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Abstract: We present a summary of some recent theoretical results for matter-wave patterns in Fermi
and Bose–Fermi degenerate gases, obtained in the framework of the quasi-mean-field approximation.
We perform a dimensional reduction from the three-dimensional (3D) equations of motion to 2D and
1D effective equations. In both cases, comparison of the low-dimensional reductions to the full model
is performed, showing very good agreement for ground-state solutions. Some complex dynamical
regimes are reported too for the corresponding 1D systems.
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1. Introduction

Ultracold atomic gases have been widely explored from both experimental and theoretical point of
view due to their ability to emulate many effects from condensed-matter physics and create novel states
of quantum matter. Various results obtained in this area have been reviewed in many publications—see,
in particular, Refs. [1–8]. Important experimental tools, the application of which opens ways to
the observation diverse novel phenomena in the quantum gases, are, inter alia, optical-lattice (OL)
potentials, the use of the Feshbach resonance (FR) to control the strength of interactions between atoms,
and the implementation of the effective spin-orbit coupling [9–13].

The effective spatial dimension of the setting in which quantum gases are created strongly affects
the ensuing physics. The use of confining potentials makes it possible to reduce the dimension from
3D to 2D and 1D. In particular, the dimensional reduction of confined Bose gases can be approximated
by means of the variational method [14–17]. Recently, similar approaches for ultracold Fermi gases in
confining potentials have been elaborated in Refs. [18–21]. These reductions make it possible to study
the complex dynamics and pattern formation in ultracold gases in 2D and 1D settings. In this context,
the study of dark solitons in ultracold gases was reported in Bose-Einstein condensates (BECs) [22],
and further developed later [23–25]. For dark solitons in Fermi gases, several works have reported
theoretical and experimental results [26–32]. The reduced 1D equation for Fermi gases was used for
studies of interactions between dark solitons [21].

The earliest experimental studies of Bose-Fermi mixtures (BFMs) were performed with lithium
isotopes [33,34], as well as in 174Yb-6Li [35] and 87Rb-40K [36] settings. Much interest has been also
drawn to heavy-atom mixtures, such as 87Sr-84Sr [37]. These isotopes, which are characterized by a
large nuclear spin, have been proposed for the design of prototype quantum-information processing
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devices. The use of FRs in the mixtures plays a major role, as it allows one to control nonlinear
interactions between the species. For the 87Rb-40K mixture, the FR has been observed in Ref. [38,39],
and a giant FR effect was reported in the 85Rb-6Li system [40]. Further, in the 6Li-133Cs mixture five
FRs have been observed [41], and over 30 resonances are expected to be available in the 23Na-40K
system [42]. Multiple heteronuclear FRs were reported in the triply quantum-degenerate mixture of
bosonic 41K and two fermionic species, 40K and 6Li [43]. In a recently elaborated framework, the BFM
is transformed into a strongly interacting isotopic mixture immersed into a Fermi sea, with the help of
a wide s-wave resonance for the 41K-40K combination. Many theoretical works have addressed the
dynamics of BFMs under various conditions [44–50]. To describe the ground state (GS) of the mixture,
the quasi-mean-field theory may be a useful approach [51–55]. In this framework, the use of FRs was
studied in 23Na-6Li, 87Rb-40K, 87Rb-6Li, 3He-4He, 173Yb-174Yb, and 87Sr-84Sr mixtures [56,57]. Recently,
effective 1D and 2D nonlinear Schrödinger equations have been derived for BFMs in cigar-shaped and
disc-shaped configurations [58], using the variational approximation (VA) along the lines previously
developed in Refs. [14,21]. In addition, dark solitons in BFMs have been analyzed in Ref. [59]. Here, we
address, in particular, dark solitons in the 7Li-6Li BFM, using the effective low-dimensional equations
derived in Ref. [58].

The general aim of the present article is to present a brief review of the spatial reduction for
Fermi gases and BFMs, based on the VA. In particular, we outline the procedure for implementing
the 2D and 1D reduction, starting from the full 3D equations of motions. To test the accuracy of the
approximations, we present a comparison of the results with full 3D numerical simulations. Using the
corresponding effective equations, we address various dynamical settings, such as dark solitons and
their interactions. In the case of BFMs, we consider the construction of GSs, varying the interaction
strength. Finally, for the 1D situation, we address the formation of dark solitons in the mixture, and
compare the corresponding 1D solution to results of the full numerical simulations, observing good
agreement between them. The presentation is arranged as follows: the Fermi gases and BFMs are
considered, severally, in Sections 2 and 3, and the paper is concluded in Section 4.

2. The Fermi Gas

We consider a dilute superfluid formed by N fermionic atoms of mass mF and spin sF, loaded into
an optical trap at zero temeprature. We apply the local density approximation [4] to the description of
this setting. The corresponding dynamical equations can be derived from the action functional

S =
∫

dtdrL, (1)

where the Lagrangian density is

L =
ih̄

2λ1

(
Ψ∗

∂Ψ
∂t
−Ψ

∂Ψ∗

∂t

)
− h̄2

2λ2mF
|∇Ψ|2 −U(r)|Ψ|2 − 3

5
β

h̄2

2mF
CF|Ψ|10/3 − gF

2
|Ψ|4, (2)

Ψ (r, t) being a complex order parameter, whose norm is equal to the number of particles. Here,
CF =

[
6π2/ (2sF + 1)

]2/3 is a constant that depends on spin sF, gF = 4πh̄2(aF/mF)[2sF/(2sF + 1)]
with scattering length aF, which determines interactions of fermions belonging to different spin states
(the interactions which are not forbidden by the Pauli principle) [3], and U(r) is to an external potential
applied to fermions.
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Table 1. λ1, λ2, β, and sF for three different regimes in the Fermi-gas dynamics [60–63].

Regime λ1 λ2 β sF

Polarized 1 1 1 0
BCS 2 4 1 1/2

Unitary 2 4 0.44 1/2

Parameters λ1, λ2, β, and sF in Equation (2) correspond to three different regimes addressed in
this article, which are listed in Table 1. It is relevant to mention that the spin polarization may affect
some parameters, such as coefficient CF [64].

Lagrangian density (2) gives rise to the following The Euler–Lagrange equation,

ih̄
λ1

∂Ψ
∂t

=

[
− h̄2

2λ2mF
∇2 + U + gF|Ψ|2 +

h̄2

2mF
βCF|Ψ|4/3

]
Ψ, (3)

which as an effective quasi-mean-field equation for the fermi gas under the consideration; note that it
may be rewritten in the form of hydrodynamic equations [65,66]. More details on the derivation of this
equation are given in Appendix A. Below, we focus on the BCS (Bardeen-Cooper-Schrieffer) setting,
referring to atoms of 6Li with mass 6 a.u.

In numerical simulations we use the fourth-order Runge–Kutta method in time, and the centered
second-order finite-difference method for handling the spatial discretization. In the next two
subsections we reduce the full 3D equation to the corresponding 2D and 1D effective equations,
using the VA proposed in Ref. [21].

