
Article

A Parameter Refinement Method for Ptychography Based on
Deep Learning Concepts

Francesco Guzzi 1,2 , George Kourousias 1 , Alessandra Gianoncelli 1,* , Fulvio Billè 1 and Sergio Carrato 2

����������
�������

Citation: Guzzi, F.; Kourousias, G.;

Gianoncelli, A.; Billè, F.; Carrato, S. A

Parameter Refinement Method for

Ptychography Based on Deep

Learning Concepts. Condens. Matter

2021, 6, 36. https://doi.org/10.3390/

condmat6040036

Academic Editor: Alessandro Scordo

Received: 28 August 2021

Accepted: 12 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Elettra—Sincrotrone Trieste, Strada Statale 14, Area Science Park, 34149 Trieste, Italy;
francesco.guzzi@elettra.eu (F.G.); george.kourousias@elettra.eu (G.K); fulvio.bille@elettra.eu (F.B.)

2 Image Processing Laboratory (IPL), Engineering and Architecture Department, University of Trieste,
via A.Valerio 10, 34127 Trieste, Italy; carrato@units.it

* Correspondence: alessandra.gianoncelli@elettra.eu

Abstract: X-ray ptychography is an advanced computational microscopy technique, which is de-
livering exceptionally detailed quantitative imaging of biological and nanotechnology specimens,
which can be used for high-precision X-ray measurements. However, coarse parametrisation in
propagation distance, position errors and partial coherence frequently threaten the experimental
viability. In this work, we formally introduce these actors, solving the whole reconstruction as
an optimisation problem. A modern deep learning framework was used to autonomously correct
the setup incoherences, thus improving the quality of a ptychography reconstruction. Automatic
procedures are indeed crucial to reduce the time for a reliable analysis, which has a significant impact
on all the fields that use this kind of microscopy. We implemented our algorithm in our software
framework, SciComPty, releasing it as open-source. We tested our system on both synthetic datasets,
as well as on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.

Keywords: ptychography; soft-X-ray microscopy; X-ray measurements; CDI; phase retrieval;
automatic differentiation; computational imaging; parameter refining; inverse problems

1. Introduction

In the last decade, computational microscopy methods based on phase retrieval [1]
have been extensively used to investigate the microscopic nature of thin, noncrystalline
materials. In particular, quantitative information is provided by ptychography [2,3], which
combines lateral scanning with Coherent Diffraction Imaging (CDI) methods [4,5]. Similar
to Computed Tomography (CT) [6,7], the technique tries to solve an inverse problem, as the
object is reconstructed from its effects impinged on the incident beam. The result is a high-
detail absorption and quantitative phase image of large specimens [8]. In a transmission
setup (e.g., in a synchrotron beamline microscope [9,10]), this reconstructed object is a
complex-valued 2D transmission function O(x, y), which describes the absorption and
scattering behaviour [11] of the sample.

1.1. Iterative Phase Retrieval

Typically, an iterative phase retrieval procedure [1] is employed to find a solution
for O(x, y) [3]: an a priori image formation model is used to simulate the experiment,
by producing synthetic quantities (Figure 1), which depend on the current estimate of all the
latent variables, e.g., O(x, y), and the model parameters; it is the comparison (loss function)
between simulated and measured quantities that guides the solution, as the current estimate
is iteratively updated (Figure 2) to minimise the error. In CDI/ptychography, the quantities
of interest are diffraction patterns (Figure 1).
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1.2. The Parameter Problem

Ptychography is extremely sensitive to a coarse parameter estimation [12,13], and this
may result in a severely degraded reconstruction: a long trial and error procedure is typ-
ically employed to manually refine these quantities, looking for an output with fewer
artefacts. On the contrary, framing the reconstruction as a gradient-based optimisation
process (Figure 2), the loss function can be written with an explicit dependency on the
model parameters, for which an update function can be calculated. As the model complex-
ity increases, the gradient expressions become progressively more difficult to calculate,
and indeed, Automatic Differentiation (AD) methods (also referred to as “autograd”) [14,15]
applied to ptychography are recently receiving much attention as an effective way to
design complex algorithms [16–18]. However, being based on fixed parameters, the pre-
sented reconstruction algorithms can eventually become fragile (except for [18]), requiring
some interventions.

