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Abstract: Cell culture is usually performed in 2D polymer surfaces; however, several studies are
conducted with the aim to screen functional coating molecules to find substrates more suitable for
cell adhesion and proliferation. The aim of this manuscript is to compare the cell adhesion and
cytoskeleton organization of different cell types on different surfaces. Human primary fibroblasts,
chondrocytes and osteoblasts isolated from patients undergoing surgery were seeded on polystyrene,
poly-d-lysine-coated glass and titanium carbide slides and left to grow for several days. Then their
cytoskeleton was analyzed, both by staining cells with phalloidin, which highlights actin fibers, and
using Atomic Force Microscopy. We also monitored the production of Fibroblast Growth Factor-2, Bone
Morphogenetic Protein-2 and Osteocalcin, using ELISA, and we highlighted production of Collagen
type I in fibroblasts and osteoblasts and Collagen type II in chondrocytes by immunofluorescences.
Fibroblasts, chondrocytes and osteoblasts showed both an improved proliferative activity and a
good adhesion ability when cultured on titanium carbide slides, compared to polystyrene and
poly-d-lysine-coated glass. In conclusion, we propose titanium carbide as a suitable surface to
cultivate cells such as fibroblasts, chondrocytes and osteoblasts, allowing the preservation of their
differentiated state and good adhesion properties.

Keywords: titanium carbide surface; human primary fibroblasts; human primary chondrocytes;
human primary osteoblasts; Atomic Force Microscopy; cell differentiation; cell adhesion

1. Introduction

In the last years, the in vitro cell culture fields have undergone significant developments, especially
in their application to a wide range of research areas, such as screening of molecules to be used in
the treatments of pathologies, toxicology and disease studies [1]. A number of concerns has been
raised regarding the quality of cell cultures, with particular focus on the surfaces used to propagate
cells. While plastic flasks and dishes have been available since the 1960s, to perform in vitro cell
culture, nowadays, most of these vessels are in polystyrene, a long carbon chain polymer with benzene
rings attached to carbons. This material can be easily bent to form any kind of container or support,
which has excellent optical clarity and simple sterilization processes. The main disadvantage is the
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hydrophobicity of polystyrene, which does not allow cell attaching [2]. For this reason, these vessels are
modified to have a more hydrophilic surface by either corona discharge under atmospheric conditions
or gas-plasma under vacuum.

Treated-polystyrene still has limitations, especially in serum-free culture conditions and to
maintain differentiated cell functions in primary cultures. In order to bypass these problems, different
polystyrene coatings have been proposed, involving both synthetic polymers, i.e., poly-d-lysine, which
confers a positive charge to surface and biological materials, such as extracellular matrix components
(ECM) like collagens, fibronectin, vitronectin or laminin [3–5]. The poly-d-lysine is more suitable for
cell culture but also time-consuming and expensive [5]. The biological coating with ECM components
from specific tissues could provide a suitable microenvironment to cultivate cells, avoiding their
dedifferentiation. Unfortunately, the most common biological coating strategies employ purified
matrix proteins, which produce a microenvironment for the cell growth that is different from the
in vivo conditions, and this can lead to modifications of the cellular behavior. Other strategies include
the use of tissue-derived ECM, but this implies that the cells are grown in 3D in a scaffold and not in
monolayer (2D) [6].

Another weakness of cell-culture models is the use of cell lines, which have been in vitro
immortalized or obtained by cancers. These cells are only slightly representative of tissue cells, while
primary cells allow greater predictability of the in vivo behavior in the presence of putative drugs or in
the study of diseases progression. Unfortunately, the primary cells are much more sensitive to their
environment and could respond differently if cultured on particular surfaces.

Actin is the most representative protein of the cytoskeleton of eukaryotic cells [7]. The
cytoskeleton, by integrating the activity of cytoplasmic proteins and organelles, coordinates the
physical and biochemical connection of cells to the external environment [8]. Thus, the study of actin
filaments is a good method to analyze the cell behavior and the interaction between the cells and the
growth environment.