2.1. The Two-Dimensional Reduction

We derive effective 2D equations, applying the VA to the Fermi gas in the disk-shaped
trap. For this purpose, we consider an external potential composed of two terms: the parabolic
(harmonic-oscillator) one accounting for the confinement in the z direction, transverse to the disk’s
plane, and the in-plane potential, U2D:

U (r) =
1
2

mFω2
z z2+U2D (r⊥, t) . (4)

The initial ansatz assumes, as usual, the factorization of the 3D wave function into a product
of functions of z and r⊥, the former one being the Gaussian ground state of the harmonic-oscillator
potential [14]:

Ψ (r, t) =
1

π1/4
√

ξ(r⊥, t)
exp

(
− z2

2(ξ(r⊥, t))2

)
φ (r⊥, t) . (5)

The Gaussian is subject to the unitary normalization, with transverse width ξ considered as a
variational parameter, while the 2D wave function, φ, is normalized to the number of atoms. Therefore,
the reduction from 3D to 2D implies that the system of equations should be derived for the pair of
functions φ (r⊥, t) and ξ (r⊥, t), using the reduced action functional, which is obtained by integrating
the 3D action over the z-coordinate:

S2D =
∫

dtdxdyL2D, (6)
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where the respective Lagrangian density is

L2D = i
h̄

2λ1
(φ∗∂tφ− φ∂tφ

∗)− h̄2

2λ2mF
|∇⊥φ|2 −U2D|φ|2 −

h̄2

2mF

3βC2D

5ξ2/3 |φ|
10/3 − gF

2(2π)1/2ξ
|φ|4

− h̄2

4mFλ2ξ2 |φ|
2 − 1

4
mFω2

z ξ2|φ|2, (7)

C2D ≡ (3/5)1/2(6/(2sF + 1))2/3π, the last two terms being produced by the reduction to 2D, the
penultimate term corresponding to the spread in the confined dimension. Hence, the Euler–Lagrange
equations, derived by varying the 2D action, which is generated by Lagrangian (7), with respect to φ

and ξ, take the form of

i
h̄

λ1
∂tφ =

[
− h̄2

2λ2mF
∇2
⊥ + U2D +

gF√
2πξ
|φ|2 +

h̄2

2mF

β

ξ2/3 C2D|φ|4/3 +
h̄2

4λ2mFξ2

+
1
4

mFω2
z ξ2
]

φ, (8)

mFω2
z ξ4 − 2h̄2

5mF
βC2D|φ|4/3ξ4/3 − gF√

2π
|φ|2ξ − h̄2

λ2mF
= 0. (9)

Algebraic Equation (9) for ξ cannot be solved analytically, therefore we used the Newton’s method
to solve it numerically. The necessity to find ξ at each step of the integration is a numerical complication
of a minimal cost compared to the 3D integration of the underlying Equation (3). Note that a further
simplifications can be achieved by assuming in Equation (5) that the Gaussian width is a constant
ξ(r⊥, t) = ξ0. In this case ξ, naturally, does not depend on φ. Then, the solution of Equation (9) with
the density tending to zero can be calculated analytically and it is given by ξ0 = λ−1/4

2
√

h̄/mFωz.
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Figure 1. (a) The 2D radial density, n2D(r), as obtained from the full 3D equation, and the 2D reduction
derived with the help of the variational approximation (VA). (b) The 2D radial density, n2D(r), as
obtained from the full 3D equation, and the 2D reduction derived with the help of the VA, assuming that
the Gaussian width is a constant: ξ0 =

√
h̄/2mFωz. Different curves correspond to the indicated values

of as = (0,−50,−100) nm. The other parameters are N = 1000, ωx = ωy = 1050 Hz, ωz = 21 kHz,
and A = 0. The panel (a) is taken from Ref. [21].
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We consider a 2D potential consisting of the axisymmetric parabolic potential and the
superposition of two triangular OLs:

U2D = A
2

∑
b=1

3

∑
a=1

sin2
(

2π

λ
(ka,b · r⊥)

)
+

1
2

mFω2
xx2 +

1
2

mFω2
yy2, (10)

where {ka,1} and {ka,2} are triplets of unitary vectors of both triangular lattices, which are separated
by a specific angle θ. Here A denotes the lattice’s amplitude, and (ωx, ωy) are frequencies of the
magnetic-optical trapping potential. In the absence of the OLs (A = 0), we have verified the
accuracy of the 2D reduction by comparing results generated by this approximation to those obtained
by integrating the underlying 3D Equation (3). The respective GS was found by means of the
imaginary-time integration based on the fourth-order Runge–Kutta algorithm with ∆t = 0.5 µs.
The spatial discretization for the simulations was performed with ∆x = 0.25 µm and ∆y = 0.25 µm.
The comparison is displayed in panel (a) of Figure 1, where the radial-density profiles are plotted. We
can observe excellent agreement between the reduced 2D and full 3D descriptions. This result suggests
one to use the Equations (8) and (9) for studying 2D patterns. Panel (b) of Figure 1 shows a comparison
of 3D full numerical simulations versus the VA, assuming a constant width ξ0. One can observe that
the latter approximation produces less accurate results, which is at least ten times worse than the VA
with a density-dependent width.

Figure 2 shows the density as a function of coordinates x and y when the OLs are taken into
account. We observe that this particular combination of the OLs (a superlattice) produces a pattern in
the form of the superstructure, with the number of density peaks varying when the angle between the
unitary vectors increases. Note that the multitude of different coexisting robust multi-peak patterns
suggests that this setting has a potential for the use as a data-storage system.
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Figure 2. Density n2D as a function of coordinates x and y for four different angles between the
triangular OLs θ. The fixed parameters are N = 1000, ωx = ωy = 1050 Hz, ωz = 52.5 kHz, A =

1.74× 10−29 J, λ = 10 µm, and as = 200 nm. (a) θ = 5o; (b) θ = 10o; (c) θ = 15o; (d) θ = 20o.
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2.2. The One-dimensional Reduction

Next, we consider the system confined in one dimension, which implies a cigar-shaped
configuration, elongated in the z direction. In this case, the potential trap acting in transeverse
plane is the harmonic oscillator in the transverse plane:

U (r) = U1D (z) +
1
2

mFω2
t r2, (11)

where r2 = x2 + y2. It is assumed that the potential in the transverse direction is much stronger
than the axial one. The simplest option is to adopt a Gaussian shape in the transverse plane, which
represents the ground state of a the 2D harmonic oscillator, similar to what is adopted above in the
case of the 2D reduction. As a result, the variable-separation assumption can be applied, defining the
3D wave function as [14–16]

Ψ (r, t) =
1

π1/2σ (z, t)
exp

(
− r2

2σ(z, t)2

)
f (z, t) , (12)

where f is normalized to N, such that the 1D density is n1D = | f |2. Here σ is the Gaussian width,
which is a function of z and time. After some algebra, similar to that performed above, one derives the
Euler–Lagrange equations:

i
h̄

λ1
∂t f =

[
− h̄2

2λ2mF
∂2

z + U1D +
gF

2πσ2 | f |
2 +

h̄2

2mF
β

C1D

σ4/3 | f |
4/3 +

h̄2

2mFλ2σ2
1
2

mFω2
t σ2

]
f , (13)

mFω2
t σ4 − 2

5
h̄2

mF
βC1D| f |4/3σ2/3 − h̄2

λ2mF
− gF

2π
| f |2 = 0, (14)

where C1D = (3/5)(6π(2sF + 1))2/3. Similar to the 2D case, algebraic Equation (14) is solved using the
Newton’s method, and here too the quasi-BCS regime is addressed. We set U1D = 0, aF = −5 nm, and
ωt = 1000 Hz, these parameters being in the range of experimental values [29]. Since Equations (13)
and (14) produce results which agree well with the full 3D simulations [21], one can use the effective
1D equations to study more complex dynamical behavior, such as that of dark solitons [29,32].