1.3. Proposed Solution

In the present work, we describe an AD-based ptychography reconstruction algorithm
that takes into account many setup parameters within the same optimisation problem.
The procedure was solved entirely within an AD environment. This was made possible
as a loss function was derived by explicitly taking into account all the setup parameters,
which were added to the optimisation pool for a joint regression/reconstruction. It has
to be noted that also the probe positions were refined in this way, without using an
expensive Fourier-transform-based approach. Indeed, a deep-learning-inspired strategy
was employed, rooted in the spatial transformer network literature [19]. The software has
been released as open-source [20].

1.4. Manuscript Organisation

This paper is organised as follows: in Section 2, we provide a brief introduction to the
ptychography forward model, defining the major flaws we wanted to correct, as well as a
brief description of the autograd technology. In Section 3, our computational methodology
is described, introducing the designed loss function and the spatial transform components.
In Section 4, we present our main results, while Section 5 concludes the paper.

Figure 1. In a computational model (larger box) built on physical insights (embedded boxes), latent
variables are used as the input to simulate physical quantities.
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Figure 2. Iterative-gradient-based optimisation: all the latent quantities are updated by using
the information from the loss function computed between simulated and measured quantities.
The update estimation is based on the reconstruction error gradient, which is calculated automatically
in an automatic differentiation framework.

2. Background

In ptychography [3] (Figure 3), an extended object is placed onto a sample stage and
is illuminated with a conic beam of monochromatic and coherent light. The radiation
illuminates a limited region of the specimen (see the dotted circles in Figure 3), and a
diffraction pattern is recorded by a detector placed at some distance zsd = zd − zs (see
Figure 3). To reconstruct the object, both the set of J recorded diffraction patterns Ij with
j ∈ [1 . . . J] and the J (xj, yj) positions are required. Each jth acquisition can be considered
independent of the others. By illuminating adjacent areas with a high overlap factor,
diversity is introduced to the acquisition, thus creating a robust set of constraints, which
greatly improve the convergence of the phase retrieval procedure [3]. Diversity is what
helps the optimisation problem regress the setup parameters.

Figure 3. A typical ptychography setup used in synchrotron laboratories: a virtual point source
illuminates (probe) a well-defined region on the sample, which is mounted on a motorised stage.
The scattered field intensity is recorded at a distance zd.
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2.1. Ptychography Model

The image formation model schematised in Figure 1 can be described more formally
by the following expression:

Ij(x, y; zd) = |Dzd−zs{P(x, y; zs) ·O(xj, yj; zs)}|2, (1)

where P(x, y; zs) is the 2D illumination on the sample plane (z = zs), typically referred to as
the “probe”; O(xj, yj; zs) is the 2D transmission function of the sample in the local reference
system (xj, yj), centred at the known jth scan position; Dzd−zs is an operator that describes
the observation of the pattern at a known distance zd − zs.

Knowing the illumination on a region of the object is crucial for the factorisation of
the exit wave Ψs(x, y; zs):

Ψs(x, y; zs) = P(x, y; zs) ·O(xj, yj; zd). (2)

In a modern ptychography reconstruction, P(x, y) is automatically found thanks to the
diversity in the dataset [3,21,22], and the “probe retrieval” procedure has been extended
also to the case of a partial coherence [3,23–26]. Indeed, in order to take into account the
independent propagation of M mutually incoherent probes, Equation (1) is modified in the
following manner:

Ij(x, y; zd) =
M

∑
p=1
|Dzd−zs{Pp(x, y; zs) ·O(xj, yj; zs)}|2, (3)

where the exit wave produced by the modulation of each Pp(x, z; zs) mode is summed in
intensity on the observation plane zd.

2.2. Parameter Refinement

We can denote as the “setup incoherences” all the deviations of a real setup from
the a priori model defined in Equation (1). Even if in the literature, many solutions
have been proposed, in most cases, the problems are typically tackled independently.
Partial coherence and mixed-state ptychography have been extensively reviewed (e.g.,
in [3,27,28]); the same is valid for the position refinement problem [29–35], with methods
that are quite similar to what is performed in, e.g., super-resolution imaging [36] or CT [37].
To understand the importance of positions for ptychography, Figure 4 illustrates a slightly
exaggerated condition: note that the entire object computational box changes format,
and this is detrimental, especially from the implementation point of view.

Much more scarce is the literature on axial correction: in [13], an evolutionary algo-
rithm was used to cope with the uncertainty of the source-to-sample distance in electron
ptychography. In [38], the authors proposed using a position refinement scheme also to
correct for the axial parameters, as the latter is responsible for modifying the distances
between adjacent probes, while in a work published in January 2021, the authors of [39]
used an autograd environment to directly infer the propagation distance.