Moreover, to analyze the phenotype of cells during in vitro culture, several growth factors can be
measured. The Osteocalcin (OC) production is typical of osteoblasts (hOBs) [9], Fibroblast Growth
Factor-2 (FGF-2) is typical of fibroblasts (FBs) [10] and the Bone Morphogenetic Protein-2 (BMP-2) is
involved in chondrocyte (HPCs) metabolic activity [11].

Fibroblasts, chondrocytes and osteoblasts are cells involved in production of extracellular matrix
components in their in vivo tissues, skin, cartilage and bone, respectively. Among the ECM components,
they produce the collagens, mainly Collagen type I (Coll I) in skin and bone and Collagen type II (Coll
II) in cartilage [12–14]. Prolonged 2D cell culture can lead to the downregulation of the production of
these ECM components, and the decrease of collagen production indicates that cells are losing their
differentiated state; thus, a good practice to verify the suitability of the cell culture conditions is to
measure the synthesis of collagens.

Several instruments are available to characterize specific physiologically related properties of
biologically related microscopic samples [15]. Among these, Atomic Force Microscopy (AFM) is
nowadays a tool commonly employed to characterize at high resolution a wide range of samples at
nanometer level, with negligible perturbations, minimal sample preparation and providing a truly
three-dimensional quantitative mapping at the nanoscale of the studied material [16,17]. In particular,
the use of this quantitative high-resolution technique has demonstrated to be very appropriate to monitor
the properties of the cell wall and cytoskeleton in different cell types and various conditions [18–20]
and is the ideal label-free tool to monitor the actin cytoskeleton in cells [21,22]. The high resolution of
AFM imaging allows highlighting of the fine details, i.e., roughness of the cell membrane [23] or stiffer
structures present near the cellular membrane, such as large actin filaments, which are typical of good
cellular spreading on the substrate and indicative of a good cell–substrate interaction and of a stronger
attachment [18].

Recently, in our laboratory, nanostructured titanium surfaces have been analyzed, with the aim
to find a surface with the best osseointegration features [24,25]. Titanium is used for most types of
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implants; moreover, modified titanium surfaces are more suitable for osseointegration, due to the
increased wettability or to their microstructural features, such as the surface micro- and nano-roughness,
which is very beneficial to cell growth and differentiation [26]. The coating of titanium with hard and
highly biocompatible titanium carbide layer (TiC), by ion plating plasma-assisted deposition (IPPA),
has been shown with a wide range of characterization techniques, ranging from XPS to AFM and SEM,
to be resistant, reliable and with a well-defined chemical structure [27–30]. One more positive aspect of
IPPA-deposited TiC is that it is inexpensive and can easily be introduced in the substrate preparation
industrial procedures.

Taking into account these findings, we studied the adhesion, proliferation and morphology of cells
on nanostructured TiC surfaces, comparing them to both cell-culture-treated polystyrene dishes and
poly-d-lysinated glass slides (poly-d-Lys). For a more reliable investigation, we chose to use human
primary cells, isolated from patients undergoing surgical treatment. Three different types of cells were
studied, fibroblasts (FBs), osteoblasts (hOBs) and chondrocytes (HPCs), in order to verify whether
nanostructured TiC could stimulate cells adhesion and thus be considered a good cell culture surface.

2. Results

2.1. Cell Adhesion on Polystyrene, Poly-d-Lys and TiC

Cells were seeded on the polystyrene, poly-d-Lys and Tic surfaces, incubated for 48 h and
immunostained to evaluate the resulting actin filament organization. The number of FBs seemed higher
on TiC compared both to polystyrene and poly-d-Lys. Moreover, FBs formed a three-dimensional
structure on TiC, as shown by the actin filaments that were arranged on different planes. Similarly,
the number of HPCs present on poly-d-Lys and TiC seemed higher than the number observed on
polystyrene. Remarkably, the cells grown on TiC presented a peculiar structure with the nucleus on one
side and the cytoplasm on the other. Moreover, hOBs seemed more abundant on TiC in comparison
with polystyrene and poly-d-Lys and on TiC the cells formed a more complex network, with a larger
number of contact points among cells (Figure 1).
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Figure 1. Organization in fibroblasts (FBs), chondrocytes (HPCs) and osteoblasts (hOBs) seeded on 

polystyrene, poly‐D‐Lysine‐coated glass (poly‐D‐Lys) and titanium‐carbide‐coated glass (TiC). Cells 

