. With the application of oversampling techniques, five different balanced
dataset variations were created and were used in GPSC to obtain SEs. Since GPSC has
12 hyperparameters, finding the optimal combination of these hyperparameters can be
a challenge. This is why the RHVS method was applied to find the optimal combination of
GPSC hyperparameter values. The training was conducted using 10FCV, which means that
after training, GPSC generated 10 SEs (one per each split). After the best set of SEs were
obtained for each balanced dataset variation, these were combined in TBVE to investigate if
the the classification performance could be improved. The TBVE showed an improvement
of classification performance by adjusting the threshold to the specific range. Based on the
previous description, the following conclusions are:

• The GPSC-generated symbolic expressions (SEs) demonstrated high classification
performance in detecting Android malware.

Computers 2024, 13, 197 28 of 31

• The use of oversampling techniques effectively balanced the initial dataset, allowing
the GPSC to produce SEs with high classification performance in Android malware
detection (AMD).

• The Random Hyperparameter Value Selection (RHVS) method proved effective in
optimizing GPSC hyperparameters, leading to the generation of SEs with superior
classification performance in AMD.

• The application of 10-fold cross-validation (10FCV) during GPSC training resulted in
a robust set of SEs, exhibiting high accuracy in AMD, thus validating the use of 10FCV.

• Combining SEs through the Training-Based Variable Evaluation (TBVE) method fur-
ther enhanced classification performance for AMD, achieving even higher accuracy.

The pros and cons of the conducted research are given below. Pros of the Conducted
Research:

• The application of oversampling techniques effectively balanced the original dataset,
resulting in the creation of diverse dataset variations. This approach facilitated the
generation of more symbolic expressions (SEs) using the GPSC, leading to highly
accurate SEs that enhanced the robustness of Android malware detection (AMD).

• The use of the Random Hyperparameter Value Selection (RHVS) method streamlined
the process of identifying optimal GPSC hyperparameters, requiring fewer executions
to achieve optimal configurations.

• Employing 10-fold cross-validation (10FCV) allowed for the generation of a substantial
number of SEs, contributing to a robust detection framework for Android malware.

• Combining GPSC with the Training-Based Variable Evaluation (TBVE) method proved
effective in improving classification performance compared to the initial SEs.

Cons of the Proposed Research Methodology:

• The methodology was time-consuming, primarily due to the large population size
(popSize) and high number of generations (maxGen) used. This extended the time
required to obtain all SEs.

Future Work:

• Future research will explore the reduction of the values of popSize and maxGen to
determine if similar levels of classification performance can be maintained with fewer
resources.

• Given the large sample size of the dataset, the application of undersampling techniques
will also be investigated. This could potentially lead to the development of additional
SEs and the formation of an even larger TBVE.

• The proposed methodology will be tested on additional datasets, such as Androzoo or
CICMalDroid 2020, to evaluate its effectiveness and generalizability.

Author Contributions: Conceptualization, N.A. and S.B.Š.; methodology, N.A. and S.B.Š.; software,
N.A. and S.B.Š.; validation, N.A. and S.B.Š.; formal analysis, N.A. and S.B.Š.; investigation, N.A. and
S.B.Š.; resources, N.A. and S.B.Š.; data curation, N.A. and S.B.Š.; writing—original draft preparation,
N.A. and S.B.Š.; writing—review and editing, N.A. and S.B.Š.; visualization, N.A. and S.B.Š.;
supervision, N.A. and S.B.Š.; project administration, N.A. and S.B.Š.; funding acquisition, N.A.
and S.B.Š. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: In this research, the publicly available dataset from Kaggle was used:
https://www.kaggle.com/datasets/dannyrevaldo/android-malware-detection-dataset (accessed
on 1 July 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.kaggle.com/datasets/dannyrevaldo/android-malware-detection-dataset

Computers 2024, 13, 197 29 of 31

Abbreviations
The following abbreviations are used in this manuscript:

10FCV 10-Fold Cross-Validation
AMD Android Malware Detection
ADASYN Adaptive Synthetic Sampling
BorderlineSMOTE Borderline Synthetic Minority Oversampling Technique
Cross Crossover
constRange constants range
GPSC Genetic programming symbolic classifier
hoistMute hoist mutation
InitDepth inital depth
KMeansSMOTE KMeans Synthetic Minority Oversampling Technique
maxGen maximum number of generations
maxSamp maximum number of samples
parsCoeff parsimony coefficient
popSize Population Size
pointMute point mutation
RHVS Random hyperparameter value search method
SMOTE Synthetic Minority Oversampling Technique
subMute subtree mutation
stopCrit stopping criteria
SVMSMOTE Support Vector Machines Synthetic Minority Oversampling Technique
SE Symbolic expression
TS Tournament size

Appendix A. The Modified Versions of Mathematical Functions Used in GPSC

As stated in the description of the GPSC, some mathematical functions have to be
modified in order to avoid nan or imaginary values, which could lead to early termination
and failure of GPSC execution. These functions are: division, square root, natural logarithm,
and logarithm with bases 2 and 10. The division function is defined as:

ydiv(x1, x2) =

{
x1
x2

i f |x2| > 0.001

1 |x2| < 0.001
(A1)

It should be noted that x1 and x2 are two variables introduced solely for demonstration
purposes and do not pertain to the dataset variables.

The square root function in this context first computes the absolute value of the
argument before applying the square root. This function can be expressed as:

ysqrt =
√
|x| (A2)

The natural logarithm and logarithms with bases 2 and 10 are defined as follows:

ylog(x) =

{
logi(x) i f |x| > 0.001
0 i f |x| < 0.001

(A3)

where i indicates the natural logarithm, bases 2 or 10, respectively. So all three logarithms
work the same way, i.e., if the |x| is greater than 0.001, the function will calculate the
logarithm value. Otherwise, it will return 0. Where i denotes the base of the logarithm: i = e
for the natural logarithm, i = 2 for the logarithms with base 2, and i = 10 for logarithms
with base 10. All these logarithms are implemented similarly: if |x| is greater than 0.001,
the function computes the logarithm of x, otherwise, it returns 0.

Computers 2024, 13, 197 30 of 31

Appendix B. Aquisition of Obtained SEs from This Resarch

The Symbolic Expressions (SEs) generated in this research are available for download
at: https://github.com/nandelic2022/AndroidMalwareDetection_MDPI (accessed on 15
July 2024). To apply these SEs to new data, follow these steps:

1. Download and prepare: Download the SEs and prepare the corresponding Python
script for use with your new dataset.

2. Variable correspondence: Ensure that the variables in your dataset align with those
defined in the Discussion section of this paper.

3. Class determination: After obtaining the output from the SEs, apply the sigmoid
function (Equation (1)) to determine the class.

References
1. McLaughlin, N.; Martinez del Rincon, J.; Kang, B.; Yerima, S.; Miller, P.; Sezer, S.; Safaei, Y.; Trickel, E.; Zhao, Z.; Doupé, A.; et al.

Deep android malware detection. In Proceedings of the Seventh ACM on Conference on Data and Application Security and
Privacy, Scottsdale, AZ, USA, 22–24 March 2017; pp. 301–308.