To generate a dark soliton, it is posible to consider the initial condition with zero imaginary
part, f I(z, t = 0) = 0, while the real part is given by fR(z, t = 0) = fb tanh((z− zs)/∆s), where fb
and ∆s are the soliton’s amplitude and width, respectively. We have found that values of the square
amplitude and width, nb = 10 particles/µm and ∆s = 0.8 µm, respectively, can be chosen to minimize
the background noise. If we consider a set of Ns dark solitons, the initial condition for the imaginary
part is again zero, f I = 0, while the real part can be cast in the form of

fR (z, t0) =
1
2
+

1
2

Ns/2

∑
j=1

[
(−1)1+j

(
tanh

( z− zj

∆s

)
+ 1
)
+ (−1)j

(
tanh

( z− z−j

∆s

)
+ 1
)]

, (15)

where the positions of the solitons are zj and z−j on the positive and negative z half-axes, receptively.
Moreover, the widths of the solitons (∆s) are considered the same, and that the number of initial
solitons Ns is even. This initial ansatz was normalized to secure the correct density of the wave
function, nb = | fb|2. Then, the system was simulated with the help of the standard fourth-order
Runge-Kutta method with ∆t = 0.095 µs. The spatial discretization for the simulations was performed
with ∆z = 0.100 µm. Figure 3 shows the shape of the initial conditions for the case of one and Ns = 18
dark solitons.
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Figure 3. The initial 1D density for one soliton (a) and eighteen dark solitons (b). In both cases,
∆s = 0.8 µm and nb = 10 are used. The other fixed parameters are aF = −5 nm and ωt = 1000 Hz.

In the case of two solitons, we have zi = z−i = d/2, where d is the initial inter-core separation.
Frame (a) of Figure 4 shows the spatiotemporal diagram for two solitons at d = 4µm. One clearly
observes that both solitons separate in the course of the evolution. Frame (b) of Figure 4 shows the
speed taken after 90ms of the evaluation as a function of different initial inter-core separations between
the dark solitons. naturally, smaller initial separations generate higher speeds. In fact, at this fix time
the speed follows the law vs ∼ dα, with α = −3.49. Other features of the two-soliton interaction can be
found in Ref. [32].
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Figure 4. (a) The spatiotemporal diagram for the density, n1D, when the initial core-core separation
between the two dark solitons is d = 4 µm. (b) The speed of the solitons at t = 90 ms as a function of d.
The other fixed parameters are the same as in Figure 3.

Figure 5 shows the spatiotemporal diagrams for the 1D density, n1D, for different numbers of dark
solitons Ns = (6, 10, 14, 18). Similar to the case of two solitons, we observe that the solitons interact
repulsively. To measure the strength of the interaction is provided by the distance between the central
part and the positive-side border of the soliton gas, δze = |zcentral − zbond|.
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Figure 5. The spatiotemporal diagram for the density, n1D for different numbers of dark solitons:
(a) Ns = 6, (b) Ns = 10, (c) Ns = 14, and (d) Ns = 18. In all the cases the initial distance between the
solitons is d = 4 µm. The other fixed parameters are the same as in Figure 3.

Figure 6 shows δze as a function of time for different values of Ns. We obverse that it increases
monotonously with time, and its time derivative (speed) change as Ns increases. Nevertheless, the
speed tends to a limit with the increase of the number of solitons, so that there is no dramatic difference
between Ns = 14 and Ns = 18. This happens because the interaction between the solitons has an
effective range, as shown in frame (b) of Figure 4, hence the solitons located near the edges interact
weaker with the central ones.
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Figure 6. The distance between the central part and the edge at z > 0 of the dark-soliton gas, δze, as a
function of time for different numbers of the dark solitons, Ns. The other fixed parameters are the same
as in Figure 3.

To analyze the case of a large number of solitons, it is enough to take Ns = 18. Frame (a) of
Figure 7 shows the speed at t = 90 ms of each soliton as a function of its initial position for different
initial distances d. We observe that the central solitons have smaller speeds than their counterparts
placed near the edges, so that the speed is given by vs ' tanh(γdzd) with γd = −0.01d + 0.077 in the
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range of Figure 7. Frame (b) of Figure 7 shows the speed of the soliton located near the positive edge
at t = 90 ms. Similar to the two-soliton case, the speed decays with the increase of the initial distance,
vs ∼ dα, with α = −3.385.
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Figure 7. Dependence of the speed of the dark solitons for Ns = 18. (a) The distribution of the speed
of each soliton at t = 90 ms for different initial distances d. (b) The speed of the dark soliton near the
edge at t = 90 ms as a function of d. The other fixed parameters are the same as in Figure 3.

Finally, we consider random initial positions of the solitons, with Ns = 18. We define the initial
positions as zj,ε = zj,0 + ε, where ε is a random fluctuation, and zj,0 are the soliton positions, with the
mean distance between them d = 4 µm, like in the symmetric case. Figure 8 shows the spatiotemporal
diagrams of the 1D density n1D for two different random realizations. In particular, we assume that
ε takes random values in the ranges [−εmax, εmax] = [−0.4, 0.4] µm and [−0.8, 0.8] µm, in panels (a)
and (b), respectively. It is observed that the speed of the expansion is higher than in the absence of the
randomness, because the interaction energy generates higher internal pressure in the gas of solitons.
We analyze the influence of the random-fluctuation magnitude, ε on the dynamics. In particular, we
calculate the sum of the squared velocities at the final moment of time,

Eε =
Ns

∑
j=1

v2
j,ε. (16)

Panel (c) of Figure 8 shows Eε normalized to E0 (the kinetic energy of the set of dark solitons with
equidistant initial positions) as a function of εmax. We can observe that Eε strongly increases with the
growth of εmax, which naturally means that the gas of solitons expands faster when the fluctuations
are stronger.
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Figure 8. Spatiotemporal diagrams of the density n1D for Ns = 18 for two different initial conditions
in the presence of random perturbation ε. Panels (a) and (b) display the results for ε taking values in
the ranges of [−εmax, εmax], with εmax = 0.4 µm and 0.8 µm, respectively. (c) Eε normalized to E0 as a
function of εmax, i.e., the amplitude of the randomly varying variable.
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3. The Bose–Fermi Mixture

In this section we consider a dilute superfluid mixture formed by NB bosonic atoms of mass mB,
and NF fermionic atoms of mass mF and spin sF. The atoms interact through the pseudopotential,
δ(r) [4]. We assume that bosons form a BEC, described by the Gross–Pitaevskii equation [4], while
the local density approximation [4] applies to the description of the weakly interacting fermionic
component. Accordingly, the dynamical equations can be derived from the functional,

S =
∫

dtdr (LB + LF + LBF), (17)

where LB and LF are the Lagrangian densities of the Bose and Fermi components, while LBF accounts
for the interaction between them [58]:

LB =
ih̄
2

(
Ψ∗B

∂ΨB

∂t
−ΨB

∂Ψ∗B
∂t

)
− h̄2

2mB
|∇ΨB|2 −UB(r) |ΨB|2 −

1
2

gB|ΨB|4, (18)

LF =
ih̄

2λ1

(
Ψ∗F

∂ΨF

∂t
−ΨF

∂Ψ∗F
∂t

)
− h̄2

2λ2mF
|∇ΨF|2 −UF(r)|ΨF|2 −

1
2

gF|ΨF|4 −
3βCFh̄2

10mF
|ΨF|10/3, (19)

LBF = −1
2

gBF|ΨB|2|ΨF|2. (20)

Here, gB ≡ 4πh̄2aB/mB, gF ≡ 4πh̄2(aF/mF)[2sF/(2sF + 1)], and gBF ≡ 4πh̄2aBF/mBF are three
interaction parameters of the mixture, with aB, aF and aBF being the respective scattering lengths;
mBF ≡ mBmF/(mB + mF) is the reduced mass; and UB/F(r) are external potentials acting on
bosons/fermions. Complex wave functions ΨB/F (r, t) are normalized to the respective numbers
of particles, NB/F. The other parameters of the fermionic Lagrangian density are the same as in
Section 2.

Varying action S with respect to Ψ∗B and to Ψ∗F, we derive the following system of nonlinear
Schrödinger equations for bosons and fermions:

ih̄∂tΨB =

[
− h̄2

2mB
∇2 + gB|ΨB|2 + gBF|ΨF|2 + UB

]
ΨB, (21)

ih̄
λ1

∂tΨF =

[
− h̄2

2λ2mF
∇2 + gF|ΨF|2 + gBF|ΨB|2 + UF +

βCFh̄2

2mF
|ΨF|4/3

]
ΨF. (22)

We apply the formalism developed below to the 7Li-6Li mixture, with the same scattering parameter
for both species, aB = aF = 5 nm. The use of isotopes of the same alkali element is suggested by
the similarity of their electric polarizability, thus implying similar external potentials induced by an
optical trap. Unless specified otherwise, in what follows below we consider configurations with fully
polarized fermions. Note that the BCS and unitarity regimes involve more than one spin state of
fermions, hence the magnetic trap will split the respective spin energy levels. For this reason, we
assume the presence of the optical trap, which supports equal energy levels for all the spin states,
making it possible to discriminate different regimes of the interaction in the BFM. In the BCS and
unitarity regimes, we assume balanced populations of the two spin components.

Our analysis is first presented for the GS and dynamics of perturbations around it. In particular,
for the GS we focus on determining the spatial correlation Cs between the spatial particle densities in
both species, defined as

Cs (n̄B, n̄F) =
〈n̄Bn̄F〉√〈
n̄2

B
〉 〈

n̄2
F
〉 , (23)
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where n̄B/F = nB/F − 〈nB/F〉, 〈〉 standing for the spatial average. For dynamical perturbations around
the GS, a spatiotemporal correlation, which is defined by replacing the spatial average with the
spatiotemporal average, is known as the Pearson coefficient Cs−t [67]. We remark that when Cs = 1
and Cs = −1 the mixture is fully synchronized and anti-synchronized, respectively; whereas, the
mixture is not synchronized at Cs = 0.

While numerical integration of this system in the 3D form is very heavy computationally, the
effective dimension may be reduced to 1D or 2D when the system is tightly confined by a trapping
potential. To this end, the VA is employed, making use, as above, of the factorization of the 3D
wave function, which includes the Gaussian ansatz in the tightly confined transverse directions. As
mentioned above too, the factorization has been widely used for Bose and Fermi systems separately, as
it shown in Refs. [14,21], respectively. In the next two subsections we reduce the full 3D system to the
corresponding 2D and 1D effective systems, using the VA proposed in Ref. [58].

3.1. The Two-Dimensional Reduction

Similar to the case of the pure Fermi gas, we derive 2D equations for the disc-shaped configuration.
Accordingly, the structure of the confinement potential is taken as

UB/F (r) =
1
2

mB/Fω2
z,B/Fz2 + U2D,B/F (r⊥) , (24)

where the second term corresponds to the strong harmonic-oscillator trap acting along the z direction.
The corresponding factorized ansatz is adopted as

ΨB/F (r, t) =
1

π1/4
√

ξB/F(r⊥, t)
exp

(
− z2

2 (ξB/F(r⊥, t))2

)
φB/F(r⊥, t) (25)

where φB/F is normalized to NB/F, and ξB/F (x, y, t) are widths of the gas in the confined direction.
Substituting the factorized ansatz (25) in action (17) and integrating over z, we arrive at the following
expression for the effective 2D action:

S =
∫

dtdxdy (L2D,B + L2D,F + L2D,BF), (26)

where
L2D,B = i

h̄
2
(φ∗B∂tφB − φB∂tφ

∗
B)−U2D,Bn2D,B − e2D,B, (27)

L2D,F = i
h̄

2λ1
(φ∗F∂tφF − φF∂tφ

∗
F)−U2D,Fn2D,F − e2D,F, (28)

L2D,BF = − 1
π1/2

gBF√
ξ2

B + ξ2
F

n2D,Bn2D,F, (29)

so that n2D,B/F ≡ |φB/F (x, y)|2 are the 2D particle densities of the boson and fermion species, and e2D,B

and e2D,F are their energy densities:

e2D,B =
h̄2

2mB
|∇⊥φB|2 +

[
gB√
8πξB

n2D,B +
h̄2

4mBξ2
B
+

1
4

mBω2
z,Bξ2

B

]
n2D,B, (30)

e2D,F =
h̄2

2λ2mF
|∇⊥φF|2 +

[
gF√
8πξF

n2D,F +
h̄2

4λ2mFξ2
F
+

1
4

mFω2
z,Fξ2

F

+
h̄2

2mF
ξ

3

5ξ2/3
F

C2D,Fn2/3
2D,F

]
n2D,F, (31)



Condens. Matter 2019, 4, 22 12 of 23

with C2D,F ≡ (3/5)1/2(6/(2sF + 1))2/3π. The field equations for the 2D system are obtained by the
variation of the action S given by Equation (26) with respect to variables φB and φF:

ih̄∂tφB =

− h̄2

2mB
∇2
⊥ + U2D,B +

1
π1/2

gBF√
ξ2

B + ξ2
F

n2D,F +
gB√
2πξB

|φB|2

+
h̄2

4mBξ2
B
+

1
4

mBω2
z,Bξ2

B

]
φB, (32)

i
h̄

λ1
∂tφF =

− h̄2

2λ2mF
∇2
⊥ + U2D,F +

1
π1/2

gBF√
ξ2

B + ξ2
F

n2D,B +
gF√
2πξF

|φF|2

+
h̄2

2mF
ξ

1

ξ2/3
F

C2D,F|φF|4/3 +
h̄2

4λ2mFξ2
F
+

1
4

mFω2
z,Fξ2

F

]
φF. (33)

Relations between ξB/F and φB/F are produced by the Euler–Lagrange equations associated to ξB/F:

κI,Bξ4
B −

gB√
2π

n2D,BξB −
h̄2

mB
= 0, (34)

κI,Fξ4
F −

2h̄2

5mF
ξC2D,Fn2/3

2D,Fξ4/3
F − gF√

2π
n2D,FξF −

h̄2

λ2mF
= 0, (35)

where κI,F ≡ mFω2
z,F + 2gBFn2D,B/[π1/2(ξ2

B + ξ2
F)

3/2
]. Thus, Equations (32)–(35) constitute a system

of four 2D coupled equations produced by the reduction of the underlying 3D system (21). Note
also that when gBF = 0, the system is decoupled and Equation (32) corresponds to the dimensional
reduction of the Gross–Pitaevskii equation. Equations (34) and (35) for ξB/F can be solved numerically
by dint of the Newton’s method. The basic external potential is taken as the harmonic-oscillator
one: U2D,B/F = mB/Fω2

x,B/Fx2/2 + mB/Fω2
y,B/Fy2/2. The simulations were based on the fourth-order

Runge-Kutta algorithm with ∆t = 4.77 µs. The spatial discretizations was performed with ∆x = 1 µm,
∆y = 1 µm and ∆z = 0.05 µm. The GS was found by means of the imaginary-time integration. We
here focus on the case when the number of bosons is much greater than the number of fermions, viz.,
NB = 5× 104 and NF = 2.5× 103.

Frames (a) and (b) of Figure 9 show the radial profile of both 2D bosonic and fermionic densities,
n2D,B/F, respectively. The panels for the bosonic and fermionic components are the left and right ones,
respectively. Each density has been computed using the VA and the full 3D system. To obtain the 2D
profile from the 3D simulations, Equations (21) and (22) were solved, and the 3D density was integrated
along the z axis, n̄2D,B/F =

∫ +∞
−∞

∣∣Ψ2D,B/F(r)
∣∣ dz. We infer that the repulsive mixture concentrates the

bosons at the center, while the attractive mixture concentrates both species at the center. Panels (c) and
(d) of Figure 9 show the radial dependence of the width for both bosonic and fermionic component,
respectively. We observe that only the width of the fermionic density profile varies significantly
with the change of the scattering length of the inter-species interaction, which is a consequence of a
greater number of bosons in comparison with fermions. It is clearly seen that fermions are stronger
confined when the interaction is attractive, and their spatial distribution significantly expands when
the interaction is repulsive. Similar results have been reported in Refs. [51,52,56].
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Figure 9. The radial profile of the 2D particle density, and the respective width for different values
of interaction strength aBF. (a) n2D,B, (b) n2D,F, (c) ξB, and (d) ξF. The parameters are NB = 5× 104,
NF = 2.5× 103, aB/F = 5 nm, ωz,B/F = 1000 Hz, and ωx,B/F = ωy,B/F = 30 Hz. The inset in panel (a)
shows the difference between the VA and full 3D simulations, by means of ∆n2D ≡ n̄2D − n2D. This
figure is taken from Ref. [58].

Now, to compare the results obtained from the VA with those produced by the 3D simulations,
we note that both profiles are practically identical, except for the repulsive case in which a discrepancy
is observed. The inset in panel (a) of Figure 9 shows that the difference between the two results has a
magnitude of nearly three orders of magnitude lower than the density itself. We define the overall
percentage error of the VA as E%,2D =

∫ ∫
|ρ2D − n2D| dxdy (for both species). Figure 10 shows the

error for both species as a function of interspecies scattering parameter, aBF. For bosons it takes values
∼ 0.2%, and does not change much, as shown in the inset to panel (a) of Figure 9. For fermions the
error is greater than for bosons throughout the observed range, but it is quite small for the attractive
mixture. Note that the error increases for the repulsive mixture, but remains lower that 2%. Thus we
conclude that the 2D approximation is very accurate.



Condens. Matter 2019, 4, 22 14 of 23

−10 −5 0 5
0

0.5

1

1.5

a
BF

 [nm]

E
%

,1
D

 

 

Bose

Fermi

Figure 10. The 2D overall percentage error of the VA versus the full 3D system, as a functionof aBF for
both species. Parameters are the same as in Figure 9. This figure is taken from Ref. [58].
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Figure 11. (Color online) Spatial correlation Cs of the GS of the 2D mixture as a a function of aBF,
for three fermionic regimes: polarized, BCS, and unitarity. The fixed parameters are: NB = 5× 104,
NF = 2.5× 103, aB/F = 5 nm, ωx,B/F = ωy,B/F = 30 Hz, and ωz,B/F = 1000 Hz. This figure is taken
from Ref. [58].

Finally, we measure the correlations of the BFM states. To this end, the spatial correlation, Cs, in
the GS was calculated using the definition given in Equation (23). Figure 11 presents the analysis of the
GS synchronization of the mixture as a function of aBF, where three possible regimes are considered
for the fermions: fully polarized, BCS, and unitarity. Parameters of the Lagrangian density for each
fermionic regime are given in Table 1. When the interaction is attractive, there is not a large discrepancy
between the correlation curves. In fact, for aBF ∈ (−25,−15) nm the values of Cs & 0.9, and therefore
the GS states are synchronized. In the unitarity regime, it is again observed that the correlation reaches
a maximum close to 1 at aBF ≈ −10 nm, dropping to negative values when the mixture is strongly
repulsive. Also, we observe that the three curves demonstrate stronger demixing when aBF changes
from negative to positive values of aBF, and for aBF & 15 the value of Cs tends to zero implying that
the GS states are not synchronized.
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3.2. The One-Dimensional Reduction

The 1D confinement means, as above, a cigar-shaped configuration elongated in the direction of z.
In this case, the corresponding confining potentials trap is written as

UB/F (r, t) =
1
2

mB/Fω2
t,B/Fr2 + U1D,B/F (z, t) , (36)

where U1D,B/F (z, t) are the axial potentials. Assuming that the transverse trapping potential is strong
enough, the dimensional reduction is carried out by means of the usual factorized ansatz for the
wave functions,

ΨB/F (r, t) =
1

π1/2σB/F (z, t)
exp

(
− r2

2(σB/F (z, t))2

)
fB/F (z, t) , (37)

where σB/F are the transverse GS Gaussians widths. Here, the axial functions, fB/F, are normalized
to NB/F. For both species, we define the axial density as n1D,B/F ≡ | fB/F|2. By means of a procedure
similar to the one outlined above for the 2D reduction, we derive the Euler–Lagrange equations for the
BFM in the 1D approximation:

ih̄∂t fB =

[
− h̄2

2mB
∂2

Z + U1D,B +
1
π

gBF

σ2
B + σ2

F
| fF|2 +

gB

2πσ2
B
| fB|2

+
h̄2

2mBσ2
B
+

1
2

mBω2
t,Bσ2

B

]
fB, (38)

i
h̄

λ1
∂t fF =

[
− h̄2

2λ2mF
∂2

Z + U1d,F +
1
π

gBF

σ2
B + σ2

F
| fB|2 +

gF

2πσ2
F
| fF|2

+
h̄2ξ

2mF

CF,1D

σ4/3
F

| fF|4/3 +
h̄2

2mFλ2σ2
F
+

1
2

mFω2
t,Fσ2

F

]
fF. (39)