Figure 1. Organization in fibroblasts (FBs), chondrocytes (HPCs) and osteoblasts (hOBs) seeded on
polystyrene, poly-d-Lysine-coated glass (poly-d-Lys) and titanium-carbide-coated glass (TiC). Cells
were seeded, and after 48 h, they were analyzed by Immunofluorescence by using Phalloidin Alexa
Fluor 488. Nuclei were stained with DAPI (original magnification 20×, scale bar = 50 µm).
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2.2. Production of Osteocalcin, Fibroblast Growth Factor and Bone Morphogenetic Protein 2

To verify whether the substrate chemistry stimulated the cells to produce factors involved in
their metabolism, the amount of FGF-2, BMP-2 and OC was measured in the cell culture medium
of FBs, HPCs and hOBs, respectively (Figure 2). FBs cultured on TiC for 24 h produced a higher
amount of FGF compared to FBs cultured on polystyrene and poly-d-Lys, even if the increase was not
statistically significant. After 72 h, the amount of FGF-2 was undetectable in the medium of the cells
cultured on polystyrene and TiC, while the cells on poly-d-Lys were still producing FGF-2. Compared
to polystyrene, at 24 HPCs produced statistically significant (P ≤ 0.05) higher amounts of BMP-2, both
on poly-d-Lys and on TiC. Finally, hOBs produced a statistically significant larger amount of OC when
cultured on TiC compared to polystyrene and poly-d-Lys after 72 h culture.
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Figure 2. Measureof FGF-2, BMP-2 and OC secretion in cell culture medium. Fibroblasts, chondrocytes
and osteoblasts were seeded on polystyrene, poly-d-lysine-coated glass (poly-d-Lys) and titanium
carbide-coated glass (TiC), and after 24 or 72 h, the cell culture medium was analyzed for Fibroblast
Growth Factor-2 (FGF-2), Bone Morphogenetic Protein-2 (BMP-2) and Osteocalcin (OC) by ELISA
method, in fibroblasts, chondrocytes and osteoblasts, respectively. Results (in pg/mL) are expressed as
mean ± standard error, obtained in three different experiments. * P ≤ 0.05.

2.3. Collagens Production

The production of Coll I in FBs and hOBs and Coll II in HPCs was analyzed by immunofluorescence
after seven days’ culture, to allow cells to produce the collagens. The FBs layered on TiC showed a
larger accumulation of Coll I compared to the cells plated on polystyrene and poly-d-Lys. Moreover,
the chondrocytes appeared to deposit Coll II, which caused the cells to acquire a less elongated shape.
Once again, the nucleus was on one side and the collagen deposit was on the other side of the cells.
Finally, the hOBs deposited large amount of Coll I on poly-d-Lys and mainly on TiC (Table 1 and
Figure 3).

Table 1. Densitometric analysis of Collagen type I on fibroblasts (FBs) and osteoblasts (hOBs) and
Collagen type II on chondrocytes (HPCs,) seeded on polystyrene, poly-d-Lysine-coated glass (poly-d-Lys)
and titanium carbide-coated glass (TiC). Integrated density values of fluorescence were obtained by
using ImageJ software. The numbers reported in table represent the sum of all pixel intensities in the
region of interest, in this case the whole picture.

Polystyrene Poly-d-Lys TiC

Coll I in FBs 1549 1653 2465
Coll II in HPCs 2236 2673 3641
Coll I in hOBs 949 2933 4381
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Figure 3. Imagesof collagens in fibroblasts (FBs), chondrocytes (HPCs) and osteoblasts (hOBs) seeded
on polystyrene, poly-d-Lysine-coated glass (poly-d-Lys) and titanium-carbide-coated glass (TiC). Cells
were seeded, and after seven days, they were analyzed by immunofluorescence, using anti-collagen
type I (Coll I) or anti-collagen type II (Coll II) and Alexa Fluor 488 (green) or 576 (red) secondary
antibodies. Nuclei were stained with DAPI (original magnification 20×, scale bar = 50 µm).