In an even more recent work (March 2021), the authors in [18] proposed also a unifying
approach to parameter refinement similar to the one used in our manuscript: we genuinely
only became aware of these two references while writing the final version of this manuscript.
It is undoubted that the automatic differentiation methods (Section 2.3) are becoming of
interest for computational imaging techniques such as ptychography, and many research
teams are approaching the methods as they represent the future of the technique.

Figure 5 shows the effect of the wrong propagation distance on the probe retrieval
procedure: in Panel A, speckle-like patterns typically appear; position errors produce
instead a typical dotted artefact. An incorrectly retrieved probe P(x, y) will produce a
severely wrong object reconstruction O(x, y).
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Figure 4. Artificial stitching of the illuminated object ROIs with correct (Panel A) and wrong positions
(Panel B): severe artefacts are produced together with a deformation of the total computational box
(maximal occupation).

Figure 5. Typical artefacts in a probe retrieval procedure (simulated data) in the case of the wrong
propagation distance (Panel A, speckle patterns) and no position refinement (Panel B, cluster of dots).
(Panel C) shows the real illumination (magnitude).

2.3. Automatic Differentiation

An unconstrained optimisation problem aims at minimising a real-valued loss function
f (x) of N variables. This problem can be formally expressed by the following way:

x̃ = argmin
x

f (x), (4)

where x̃ is the sought N-vector solution. One of the common methods to iteratively
minimise the function f (x) is the gradient descent procedure, which relies on the gradient of
the loss function to define an update step:

xk+1 = xk − α∇x f (x)|x=xk (5)

which will provide a new vector estimate xk+1 from the previous estimate xk, which at
convergence will be equal to x̃. The handmade symbolic computation of ∇x f (x) becomes
increasingly tedious and error-prone as the complexity of the expression increases. Numer-
ical differentiation automatically provides an estimate of the point derivative of a function
by exploiting the central difference scheme, but while this method is particularly effective
for a few dimensions, it becomes progressively slow as N increases. On the other side,
a Computer Algebra System (CAS) generates a symbolic expression through symbolic com-
putation, but often, the output results in expression swell. Automatic differentiation [40–42]
is a way to provide an accurate gradient calculated at a point, thus lying in between nu-



Condens. Matter 2021, 6, 36 6 of 14

merical differentiation and handmade calculation. In one of the currently used methods to
automatically compute the gradients [43], when a mathematical expression is evaluated,
each temporary result constitutes a node in a computational acyclic graph that records the
story of the expression, from the input variables to the generated result. The gradient is
simply calculated following the graph backwards (backward mode differentiation [42]),
from the results to the input variables, only applying the chain rule to the gradient of each
nuclear differentiable operator [40].

3. Computational Methodology

The ptychography forward model is defined in terms of a complex probe vector
P ∈ CK interacting with a complex object transmission function, which can also be arranged
as a vector O ∈ CD.

3.1. Loss Function

Loss functions are typically designed around simple dissimilarity metrics such as
quadratic norms, which can be real functions of a complex variable. As represented in
Figure 2, the loss function takes into account the simulated ( Ĩj) and real (Ij) quantities of the
same type (diffraction patterns). When all the conditions defined in Section 2 hold, a loss
function L for all the j ∈ [1 . . . J] diffraction patterns and positions in the dataset can be
written as a data fidelity term:

L(P, O, z) =
J

∑
j=1

∥∥∥ Ĩj(P, O, z)− Ij

∥∥∥2
. (6)

As can be seen, Equation (6) is a function of the 2K + 2D + 1 real variables, which
when stacked up, constitute the optimisation vector pool. The simulated diffraction pattern
Ĩj relative to the current jth computational box is calculated by Equation (1) or by its
extension to a multimode illumination (Equation (3)). The square root of the recorded
data can be computed once for all the diffractions to fasten the implementation. Dz is the
angular spectrum propagator [44] defined by the expression:

Ψd(x, y; zd) = F−1{F{Ψs(x, y; zs)} · F{h(x, y, z)}}, (7)

which relates the input field Ψs(x, y; zs) (defined in Equation (2)) to the output field at
the detector plane Ψd(x, y; zd). Fixing the wavelength λ of the incident radiation, the 2D
Fourier transform of the propagation filter h is defined by [44]:

F{h(x, y, z)} = H( fx, fy, z) = ejkz·
√

1−(λ fx)2−(λ fx)2
. (8)