2. Yuan, Z.; Lu, Y.; Xue, Y. Droiddetector: Android malware characterization and detection using deep learning. Tsinghua Sci.
Technol. 2016, 21, 114–123. [CrossRef]

3. Saracino, A.; Sgandurra, D.; Dini, G.; Martinelli, F. Madam: Effective and efficient behavior-based android malware detection and
prevention. IEEE Trans. Dependable Secur. Comput. 2016, 15, 83–97. [CrossRef]

4. Demontis, A.; Melis, M.; Biggio, B.; Maiorca, D.; Arp, D.; Rieck, K.; Corona, I.; Giacinto, G.; Roli, F. Yes, machine learning can be
more secure! a case study on android malware detection. IEEE Trans. Dependable Secur. Comput. 2017, 16, 711–724. [CrossRef]

5. Yuan, X.; He, P.; Zhu, Q.; Li, X. Adversarial examples: Attacks and defenses for deep learning. IEEE Trans. Neural Netw. Learn.
Syst. 2019, 30, 2805–2824. [CrossRef] [PubMed]

6. Mariconti, E.; Onwuzurike, L.; Andriotis, P.; De Cristofaro, E.; Ross, G.; Stringhini, G. Mamadroid: Detecting android malware by
building markov chains of behavioral models. arXiv 2016, arXiv:1612.04433.

7. Hou, S.; Saas, A.; Chen, L.; Ye, Y. Deep4maldroid: A deep learning framework for android malware detection based on linux
kernel system call graphs. In Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops
(WIW), Omaha, NE, USA, 13–16 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 104–111.

8. Gascon, H.; Yamaguchi, F.; Arp, D.; Rieck, K. Structural detection of android malware using embedded call graphs. In Proceedings
of the 2013 ACM Workshop on Artificial Intelligence and Security, Berlin, Germany, 4 November 2013; pp. 45–54.

9. Milosevic, N.; Dehghantanha, A.; Choo, K.K.R. Machine learning aided Android malware classification. Comput. Electr. Eng.
2017, 61, 266–274. [CrossRef]

10. Hardy, W.; Chen, L.; Hou, S.; Ye, Y.; Li, X. DL4MD: A deep learning framework for intelligent malware detection. In Proceedings
of the International Conference on Data Science (ICDATA), Cochin, India, 23–25 August 2016; The Steering Committee of the
World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp): Seattle, WA, USA, 2016;
p. 61.

11. Ding, Y.; Zhang, X.; Hu, J.; Xu, W. Android malware detection method based on bytecode image. J. Ambient Intell. Humaniz.
Comput. 2023, 14, 6401–6410. [CrossRef]

12. Saqib, M.; Fung, B.C.; Charland, P.; Walenstein, A. GAGE: Genetic Algorithm-Based Graph Explainer for Malware Analysis. In
Proceedings of the 2024 IEEE 40th International Conference on Data Engineering (ICDE), Utrecht, The Netherlands, 13–16 May
2024; IEEE: Piscataway, NJ, USA, 2024; pp. 2258–2270.

13. Xie, N.; Qin, Z.; Di, X. GA-StackingMD: Android malware detection method based on genetic algorithm optimized stacking.
Appl. Sci. 2023, 13, 2629. [CrossRef]

14. Jyothsna, V.; Dasari, K.P.; Inuguru, S.; Gowni, V.B.R.; Kudumula, J.T.R.; Srilakshmi, K. Unified Approach for Android Malware
Detection: Feature Combination and Ensemble Classifier. In Proceedings of the International Conference on Computational Inno-
vations and Emerging Trends (ICCIET-2024), Amalapuram, India, 4–5 April 2024; Atlantis Press: Amsterdam, The Netherlands,
2024; pp. 485–495.

15. AlSobeh, A.M.; Gaber, K.; Hammad, M.M.; Nuser, M.; Shatnawi, A. Android malware detection using time-aware machine
learning approach. Clust. Comput. 2024, 1–22. [CrossRef]

16. Sedgwick, P. Pearson’s correlation coefficient. BMJ 2012, 345, e4483. [CrossRef]
17. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings

of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence),
Hong Kong, China, 1–6 June 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1322–1328.

18. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In Proceed-
ings of the International Conference on Intelligent Computing, Hefei, China, 23–26 August 2005; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 878–887.