2.4. AFM Analysis

We performed a series of AFM images on cells grown for 48 h on the different substrates. All
the images were performed on entire cells, to determine their overall form and height of the cells,
and focusing on the extremities, where the substrate-cell interaction is usually focused. As shown in
Figure 4, the cells evidenced different morphological properties, depending on the substrate. The form
of the cell extremities is much different in the three cases, with the cells growing on TiC evidencing
flatter and more spread extremities. The most evident difference between cells grown on polystyrene
and poly-d-Lys compared to those grown on TiC is in the presence, only in this latter case, of long actin
filaments. In addition, we performed the averaging of the height of the entire cells in the different
conditions. The results are summarized in Table 1 and evidence how the cells grown on TiC have a
lower average height compared to those grown on poly-d-Lys and polystyrene.
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Figure 4. Images of the extremities of fibroblasts (FBs), chondrocytes (HPCs) and osteoblasts (hOBs)
seeded on polystyrene, poly-d-Lysine-coated glass (poly-d-Lys) and titanium carbide-coated glass (TiC).
Cells were seeded, and after 48 h were immobilized and analyzed by contact-mode AFM. The scale bar
represents 10 µm.

3. Discussion

In the last decades, the in vitro cell culture methods have undergone a strong development,
due to their employment in many research areas, such as drug development, toxicology and disease
studies [31]. However, several concerns have been raised, regarding in particular the environment
in which cells are cultivated [1]. Usually, in the field of drug discovery, two-dimensional (2D)
monolayer cell culture conditions are used and they have proven to be an effective and convenient
method to perform analyses. Nevertheless, 2D cell cultures show disadvantages regarding the loss
of tissue-specific architecture, particularly in those tissues where the interactions between cells and
matrix is very desirable, such as skin [32], cartilage [33] and bone [34]. Nowadays, 2D cell cultures are
performed by using treated-polystyrene or coated-glass, but a certain number of limitations remain.
Cell cultures on a treated-polystyrene surface can lead to loss of differentiated status and/or cell
functions, those on coated surfaces, as with poly-d-lysine, are time-consuming and expensive, and the
biological coating with ECM components could provide a microenvironment for the cell growth that is
different from the in vivo conditions, leading to modifications of the cellular behavior; [3–5]. In the last
years, we studied nanostructured TiC material, and considering all its features [24,25], we decided to
evaluate the 2D cell culture on this surface in comparison with cell cultures on treated-polystyrene
and poly-d-Lysine-coated glass. The titanium carbide layer was produced by IPPA deposition [27–30]
directly on glass slides, obtaining surfaces with 25% light transmittance ability. This feature allows
to perform several kinds of experiments on cells, as immunofluorescence, while retaining the good
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characteristics of nanostructured titanium. Moreover, the IPPA deposition method is not expensive
and can be easily introduced in the industrial procedures for glass or plastic cell substrates.

Actin is the most representative protein of the cytoskeleton of eukaryotic cells [7] and it is crucial
for the maintenance of cell structure, polarity and mobility [35]. Most mammalian cells grow in
adhesion and need, for their survival, to be attached to a surface. To analyze the effects of the supports
on cell growth, we used human primary cells, which are much more sensitive to the underlying
environment compared to immortalized cells.

