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Abstract: A finite element method (FEM) was employed to investigate the interaction of borophene
nanoplatelets (BNPs) and graphene nanoplatelets (GNPs) on the mechanical properties of Poly(3,4-
ethylene dioxythiophene):poly(styrene sulfonate) PEDOT:PSS film. A 3D random distribution of the
inclusion into the PEDOT:PSS matrix was constructed by developing a 145 × 145 × 145 representative
volume element (RVE) with a 4% volume fraction of BNPs and GNPs. In comparison to the pristine
PEDOT:PSS, the calculated effective elastic moduli of the BNP-PEDOT:PSS and GNP-PEDOT:PSS
nanocomposites exhibited 9.6% and 10.2% improvement, respectively. The predicted FE results were
validated by calculating the elastic moduli of the nanocomposites using a modified Halpine-Tsai (H-T)
model. The reinforcing effect of the inclusion into the PEDOT:PSS film offers a promising electrode
with improved mechanical stability. Consequently, this intriguing result makes the BNP/PEDOT:PSS
nanocomposite highly promising for further investigation and application in cutting-edge devices
such as touchscreen, thermoelectric, light-emitting diode, electrochemical, photodiode, sensor, solar
cell, and electrostatic devices.

Keywords: borophene; electronics; finite element; graphene; PEDOT:PSS; polymer nanocomposite

1. Introduction

The growing market for wearable, flexible, and portable electronics has paved the way
for a slew of new wearable applications including smart apparel, stretchable thermoelectric
electrodes, biomedical implants, and flexible pseudocapacitive nanocomposites for energy
storage [1]. Fabrication of conductive electrodes with desired mechanical characteristics
is the key to endowing advanced materials with such capabilities. In the place of rigid
metallic oxides, conductive polymers (CPs) such as PEDOT:PSS have emerged as the most
promising flexible electrode materials; they play a critical role in groundbreaking devices
as transparent electrodes, hole transport layers, interconnectors, electroactive layers, or
motion-sensing conductors [2]. Because of its exceptional flexibility, ease of manufacture,
high electrical conductivity, and outstanding optical transparency, PEDOT:PSS is widely
employed for practical applications such as energy conversion and storage devices [3,4].
However, PEDOT:PSS film has significant drawbacks, such as excessive acidity, inhomoge-
neous electrical characteristics, hygroscopicity, the low elastic modulus of ~2.7 GPa, and
the little strain (ε) and break of ~5%, all of which contribute to its limited endurance [1,5,6].

Condens. Matter 2022, 7, 22. https://doi.org/10.3390/condmat7010022 https://www.mdpi.com/journal/condensedmatter

https://doi.org/10.3390/condmat7010022
https://doi.org/10.3390/condmat7010022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/condensedmatter
https://www.mdpi.com
https://orcid.org/0000-0001-6381-0914
https://orcid.org/0000-0002-8504-1041
https://orcid.org/0000-0002-0007-2595
https://doi.org/10.3390/condmat7010022
https://www.mdpi.com/journal/condensedmatter
https://www.mdpi.com/article/10.3390/condmat7010022?type=check_update&version=1


Condens. Matter 2022, 7, 22 2 of 8

To address this limitation, PEDOT:PSS is usually reinforced with inorganic nanomateri-
als such as graphene, MXenes (e.g., Ti3C2TX), gold nanoparticles (AuNPs), tin oxide (SnO2),
molybdenum diselenide (MoSe2), and hexamethylene diisocyanate (HDI)-functionalized
GO (HDI-GO) [3,4,7–11]. Among these nanomaterials, two-dimensional (2D) materials are
at the frontier of innovation in materials science. In the recent decade, 2D structures, as
the most dynamic systems, have been discovered to exhibit innovative, distinctive, and
exotic behaviors [12]. They have a high degree of flexibility in the face of out-of-plane
deformation, making them ideal for the fabrication of flexible nanodevices.

Several researchers have looked at the possibilities of PEDOT:PSS supplemented
with graphene. In rechargeable lithium-ion and sodium-ion batteries, graphene and its
derivatives are widely employed as electrode materials. Due to its great mechanical
qualities, remarkable thermal and electrical capabilities, and high specific area, it is a
one-of-a-kind material. Additionally, it has been employed as a filler in sophisticated
nanocomposites for a variety of uses, including electronics, supercapacitor electrodes,
sensors, and structural composites [4,7,13–15].

Consequently, Syed et al. recently demonstrated the effect of GNPs incorporation on
the mechanical behavior of PEDOT:PSS. Owing to the excellent dispersion of GNPs with
poly(acrylic acid) (PAA) in PEDOT-PSS, the nanocomposites have improved its mechanical
characteristics. The Young’s modulus and tensile strength of PEDOT:PSS increases from
2.4 ± 0.2 GPa and 55 ± 2.5 MPa to 4.6 ± 0.2 GPa and 78 ± 2.5 MPa, respectively [16]. Díez-
Pascual, on the other hand, investigated the mechanical properties of a SnO2 reinforced
PEDOT:PSS nanocomposite. The Young’s modulus of pristine PEDOT:PSS employed
increased up to 120% with the addition of SnO2. This is attributed to the combination
of a random and homogeneous dispersion within the matrix and a very high interfacial
adhesion resulting from multiple hydrogen bonds [3].

Borophene, on the other hand, is a 2D nanostructural material for flexible nanoelec-
tronics that has recently received a lot of interest since it shows an incredible diversity
of structural phases due to complicated bonding patterns [17]. It has a lower mass den-
sity than other 2D materials because boron is lighter than most elements. This opens the
exciting option of employing borophene as a reinforcing component in composite con-
struction. In comparison to GNPs, which has an elastic modulus of around 1 TPa and a
thickness of roughly 0.34 nm, borophene has an in-plane elastic modulus of 586.2 GPa and
1372.4 GPa [18,19].