In addition, the algebraic relationships between σB/F and fB/F are:

χI,Bσ4
B −

h̄2

mB
− gB

2π
n1D,B = 0, (40)

χI,Fσ4
B −

2
5

h̄2

mF
ξCF,1Dn2/3

1D,Fσ2/3
F − h̄2

λ2mF
− gF

2π
n1D,F = 0, (41)

where χI,B/F ≡ mB/Fω2
t,B/F− 2gBFn1D,F/B/[π(σ2

B + σ2
F)

2]. Thus, Equations (38)–(41) constitute a system
of four 1D coupled equations produced by the reduction of the underlying 3D system (21) and (22).
Simulations of the system were performed with mesh parameters ∆t = 0.5 µs and ∆z = 0.25 µm. The
external potential is chosen here as the harmonic-oscillator one: U1d,B/F = mB/Fω2

z,B/Fz2/2.
The effect of the magnitude and sign of the interaction parameter on the spatial profile of both

species, and the accuracy of the VA compared to the 3D solution, can be analyzed by varying the
scattering length, aBF. In particular, we consider a mixture with more bosons than fermions, viz.,
NB = 5× 104, NF = 2.5× 103. Because of this condition, the bosonic profile is mainly determined
by its self-interaction and the external potential. Frames (a) and (b) of Figure 12 show the spatial
dependence of n1D,B and n1D,F, respectively. These densities are calculated using both the reduced
Equations (38)–(41) and the full numerical simulations of Equations (21) and (22). In the latter case, the
densities are calculated as n̄1D, j(z) =

∫ ∫ ∣∣Ψj(r)
∣∣2 dxdy with j = (F, B). We observe that variations of

the bosonic density profile are very small in comparison to the significant changes of the inter-species
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scattering length. The situation is opposite for the fermionic species. As the repulsive scattering length
increases, the fermions tend to be pushed to the periphery of the bosonic-gas density profile. This
phenomenon is known as demixing [18,19,51,56]. On the other hand, for the attraction case, fermions
are, naturally, concentrated in the same region where the bosons are located. Frames (c) and (d) of
Figure 12 correspond to the profiles of σB and σF. We observe that the width of the bosonic profile
slightly increases while proceeding from the inter-species attraction to repulsion. A similar trend is
observed for fermions, as shown in panel (d). However, the effect is amplified in the spatial zone of the
interaction with the bosons, where the gas is compressed in the case of the attraction, and expands in
the case of the repulsion. Note that the fermionic component expands in the confined direction much
more than its bosonic counterpart, and that the fermionic width markedly varies, following changes in
the density.
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Figure 12. Profiles of the particle density and the width in the confined direction as a function the
z-coordinate for different values of the interaction strength aBF. (a) n1D,B, (b) n1D,F, (c) σB, and (d) σF.
The parameters are NB = 5× 104, NF = 2.5× 103, aB/F = 5 nm, ωz,B/F = 30 Hz, and ωt,B/F = 1000 Hz.
The inset in panel (a) shows the difference between the VA and full 3D simulations, by means of
∆n1D,B = n̄1D,B − n1D,B. This figure is taken from Ref. [58].

Further, one can see in the inset of panel (a) of Figure 12 the difference between the density
calculated by means of the VA and the full 3D simulation, ∆n1D,B = n̄1D,B − n1D,B is really small. In
fact, the difference between the bosonic profiles obtained by both methods is ∼ 2% of the maximum
density for all cases (the fact that the error changes very little with variations in aBF is a consequence
of the greater number of bosons). Frame (b) of Figure 12 shows that, for the attractive mixture, the
variational profile is very close to the 3D result, in particular for the case of aBF = −6 nm. For
the repulsive mixture, it is observed that the error increases, which is a consequence of the lower
fermionic density at the center of the 3D harmonic-oscillator potential, which plays the dominant
role for the bosons, hence a monotonously decreasing function in the transverse direction, such as
the Gaussian, is not a sufficiently good approximation. We define the global error of the VA as
E%,1D =

∫ +∞
−∞

∣∣n̄1D, j − n1D j
∣∣ dz (for both species). We have found that in the range of aBF ∈ (−6, 6) nm

the global error for the bosonic species is around 2% for all the values of aBF. For the fermionic species,
it goes from 0.5% to 5% depending on aBF, such that for positive value of aBF the error is higher than
for negative ones, and the minimum error is attained at aBF ≈ −4 nm. This is a consequence of the
fact that, for this value of aBF, the interspecies interaction practically compensates the Pauli repulsion,
making the dynamics of the fully polarized Fermi gas close to that governed by the linear Schödinger
equation (recall that the Gaussian is the solution for the ground state). When the mixture becomes
more attractive, the fermionic dynamics is dominated by the bosons, producing a similar error for
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both species, while for the repulsive mixture the Gaussian approximation is not appropriate. For the
non-interacting mixture, the error for the fermions is smaller than for the bosons, because the fermionic
density is very low, making the self-interaction terms weak in comparison to the external potential,
therefore it is appropriate to use the Gaussian ansatz to approximate the 1D dynamics. Finally, note
that the error is lower in the 2D case in comparison with 1D, because the reduction to 2D case is closer
to the full 3D model.
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Figure 13. (Color online) Space-time diagrams of the densities of bosons (top) and fermions (bottom),
for three different values of the interspecies scattering parameter: (a,b) aBF = −18 nm, (c,d) aBF = −26
nm, and (e,f) aBF = −34 nm. The initial conditions are the same in all the cases, see the text. The other
parameters are the same as in Figure 12.

Next, we address the BFM dynamics, considering a mixture with arbitrary initial conditions for
the 1D fields. To create the initial state, we start with the GS found in the absence of the inter-species
interaction (aBF = 0). Then, at t = 0, we switch the interaction on, which may imply the application of
the magnetic field, that gives rise to aBF 6= 0 via the FR. Figure 13 shows three cases of the temporal
evolution with these initial conditions for aBF = −18 nm, aBF = −26 nm, and aBF = −34 nm. In the
first case (panels (a) and (b) of Figure 13), it is observed that the densities converge towards the center
of the potential, as may be expected, creating a pattern of oscillations around the potential minimum; in
addition, the fermions are affected by bosons, as shown by the mark left by the bosons in the fermionic
density. For the second case (panels (c) and (d) of Figure 13), it is observed that the increase in the
strength of the attractive interaction generates dark solitons in the fermionic density, some of which
show oscillatory dynamics very close to that observed in Refs. [27,29,68–71]. The last case (panels
(e) and (f) of Figure 13) shows that the further increase of the strength of the interspecies interaction
generates a larger number of dark solitons. In other words, we show that the attractive interaction of
fermions with bosons in a state different from the GS eventually generates a gas of dark solitons.