3.2. Complex-Valued AD

Current DL autograd tools are not conceived of to work with complex numbers, so
a basic complex library needs to be written; the natural way to introduce them is to just
add an extra dimension to each 2D tensor and incorporate the real and the imaginary part
in the same object, basically duplicating the number of actual variables. The automatic
backward operation is completely acceptable for this kind of custom-made data type,
and the resulting gradient is simply:

grad f (x) = 2∇∗x f (x) =
∂ f
∂x∗

= (
∂ f
∂a

+ j
∂ f
∂b

) (9)

where x = a + jb. The actual gradient is represented in the same complex data type of the
variables, made of a real and an imaginary part. As can be seen in Equation (9), the result
of the automatic differentiation can be written in the Wirtinger formalism [45], just as the
derivative with respect to the conjugate of the differentiation variable (except for the con-
stant), which is the typical gradient expression exploited for functions of complex variables.
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3.3. Regularisation

To increase the quality of the reconstruction, the data fidelity term in a loss function is
usually paired with a regularisation term (the method of Lagrange multipliers), whose role
is to penalise ad hoc solutions in the parameter space: a pixel value ought to fit the physical
nature of the model beneath, without only accommodating the dissimilarity measure;
this translates into a mere energy-conservation constraint. Other regularisation methods
can be employed, especially the one based on priors on the image frequencies; however,
they can be more difficult to tune and require a different forward model. Different from
other works (e.g., [17,18]), in this work, especially for O and P, we decided to use energy-
based regularisation, paired only with a large penalisation of quantities out of the desired
range. In this way, we practically constrained the minimisation even if a nonconstrained
optimisation framework was used.

3.4. Spatial Transform Layer

If as seen in Equations (6) and (7), writing a mathematical expression in the parameters
O, P and z directly permits the gradient generation, the same does not hold for the spatial
shift correction defined on a discrete sampling grid. Indeed, in the typical ptychography
reconstruction algorithm, the computational box for a given jth position is defined by
exploiting a simple crop operator on a 2D tensor. While this method is simple and com-
putationally fast (pointer arithmetics), it is not differentiable, as integer differentiation is
nonsense. In this work, an approach borrowed from the DL community was then explored.

Convolutional neural networks are not invariant to geometric transforms applied to
their input. To cope with this problem, a spatial transform layer [19] is introduced; the new
learnable model is trained by inferring the spatial transformation that, applied to the input
feature map, maximises the task metric. This approach greatly improves classification and
recognition performances (e.g., in face recognition [46]).

In this work, instead, the parameters of the affine transform were directly learned as
the position refinement coefficients, which minimise the objective function (Equation (6))
during the reconstruction. To do so, two components were used (Figure 6): (I) a grid
generator and (II) a grid sampler. The first element transforms a regular input sampling
grid (xi, yi)

T into an output coordinates grid (xo, yo)T , by applying an affine transform to
the former; this mapping (Equation (10)) is fully defined by six degrees of freedom, but as
concerns rigid translation, only the last column (tx, ty)T is optimised. The scaling factors
(sx, sy)T are thus constants used to crop the central region.(

xo
yo

)
j
=

(
sx 0 tx
0 sy ty

)
j

(
xi
yi

)
j

(10)

Then, for each jth diffraction pattern and each jth shift-vector (tx, ty)T , the jth output
grid (xo, yo)T is generated. From the latter, the grid sampler thus outputs a warped version
of the object. Following the formalism introduced in [19], the cropped portion of the object
Vj is generated from the entire object U by:

Vj =
H

∑
h=1

W

∑
w=1

Uw,h · K(w− xj, h− yj) (11)

A well-performed sampling (with an antialiasing filter) adds a regularisation term that
can help during the optimisation. The bilinear sampling exploits a triangular (separable)
kernel K, defined in Equation (12), which does not present dangerous overshooting artefacts:

K(w− x, h− y) = K1(w− x) · K1(h− y) (12)

where:
K1(t) = max(0, 1− |t|). (13)
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Figure 6 shows the structure of the proposed approach, applied to the ptychography
framework. The same spatial transform is enforced on the two channels of the tensor that
represent the real and imaginary parts of the cropped region of the object. Within this
setup, gradient propagation is possible because derivative expressions can be calculated
with respect to both the affine grid and the output pixel values [19].