19. Fonseca, J.; Douzas, G.; Bacao, F. Improving imbalanced land cover classification with K-Means SMOTE: Detecting and
oversampling distinctive minority spectral signatures. Information 2021, 12, 266. [CrossRef]

https://github.com/nandelic2022/AndroidMalwareDetection_MDPI
http://doi.org/10.1109/TST.2016.7399288
http://dx.doi.org/10.1109/TDSC.2016.2536605
http://dx.doi.org/10.1109/TDSC.2017.2700270
http://dx.doi.org/10.1109/TNNLS.2018.2886017
http://www.ncbi.nlm.nih.gov/pubmed/30640631
http://dx.doi.org/10.1016/j.compeleceng.2017.02.013
http://dx.doi.org/10.1007/s12652-020-02196-4
http://dx.doi.org/10.3390/app13042629
http://dx.doi.org/10.1007/s10586-024-04484-6
http://dx.doi.org/10.1136/bmj.e4483
http://dx.doi.org/10.3390/info12070266

Computers 2024, 13, 197 31 of 31

20. Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for learning from imbalanced data: Progress and challenges, marking
the 15-year anniversary. J. Artif. Intell. Res. 2018, 61, 863–905. [CrossRef]

21. Miftahushudur, T.; Sahin, H.M.; Grieve, B.; Yin, H. Enhanced SVM-SMOTE with Cluster Consistency for Imbalanced Data
Classification. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Évora,
Portugal, 22–24 November 2023; Springer: Cham, Switzerland, 2023; pp. 431–441.

22. O’Neill, M.; Poli, R.; Langdon, W.B.; McPhee, N.F. McPhee: A Field Guide to Genetic Programming: Lulu. com; Springer:
Berlin/Heidelberg, Germany, 2008; 250p, ISBN 978-1-4092-0073-4.

23. Ilse, M.; Tomczak, J.M.; Welling, M. Chapter 22—Deep multiple instance learning for digital histopathology. In Handbook of
Medical Image Computing and Computer Assisted Intervention; Zhou, S.K., Rueckert, D., Fichtinger, G., Eds.; The Elsevier and
MICCAI Society Book Series; Academic Press: Cambridge, MA, USA, 2020; pp. 521–546. [CrossRef]

24. Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316.
[CrossRef] [PubMed]

25. Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In
Proceedings of the European Conference on Information Retrieval, Santiago de Compostela, Spain, 21–23 March 2005; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 345–359.

26. Singh, P.; Singh, N.; Singh, K.K.; Singh, A. Chapter 5—Diagnosing of disease using machine learning. In Machine Learning and the
Internet of Medical Things in Healthcare; Singh, K.K., Elhoseny, M., Singh, A., Elngar, A.A., Eds.; Academic Press: Cambridge, MA,
USA, 2021; pp. 89–111. [CrossRef]

27. And̄elić, N.; Baressi Šegota, S. An Advanced Methodology for Crystal System Detection in Li-Ion Batteries. Electronics 2024,
13, 2278. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1613/jair.1.11192
http://dx.doi.org/10.1016/B978-0-12-816176-0.00027-2
http://dx.doi.org/10.1097/JTO.0b013e3181ec173d
http://www.ncbi.nlm.nih.gov/pubmed/20736804
http://dx.doi.org/10.1016/B978-0-12-821229-5.00003-3
http://dx.doi.org/10.3390/electronics13122278

	Introduction
	Materials and Methods
	Research Methodology
	Dataset Description and Statistical Analysis
	Oversampling Techniques
	ADASYN
	BorderlineSMOTE
	KMeansSMOTE
	SMOTE
	SVMSMOTE
	The Results of Oversampling Techniques

	Genetic Programming Symbolic Classifier
	Evaluation Metrics
	Training–Testing Procedure
	Threshold-Based Voting Ensemble

	Results
	Classification Performance Analysis of Obtained SE on Balanced Dataset Variations
	Classification Performance of TBVE

	Discussion
	Conclusions
	Appendix A
	Appendix B
	References