Finally, we address the accuracy of the VA for the dynamical behavior near the GS. Figure 14
displays the spatiotemporal dynamics of the 1D density, as produced by the solution of 3D
Equations (21) and (22) for aBF = −10 nm. The initial conditions for the 3D dynamics are given
by the ansatz based on Equation (25), with the Gaussian profile along the z axes. Panels (a) and (b)
of Figure 14 show the spatiotemporal diagrams of the bosonic and fermionic densities, making the
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emergence of dark solitons obvious. This result corroborates that the dark solitons emerge too in the
3D dynamics, which is approximated by the present 1D model. The other panels of Figure 14 show a
comparison of the 1D spatial profiles, as obtained from the 3D simulations, and the 1D VA, for three
instants of time: t = 0 ms ((c) and (d)), t = 25 ms ((e) and (f)), and t = 50 ms ((g) and (h)). The results
demonstrate that the VA profiles are very similar to their counterparts produced by the 3D simulations,
hence the present approximation provides good accuracy and allows one to study dynamical features
of the BFM in a sufficiently simple form.
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Figure 14. (Color online) Comparison of the dynamics, as produced by the 1D VA, and from the
3D simulations. Spatiotemporal diagrams for bosons (a) and fermions (b) are obtained from the 3D
simulations. The other panels show spatial profiles for: (c,d) t = 0 ms, (e,f) t = 25 ms, and (g,h)
t = 50 ms. Here aBF = −10 nm, the initial conditions and other fixed parameters being the same as in
Figure 12. This figure is taken from Ref. [58].

4. Conclusions

In this brief review we have summarized results produced by the VA (variational approximation)
for reducing the 3D system to 1D and 2D forms for the Fermi gas and BFM (Bose–Fermi mixture)
in the framework of the quasi-mean-field description [21,58]. The method is based on the Gaussian
variational ansatz, which provides very accurate results for the GSs (ground states) of the gases loaded
in the disc- and cigar-shaped traps. The reduced equations are useful, in particular, for modeling
systems with low atomic densities and large spatiotemporal variations of the external potential. For the
1D case, the reduced equations provide results by means of modest computational resources, allowing
one to quickly explore a vast volume of the parameter space. In the 2D case, the required simulation
time is still significantly lower than what is necessary for the 3D simulations. We have shown that, for
the Fermi gases and BFMs alike, the VA produces results with a very good accuracy, the error, in the
comparison to the 3D simulations, being lower than 5%, for both the GSs and dynamical states.

For the Fermi gas case in the 2D approximation, we have considered the example of the hexagonal
superlattice, built as a superposition of two triangular lattices with different angles among them.
This possibility may be relevant for emulating condensed-matter settings, such as graphene-like
superlattices. In addition, we have presented results for dark solitons, obtained in the framework of
the 1D approximation. We have verified that the interaction is repulsive [32] and strongly depends on
the initial distance between the dark solitons.

Finally, for the BFM trapped in the harmonic-oscillator potential we have shown that a change in
the interaction strength can generate a gas of dark solitons. The solitons oscillate under the action of
the external potential.
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Appendix A Nonlinear Schrödinger Equation for the Fermionic Superfluid

Kim and Zubarev in Ref. [65] proposed an effective hydrodynamic equation for a Fermi
gas, in the regime of the BCS-BEC crossover. The equation was derived from the time-dependent
density-functional theory and has the form given by:

ih̄∂tΨ (r, t) =

[
− h̄2

2mF
∇2 + U (r) + µ (n (r, t))

]
Ψ (r, t) , (A1)

where Ψ is a complex field that represent the superfluid wave function, n (r, t) = |Ψ (r, t)|2 is the
particle density, and µ is the chemical potential. In addition, the relationship between the chemical
potential and the energy density (energy per particle), ε (n), is given by:

µ (n) =
∂

∂n
[nε (n)] (A2)

For the case of two spin states with balanced populations and a negative scattering length, aF < 0,
the BCS limit corresponds to kF|aF| � 1, where kF = (3π2n)1/3 is the Fermi wavenumber. In this limit
ε is given by [72]:

ε (n) =
3
5

εF

[
1 +

10
9π

kFaF +
4 (11− 2 ln (2))

21π2 (kFaF)
2 + · · ·

]
, (A3)

where εF = h̄2k2
F/ (2mF) is the Fermi energy. Taking the Equation (A3) into the Equation (A2) the

chemical potential takes the form

µ (n) =
h̄2

2mF

(
3π2

)2/3
n2/3 +

2h̄2πaF

mF
n
[
1 + 1.893aFn1/3 + · · ·

]
(A4)

where the first term corresponds to the effective Pauli repulsion, and the following ones to the
superfluidity due to collisions between the fermions in different spin states. Substituting the latter
expression in Equation(A1), and keeping only the first collisional term, we obtain the known nonlinear
Schrödinger equation for the fermionic superfluid [65,66]

ih̄∂tΨ =

[
− h̄2

2mF
∇2 + U (r) +

h̄2

2mF

(
3π2

)2/3
n2/3 +

2πh̄2aF

mF
n

]
Ψ, (A5)

where the last term is similar to one in the Gross-Pitaevskii equation for bosons, but with an extra
factor of 1/2, as the Pauli exclusion principle allows only atoms in different spin states interact via
the scattering. We remark that Equation (A5) implies equal particle densities and phases of the wave
functions associated with both spin states.

When we have a system with multiple atomic spin states, σj, associated with vertical projection of
the spin s (with 2sF + 1 states), we treat the atoms per state as a fully polarized Fermi gas. The term for
the interactions by collisions between atoms in different spin states, with the same scattering length
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(aF), correspond to the scattering term in the Gross–Pitaevskii equation. The motion equation for the
atoms in spin states j is given by:

ih̄∂tΨj (r, t) =

[
− h̄2

2mF
∇2 + U (r) +

h̄2

2mF

(
6π2

)2/3
nj (r, t)2/3

]
Ψj (r, t)

+
4πh̄2aF

mF

sF+1/2

∑
k 6=j=−(sF+1/2)

nk (r, t)Ψj (r, t) , (A6)

where Ψj is the wave function associated with spin projection σj, such that nj (r, t) =
∣∣Ψj (r, t)

∣∣2 is the
respective particle density, and V(r) an external potential, which is assumed to be identical for all the
spin states.

In the case of fully locally balanced populations, the density of particles is the same in each
component, n1 = n2 = ... = n2sF+1, hence the total density is n = nj/(2sF + 1). Assuming also equal
phases of the wave-function components, we define a single wave function, Ψ =

√
2sF + 1Ψj, such

that the Equation (A6) take the form

ih̄∂tΨ =

[
− h̄2

2mF
∇2 + U (r) +

h̄2

2mF

(
6π2

2sF + 1

)2/3

|Ψ (r, t)|4/3 + gF |Ψ (r, t)|2
]

Ψ, (A7)

where gF ≡ 8sFπh̄2aF/(2sF + 1)mF is the scattering coefficient. This equation is the same that
Equation (3) without considered the corrections of the first principles calculations given by λ1, λ2

and β [60–63]. In particular, the fully polarized gas, with the interactions between identical fermions
suppressed by the Pauli principle, formally corresponds to sF = 0, hence gF = 0, and the last term of
Equation (A7) vanishes.