Figure 6. Schematics of the differentiable components used in our method. For each positions vector,
a grid generator takes as the input the corresponding shift transform expressed in an affine transform
formalism; the sampling grid is then generated using this information. The object is then sampled at
each coordinate defined by the sampling grid, producing the correct cropped region of the object.

4. Results and Discussion

In this section, reconstructions obtained from a soft X-ray experiment are presented.
Additional details on the performance analysis for many synthetic datasets can be found
instead in the Supplementary Materials of this publication. The reconstruction obtained
through the proposed method is confronted with the output of the EPIE [22] and RPIE [47]
algorithms. The virtual propagation distance of 0.037 mm was chosen by reconstructing
at many z and selecting the best reconstruction. All the computational experiments were
written on PyTorch 1.2 [43] and executed on a computer equipped with an Intel Xeon (R)
E3-1245 v5 CPU running at 3.50 GHz. The entire code was implemented on a GPU (Nvidia
Quadro P2000), which is essential for this heavy-duty computational imaging.

The imaging experiment was performed at the TwinMic spectromicroscopy beam-
line [9,10] at the Elettra synchrotron facility. TwinMic can operate in three imaging modali-
ties: (I) STXM; (II) full-field TXM/CDI; (III) scanning CDI (ptychography). Clearly, the latter
(the one used for this work) is obtained by combining the optic setup of the second modality
and the control of the sample stage from the first one.

Similar to other ptychography experiments performed at the beamline (e.g., [10,48]),
X-ray data were collected using a 1020 eV X-ray synchrotron beam [9] focused with a
600 µm diameter Fresnel Zone Plate (FZP) with an outer zone width of 50 nm. The zone
plate was placed approximately at 2 m downstream a 25 µm aperture that defines a sec-
ondary source. This is crucial to increase the beam coherence, at the expenses of bright-
ness. A Peltier-cooled Charge-Coupled Device (CCD) detector (Princeton MT-MTE) with
1300 × 1340 20 µm× 20 µm px2 was placed roughly 72 cm downstream of the FZP. Ac-
cording to the Abbe theory [48], the limit of the resolution for coherent illumination is
Γ = 0.82λ/NA = 50 nm. The resolution in Fresnel CDI is a function of the experimental
geometry [49], namely the distance from the focal point of the FZP to the detector and the
physical size of the detector itself, rather than the focusing optics.

From the ptychography configuration point of view, the situation is similar to the one
presented in [50], where a point source (obtained by idealising the focus of an FZP through
an order sorting aperture) illuminates the sample. Following the approach of [50], dur-
ing the data analysis, the beam was parallelised by using the Fresnel scaling theorem [44].
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In the following experiment, as pointed out in Section 2, the sample was considered suffi-
ciently thin [21,51] to be modelled by a multiplicative complex transmission function O
defined by the expression:

O(r) = ej 2π
λ [n(r)−1]t(r)) = ej 2π

λ t(r)[−δ(r)+jβ(r)] (14)

where r is the planar coordinate on the sample plane, n(r) is the complex refraction index
and t(r) a real R2 7→ R1 function defining the local thickness. From the reconstruction-
inferred O(r) (the objective of the reconstruction), the magnitude map corresponds to:

ln |O(r)| = ln
√

I(r) = ln
√

Io(r)−
2π

λ
β(r) · t(r) (15)

where Io is the flat field intensity and I the sample intensity. The phase map instead
corresponds to:

arg{O(r)} = φ(r) = −2π

λ
δ(r) · t(r). (16)

If the properties of the material (β and δ) are known, it is simple to infer its thickness
and vice versa.

Diffraction data were acquired in the form of a 16-bit multipage tiff file. The nominal
positions were directly acquired from the shift vectors provided to the control system of the
mechanical stage. A series of dark field images was acquired for the dark field correction.

Figure 7 shows a group of chemically fixed mesothelial cells: Mesenchymal–Epithelial
Transition (Met5A) cells were grown on silicon nitride windows and exposed to asbestos
fibres [10]. The absorbing diagonal bar is indeed an asbestos fibre included in the sample.
The reconstructed sample is shown in magnitude (second columns) and phase (third
column), where the first and the fourth ones are the magnification of the red (magnitude)
and green (phase) area denoted in the figure. Each row shows the reconstruction obtained
with a different algorithm (EPIE, RPIE and the proposed method “SciComPty autodiff”).
Due to the fact that for each algorithm, many iterations (10,000) were needed for this
dataset, in order to reduce the computation time, each diffraction pattern was scaled to
256 × 256 px, giving a resulting pixel size of roughly 36 nm (~4 × 9 nm = 36 nm) on a
846 × 847 px reconstructed image. As in all the simulated experiments, for each diffraction
pattern, the correct value of the padding was inferred by the propagation routine, taking
into account the wavelength and the current propagation distance value.