The analysis of the actin organization is a method to evaluate the adhesion of cells to a substrate.
Very interestingly, the cells cultivated on TiC showed an actin structure more similar to the organization
they have in the tissues, with widespread cells bearing abundance of stress fibers (Figures 1 and 4).
The FBs were arranged in 3D structure, showing filaments disposed on different planes (Figure 1).
HPCs formed a particular structure with the nucleus on one side and the cytoplasm on the other side
(Figures 1 and 3), resembling the same structure previously observed in chondrocytes cultured in
3D systems [36]. Finally, the hOBs showed on TiC an arrangement which is much more resembling
to that commonly found in bone: an increased production of collagens and other ECM components
and subsequently an improved differentiation in osteocytes, that have several filaments used to stay
in contact with other cells and with the bone microenvironment. Both of these features were more
present in the hOBs grown on TiC, compared to the cells cultivated on poly-d-Lysine and polystyrene
(Figures 2 and 4). This is confirmed by the AFM images, where the cells grown on TiC substrates show
well-defined actin filaments which are not evident on the membrane of cells grown on polystyrene
and poly-d-Lys. Indeed, the presence of these stress fibers and the overall height of the cells over
the substrate indicate that the cells have a better attachment and suggest a higher affinity with TiC
(Figure 4). This is also suggested by the cell form and spreading over the substrates and by the average
height of the cells, which is much smaller on TiC compared to the other substrates (Table 2). This
confirms the results obtained on hOBs grown on the very same substrate [24,25,28] and substantiates
that are found with the FBs and HPCs cells.

Table 2. Average height of the cells on the different substratesof fibroblasts (FBs), chondrocytes (HPCs)
and osteoblasts (hOBs) seeded on polystyrene, poly-d-Lysine-coated glass (poly-d-Lys) and titanium
carbide-coated glass (TiC). The values were obtained by averaging a minimum of eight cells per sample
and are presented ± the standard deviation.

Polystyrene Poly-d-Lys TiC

FBs 1.60 ± 0.14 µm 1.15 ± 0.21 µm 0.78 ± 0.16 µm

HPCs 1.21 ± 0.42 µm 1.50 ± 0.48 µm 0.69 ± 0.06 µm

hOBs 1.1 ± 0.27 µm 1.18 ± 0.30 µm 0.79 ± 0.23 µm

FBs, belonging to a dermis cell type with mesenchymal origin, play a critical role in
epithelial–mesenchymal interactions, wound healing and synthesis and secretion of extracellular
matrix components, including collagens [37]. In culture medium, FBs secrete several factors, such as
basic fibroblast growth factor (FGF-2). This factor is a heparin-binding protein, which interacts with
cell-surface-associated heparan sulfate proteoglycans, and it is involved in many biological processes,
such as cell growth and wound healing [38]. Its production is indicative of the ability of cells to
adhere to surface and to proliferate; nevertheless, FGFs are secreted in a very low amount from cell
cultures [39]. We found that FBs cultivated on TiC produced a higher amount of FGF-2 compared
to polystyrene and poly-d-Lys at 24 h, whereas after 72 h, only on poly-d-Lys, a residual production
was observed (Figure 2). It is probable that the cells on TiC had reached, after 72 h, a good level
of maturation and adhesion to the growth surface; thus, they did not need to further secrete FGF-2.
Moreover, cells on TiC reached confluence, as shown in Figure 3. In order to allow cells to produce a
detectable number of collagens, cells were cultivated for seven days before analysis, and, at this time
point, the different confluence of cells on TiC compared to those on polystyrene and poly-d-lys was
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much more evident. Finally, considering that cells were producing more collagen type I compared to
the other two substrates (Table 1), we can conclude that they preserved the differentiated status.

HPCs are the only cell type present in cartilage, and their role is to produce and renew the
extracellular matrix. BMP-2 is a growth factor used in cell culture, to stimulate mesenchymal cells to
differentiate in chondrocytes [35]. HPCs cultured on poly-d-Lys and TiC produced a higher amount of
BMP-2 compared to polystyrene; considering that the chondrocytes we used are from adult tissue,
the production of BMP-2 by these cells is very promising. Very interesting is also the ability of HPCs
cultured on TiC to produce collagen type II (Figure 3), which is almost undetectable on the other two
surfaces. Usually, these cells when cultured in 2D dedifferentiate and lose their ability to produce Coll
II. TiC, on the other hand, appears to allow the chondrocytes to be maintained in a differentiated state.