Finally, the Equation (A7) can be derived, as the Euler-Lagrange equation,

δL
δΨ∗

=
∂L
∂Ψ∗
− ∂

∂t
∂L

∂ (∂tΨ∗)
−∇ ∂L

∂ (∇Ψ∗)
= 0, (A8)

from the corresponding action, S =
∫

dtdrL, with the Lagrangian density

L = i
h̄
2

(
Ψ∗

∂Ψ
∂t
−Ψ

∂Ψ∗

∂t

)
− h̄2

2mF
|∇Ψ|2 −U(r)|Ψ (r, t)|4/3 −

h̄2

2mF

3
5

(
6π2

2sF + 1

)2/3

|Ψ (r, t)|10/3 − 1
2

gF |Ψ (r, t)|4 , (A9)

where the asterisk stands for the complex conjugate. Similar Lagrangian formalisms have been used,
in the context of the density-functional theory, in diverse settings [19,66,73].
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44. Lelas, K.; Jukić, D.; Buljan, H. Ground-state properties of a one-dimensional strongly interacting Bose-Fermi
mixture in a double-well potential. Phys. Rev. A 2009, 80, 053617.

45. Watanabe, T.; Suzuki, T.; Schuck, P. Bose-fermi pair correlations in attractively interacting Bose-Fermi atomic
mixtures. Phys. Rev. A 2008, 78, 033601.

46. Kain, B.; Ling, H.Y. Singlet and triplet superfluid competition in a mixture of two-component Fermi and
one-component dipolar Bose gases. Phys. Rev. A 2011, 83, 061603.

47. Mering, A.; Fleischhauer, M. Multiband and nonlinear hopping corrections to the three-dimensional
Bose-Fermi-Hubbard model. Phys. Rev. A 2011, 83, 063630.

48. Song, J.-L.; Zhou, F. Anomalous dimers in quantum mixtures near broad resonances: Pauli blocking, Fermi
surface dynamics, and implications. Phys. Rev. A 2011, 84, 013601.

49. Ludwig, D.; Floerchinger, S.; Moroz, S.; Wetterich, C. Quantum phase transition in Bose-Fermi mixtures.
Phys. Rev. A 2011, 84, 033629.

50. Bertaina, G.; Fratini, E.; Giorgini, S.; Pieri, P. Quantum Monte Carlo study of a resonant Bose-Fermi mixture.
Phys. Rev. Lett. 2013, 110, 115303.

51. Adhikari, S.K.; Salasnich, L. Superfluid Bose-Fermi mixture from weak coupling to unitarity. Phys. Rev. A
2008, 78, 043616.

52. Maruyama, T.; Yabu, H. Quadrupole oscillations in Bose-Fermi mixtures of ultracold atomic gases made of
Yb atoms in the time-dependent Gross-Pitaevskii and Vlasov equations. Phys. Rev. A 2009, 80, 043615.

53. Iskin, M.; Freericks, J. Dynamical mean-field theory for light-fermion–heavy-boson mixtures on optical
lattices. Phys. Rev. A 2009, 80, 053623.

54. Snoek, M.; Titvinidze, I.; Bloch, I.; Hofstetter, W. Effect of interactions on harmonically confined Bose-Fermi
mixtures in optical lattices. Phys. Rev. Lett. 2011, 106, 155301.

55. Nishida, Y.; Son, D.T. Effective field theory of boson-fermion mixtures and bound fermion states on a vortex
of boson superfluid. Phys. Rev. A 2006, 74, 013615.

56. Salasnich, L.; Toigo, F. Fermi-bose mixture across a Feshbach resonance. Phys. Rev. A 2007, 75, 013623.
57. Gautam, S.; Muruganandam, P.; Angom, D. Position swapping and pinching in Bose-Fermi mixtures with

two-color optical Feshbach resonances. Phys. Rev. A 2011, 83, 023605.
58. Díaz, P.; Laroze, D.; Malomed, B.A. Correlations and synchronization in a Bose–Fermi mixture. J. Phys. B: At.

Mol. Opt. Phys. 2015, 48, 075301.
59. Tylutki, M.; Recati, A.; Dalfovo, F.; Stringari, S. Dark–bright solitons in a superfluid Bose–Fermi mixture.

New J. Phys. 2016, 18, 053014.



Condens. Matter 2019, 4, 22 23 of 23

60. Manini, N.; Salasnich, L. Bulk and collective properties of a dilute fermi gas in the BCS-BEC crossover.
Phys. Rev. A 2005, 71, 033625.

61. Salasnich, L.; Toigo, F. Extended Thomas-Fermi density functional for the unitary Fermi gas. Phys. Rev.
A 2008, 78, 053626; ibod Erratum: Extended thomas-fermi density functional for the unitary fermi gas.
Phys. Rev. A 2010, 82, 059902.

62. Ancilotto, F.; Salasnich, L.; Toigo, F. Dc Josephson effect with fermi gases in the Bose-Einstein regime.
Phys. Rev. A 2009, 79, 033627.

63. Ancilotto, F.; Salasnich, L.; Toigo, F. Shock waves in strongly interacting Fermi gas from time-dependent
density functional calculations. Phys. Rev. A 2012, 85, 063612.

64. Andreev, P.A. Spin current contribution in the spectrum of collective excitations of degenerate partially
polarized spin-1/2 fermions at separate dynamics of spin-up and spin-down fermions. Laser Phys. Lett. 2018,
15, 105501.

65. Kim, Y.E.; Zubarev, A.L. Time-dependent density-functional theory for trapped strongly interacting fermionic
atoms. Phys. Rev. A 2004, 70, 033612.

66. Adhikari, S.K. Mixing-demixing in a trapped degenerate fermion-fermion mixture. Phys. Rev. A 2006,
73, 043619.

67. Bragard, J.; Boccaletti, S.; Mendoza, C.; Hentschel, H.; Mancini, H. Synchronization of spatially extended
chaotic systems in the presence of asymmetric coupling. Phys. Rev. E 2004, 70, 036219.

68. Shomroni, I.; Lahoud, E.; Levy, S.; Steinhauer, J. Evidence for an oscillating soliton/vortex ring by density
engineering of a Bose–Einstein condensate. Nat. Phys. 2009, 5, 193.

69. Cardoso, W.B.; Zeng, J.; Avelar, A.T.; Bazeia, D.; Malomed, B.A. Bright solitons from the nonpolynomial
Schrödinger equation with inhomogeneous defocusing nonlinearities. Phys. Rev. E 2013, 88, 025201.

70. Sacha, K.; Delande, D. Proper phase imprinting method for a dark soliton excitation in a superfluid Fermi
mixture. Phys. Rev. A 2014, 90, 021604.

71. Donadello, S.; Serafini, S.; Tylutki, M.; Pitaevskii, L.P.; Dalfovo, F.; Lamporesi, G.; Ferrari, G. Observation of
solitonic vortices in Bose-Einstein condensates. Phys. Rev. Lett. 2014, 113, 065302.

72. Lee, T.D.; Huang, K.; Yang, C.N. Eigenvalues and eigenfunctions of a Bose system of hard spheres and its
low-temperature properties. Phys. Rev. 1957, 106, 1135.

73. Kim, Y.E.; Zubarev, A.L. Three-body losses in trapped Bose-Einstein-Condensed gases. Phys. Rev. A 2004,
69, 023602.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Fermi Gas
	The Two-Dimensional Reduction
	The One-dimensional Reduction

	The Bose–Fermi Mixture
	The Two-Dimensional Reduction
	The One-Dimensional Reduction

	Conclusions
	Nonlinear Schrödinger Equation for the Fermionic Superfluid
	References