Observing the quality of the results, the proposed method (Figure 7c) clearly surpassed
all the aforementioned ones: Figure 7 shows the red insets of the top left fibre, which was
correctly reconstructed with the highest resolution only by the proposed algorithm; in a
multimode DM and EPIE reconstruction, many ringing artefacts are visible. RPIE [47]
provided the best result among the typical reconstruction algorithms, with an object with a
large field of view, which extended also into sparse sampled areas. The proposed method
(fourth row) reconstructed the fibre and the cell at the highest resolution in both magnitude
and phase (see Figure 8). A second inset (green colour) shows the texture in the phase
reconstruction, where again, the proposed method outperformed the others; cell structures
were corrupted by fewer artefacts and visible in their entire length.

The higher reconstruction quality can be directly attributed to the combined action of
both the automatic inference of the virtual propagation distance (Fresnel scaling theorem)
of 0.24 mm instead of the 0.37 mm (as obtained by an exhaustive manual search for the
other algorithms) and the use of an advanced optimisation algorithm (Adam [52]) in which
the choice of the batch size represents a new hyperparameter that can be tuned in grain
steps (therefore easily). In all the other methods, the position refinement was also enabled.
The final scan positions retrieved by the algorithm are shown in Figure 9. We stress that the
use of a DL-inspired position refinement routine was here not in competition with other
methods, but it was necessary to carry out the reconstruction within an AD framework.
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(a)

(b)

(c)

(d)

Figure 7. Ptychography reconstructions of MET cells exposed to asbestos: the proposed algorithm (Panel d) pro-
vides the sharpest reconstruction, as can be seen from the insets. (Panel d) shows the retrieved multimode illu-
mination. (a) Multimode EPIE. (b) Single-mode RPIE. (c) SciComPty autograd (proposed method). (d) SciComPty
autograd illumination.
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Figure 8. Line profile for each of the reconstructions in Figure 7.

Figure 9. (Panel A) shows the final scan positions in micrometres. The corresponding sample density
mask is represented in (Panel B), which denotes a high sampling density, especially in the centre
(higher overlap).

The downscaling is required not only for speed reasons, but also due to the high GPU
memory consumption, which is currently a drawback of the method: as the gradient are
calculated per batch, increasing the batch size produces a faster computation (less gradients
are calculated for the entire set of diffraction patterns), but the memory consumption is
greatly increased.

The proposed method thus provides a good reconstruction of both the magnitude
and phase of the object transmission function. Figure 8 shows the line profile for each
magnitude reconstruction with an FWHM resolution that is clearly twice better than the
other methods.

5. Conclusions

Automatic Differentiation (AD) methods are rapidly growing in popularity in the
scientific computing world. This is especially true for difficult computational imaging
problems such as ptychography or CT. In this paper, an AD-optimisation-based ptychogra-
phy reconstruction algorithm was presented, which retrieves at the same time the object,
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the illumination and the set of setup-related quantities. We proposed a solution to solve
at the same time for partial coherence, position errors and sensitivity to setup incoher-
ences. In this way, accurate X-ray measurements become possible, even in the presence of
large setup incoherences. This kind of automatic refinement not only allows improving
the viability of a ptychography experiment, but also is particularly crucial to reduce the
time for a reliable analysis, which currently is highly hand-tuned. Extended tests were
performed on synthetic datasets and on a real soft-X-ray dataset acquired at the Elettra
TwinMic spectromicroscopy beamline, resulting in a very noticeable quality increase. We
implemented our algorithm in our modular ptychography software framework, SciComPty,
which is provided to the research community as open-source [20].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/condmat6040036/s1.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Automatic Differentiation
CCD Charge-Coupled Device
CDI Coherent Diffraction Imaging
CPU Central Processing Unit
CT Computed Tomography
DM Differential Map
DL Deep Learning
FWHM Full-Width at Half-Maximum
FZP Fresnel Zone Plate
GPU Graphics Processing Unit
MSE Mean-Squared Error
OSA Order Sorting Aperture
PIE Ptychography Iterative Engine
SSIM Structural Similarity Index
STN Spatial Transformer Network
STXM Scanning Transmission X-ray Microscopy
TXM Transmission X-ray Microscopy
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