Osteoblasts originate by mesenchymal cells and are primarily responsible for the synthesis and
deposition of the mineralized, collagen-rich matrix present in the bone tissue [40]. Another very
abundant factor present in the bone is osteocalcin, which is produced exclusively by osteoblasts.
Osteocalcin is used as a serum marker of bone formation, and is also an indicator of the proliferative
and differentiated state of osteoblasts in cell culture. So far, it has been believed to act on bone to
regulate the mineralization, but recent studies suggested a broader role for osteocalcin, extending its
role to the regulation of the whole body metabolism [41]. Osteoblasts cultivated on TiC produced a
statistically significant higher amount of OC compared to polystyrene and poly-d-Lys, and moreover, a
higher amount of Coll I, a collagen very abundant in bone matrix (Figures 2 and 3).

4. Materials and Methods

Human primary cell isolation. Human primary cells were isolated from patients that underwent
surgical treatment, and full ethical consent was obtained from all donors and the Research Ethics
Committee, Sapienza University of Roma, approved the study.

Human primary diploid dermal fibroblasts (FBs) were obtained from young adult male patients
who underwent circumcision surgery for phimosis. FBs were isolated as previously described [37];
briefly, after scraping away excess fat and subcutaneous tissue, the foreskins were floated in 0.25%
trypsin solution (Sigma Aldrich, Co. Saint Louis, MO, USA), at room temperature, for 1 h, under
gentle agitation. Trypsin was neutralized by soybean trypsin inhibitor, and the cells were cultivated in
High Glucose Dulbecco’s modified Eagle’s medium (DMEM) (Sigma Aldrich), supplemented with
penicillin/streptomycin, L-glutamine, Na-pyruvate, non-essential amino acids (Sigma Aldrich) and
10% Fetal Bovine Serum (FBS) (Sigma Aldrich).

Human Primary Chondrocytes (HPCs) were isolated from femoral and tibial condyles and from
femoral heads, obtained from patients who underwent a total knee and hip arthroplasty. HPCs were
isolated, as previously described, from articular cartilages aseptically dissected from patients, selecting
areas of macroscopically normal cartilage [36]. The isolated chondrocytes were grown to 80% confluence
in DMEM (HyClone, Logan, UT, USA) supplemented with L-glutamine, penicillin/streptomycin (Sigma
Aldrich) and 10% Fetal Bovine Serum (FBS).

Human primary osteoblasts (hOBs) were isolated from bone fragments, as previously
described [29]. In brief, the bone fragments were washed in sterile phosphate-buffer saline (PBS),
minced and treated with 1 mg/mL collagenase type IV and 0.25% trypsin for 1 h, at 37 ◦C, with
gentle agitation. Then, hOBs were grown to 80% confluence in McCoy’s medium (Sigma Aldrich)
supplemented with L-glutamine, penicillin/streptomycin and 15% FBS.

To avoid the bias of senescence modification in cell metabolism, mycoplasma-free FB clones
between the 5th and 20th in vitro passage were used, whereas HPCs and hOBs were used at first
passage (p1).

All types of cells were seeded on test substrates, polystyrene, poly-d-Lys and TiC, at a density of
8 × 103/cm2, and cultured for the requested times, at 37 ◦C, in 5% CO2.

Substrate preparation. Cells were cultured on commercially available cell-culture-treated
polystyrene dishes, on home-prepared poly-d-lysinated glass and on nanostructured TiC.
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Glass slides were poly-d-lysinated by adding 50 µg/mL of poly-d-lysine in sterile water, left 10
min at room temperature and then rinsed with PBS.

Nanostructured TiC film was prepared as previously described [24]; in brief, glass slides were
coated with thin film of TiC (10.5 nm) by Ion Plating Plasma Assisted deposition method. The layers
allowed the transmission of 25% of the light, which was enough to perform fluorescence microscope
analyses. The TiC slides were previously characterized by XPS, to determine the composition [30].

Immunofluorescence. Cells plated at a density of 8 × 103/cm2 were analyzed by
immunofluorescence, to visualize the actin filaments. Cells were cultured for 48 h and then washed in
PBS, fixed in 4% paraformaldehyde in PBS for 15 min, at 4 ◦C, and permeabilized with 0.5% Triton-X 100
in PBS, for 10 min, at room temperature. After blocking with 3% bovine serum albumin (BSA) in PBS
for 30 min, at room temperature, cells were incubated with Phalloidin Alexa Fluor 488 (Immunological
Sciences, Rome, Italy) 1:40, for 20 min, at room temperature. Cells were ultimately washed in PBS and
incubated with DAPI (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA), to visualize the nuclei.
To analyze the collagens, cells, after blocking, were incubated at 1 h, at room temperature, with mouse
monoclonal anti-Collagen I antibody (Santa Cruz Biotechnology, Inc, Dallas, TE, USA) or with mouse
monoclonal anti-Collagen II antibody (Abcam, Cambridge, UK), washed with PBS and then incubated
for 1 h, at room temperature, with Alexa Fluor 488 or Alexa Fluor 568 goat anti-mouse (Immunological
Sciences), respectively. Slides were washed and then incubated with DAPI (Invitrogen, ThermoFisher
Scientific), to visualize the nuclei. The images were captured by optical microscope Leica DM IL LED,
using AF6000 modular Microscope, and analyzed with Leica DM microscope (Leica Microsystem,
Milan, Italy).

Densitometric analysis. The free software ImageJ (https://imagej.nih.gov/ij/) was used to perform
the densitometric analysis of collagen production. For each cell culture condition, the integrated
density values of fluorescence were considered. The sum of all pixel intensities in the region of interest
is listed in Table 1.

ELISA. Concentration of Bone Morphogenetic Protein (BMP-2), Osteocalcin (OC) and Fibroblast
Growth Factor (FGF-2) in culture medium was measured by BMP-2, OC and FGF-2 ELISA kit Fine Test
(Fine Biotech Co., Ltd., Wuhan, China), respectively, according to the manufacturers’ instructions.

Atomic Force Microscope. The experiments were conducted, using a commercial FlexAFM
(Nanosurf, Liestal, Switzerland) installed over an inverted optical microscope Olympus IX 70 (Olympus,
Rungis, France) equipped with a high-resolution camera (F-View-II—Soft Imaging System GmbH,
Münster, Germany). We used silicon nitride BrukerDNP-10 probes (Bruker probes, Manning Park
Billerica, MA, USA), choosing the cantilever with nominal elastic constant of 0.06 N/m and a 4-sided
pyramidal tip shape with apical radius of 10 nm. Prior to each day of measurements, the cantilevers
were calibrated, using a built-in thermal calibration protocol [41].

The cells on the different substrates were fixed, using 0.5% glutaraldehyde in PBS, for 3 h, at 4 ◦C,
and then washed in PBS, kept in ultra-pure water, and finally air-dried prior to imaging. The AFM
images were collected in contact mode, with an applied force of 10 nN. All images were acquired
with a minimum of 512 points per line and with an acquisition speed of 2 lines per second for all
the presented 30 × 30 µm images. The images are presented without any filter; only a background
subtraction and plane alignment were performed. A minimum of 10 cells per sample were analyzed.

5. Conclusions

In this manuscript, we compared the proliferation and adhesion of three cell types, FBs, HPCs and
hOBs, on three different substrates: polystyrene, poly-d-Lysine and glass coated with titanium carbide.
TiC appeared as an excellent choice for cell cultivation substrate. Indeed, we showed how this surface
allows maintaining the cells in their differentiated status when cultured in 2D conditions, as shown
by the production of collagens, which resulted in being almost undetectable in cells cultivated both
on polystyrene and on poly-d-Lys. The AFM images confirmed these results, highlighting how the
three different cell lines grown on TiC produced a more complete adhesion in comparison to the other

https://imagej.nih.gov/ij/
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commonly employed substrates. Overall, this underscores how TiC is an excellent additional layer
to produce a cell-growth environment. Furthermore, since the deposition of hard layer of titanium
carbide on glass using ion plating plasma-assisted deposition is an inexpensive method which is very
easily implemented in an industrial platform, we can propose this as an easy and straightforward
addition to the substrate preparation protocols, to improve their biocompatibility.
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