However, experimenting on nanocomposites, like experiments in most fields of study,
is time-consuming, expensive, needs precise execution. As a result, analytical and com-
putational approaches to predicting composite mechanical behavior are appealing. Many
analytical approaches may be used to better understand the physical behavior of materials
at the atomic and subatomic levels, such as estimating the elastic modulus of a two-phase
composite. The most common of these models, such as the Moriee-Tanaka (M-T) and
Halpine-Tsai (H-T) models, have been proven to be in good agreement with experimental
data [20–23].

Therefore, the elastic moduli of a 4% volume fraction (Vf ) of BNP and GNP packed
PEDOT:PSS nanocomposites are predicted and compared using a finite element model
established in this paper. Digimat software [24] is employed for the construction of the
Representative Volume Elements (RVE) for the nanocomposites and for simulating the
mechanical behavior of the material. The predicted moduli for the nanocomposites are vali-
dated with a modified Halpine-Tsai (H-T) model and compared to the experimental result.

2. Finite Element Model

In this study, the modeling approach for the 2-phase composite uses either BNP or
GNP platelets to reinforce the PEDOT:PSS matrix. To reduce the computational cost, BNP
is assumed to be transversely isotropic whereas GNP is taken to be isotropic, and both are
represented with circular platelets. The shear modulus of BNPs is calculated from Equation
(1). The aspect ratio and thickness of the nanosheets chosen for this calculation are 0.01
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and 0.29 nm, respectively, which translate to a platelet diameter of 29 nm. Based on this,
the density of BNP employed in the modeling was estimated from its mass density of
7.73 × 10−7 kg/m2 [18]. A preliminary FE calculation determined a 4% volume fraction
as the percolation threshold for the effective reinforcement of PEDOT:PSS with BNP that
was in good agreement with the theoretical calculation. Digimat software [24] was then
employed to construct the realistic (stochastic) Representative Volume Elements (RVE) of
a 4% volume fraction of BNP/PEDOT:PSS and GNP/PEDOT:PSS nanocomposites. An
RVE is the minimum volume of microstructure with the general properties of the entire
microstructure, such as morphology, dimension, volume fraction, and phase randomiza-
tion, over which specialized attributes are modeled [25]. It should be large enough to
encompass the fundamental microstructural properties, but small enough that the stress
and strain levels may be roughly regarded homogenous throughout the RVE [26]. The
RVE is considered to be in equilibrium, with a suitable total deformation. Based on this,
the software automatically generated an RVE of 145 × 145 × 145 nm3 with 639 BNP and
639 GNP inclusions for the respective composites. To arrange the inclusions one after
another in the RVE, Digimat-FE employs random placement algorithms. Therefore, the
inclusions are randomly distributed in 3D within the matrix and voxel-based meshing
was used to mesh the matrix and reinforcement components. The interface between the
PEDOT:PSS and the inclusions was considered to be fully bonded, resulting in total load
transmission. According to the data in Table 1, all relevant variables for an elastic analysis
were entered into the models.

G23 =
E22

2(1 + v23)
(1)

where G23, E22, and v23 represent the transverse shear modulus, transverse elastic modulus,
and transverse Poisson ratio of BNP, respectively.

Table 1. Material properties of the matrix (PEDOT:PSS) and inclusion (BNP).

Properties PEDOT:PSS BNP GNP

Density (g/cm3) 1.01–1.72 [27,28] 2.53 2.2 [29]
Young’s modulus

(GPa) 0.5–2.7 [5–7] X = 1372.40
Y = 586.20 [19,30] 1000 [31]

Shear Modulus (GPa) - 287.35 -

Poisson ratio 0.33 [32] X = −0.04
Y = −0.02 [19,30] 0.22 [29]

Particle size (nm) 30 nm [33] - -
Thickness - 0.27–0.31 nm ~0.34 nm [31]

Aspect ratio - 0.01 0.000333 [29]
0.01 (in this work)

Volume fraction - 4% 4%

For validation, we employed a modified version of the H-T theoretical technique
(Equations (2)–(4)) to estimate the elastic modulus of our model to assess the FEM findings.
This method considered the aspect ratio and volume fraction variables, which are impor-
tant parameters to consider when evaluating the mechanical characteristics of randomly
distributed 2D nanosheet reinforced composites [20].

Enc

Em
=

3
8

[
1 + 2(t/d)nwVf

1 − nw Vf

]
+

5
8

[
1 + 2nTVf

1 − nT Vf

]
(2)

nw =
(E f/Em)− 1

(E f/Em) + 2(t/d)
(3)

nT =
(E f/Em)− 1
(E f/Em) + 2

(4)



Condens. Matter 2022, 7, 22 4 of 8

where, Enc, Em, and E f are the moduli for the nanocomposite, matrix, and fillers, respec-
tively, t/d is the aspect ratio of the BNP and GNP platelets, t is the thickness of the platelet,
and d is the diameter.

3. Result and Discussion

The mechanical characteristics of BNP and GNP-reinforced composites are stud-
ied using a finite element model in this work. The features of the RVE model of the
PEDOT:PSS matrix and the inclusions are shown in Figure 1, having the dimension of
145 × 145 × 145 nm3. In addition, the elastic result of the nanocomposites is summarized
in Table 2. Whereas Table 3 tabulates the effective moduli of the nanocomposites calcu-
lated using FEM and H-T methods. As a function of the characteristics of the inclusions
and matrix, as well as the filler content of the inclusions, the effective elastic moduli
(Equations (5) and (6)) of the filled nanocomposite material (i.e., effective bulk moduli K
and effective shear moduli G), are calculated:

G = Gm +
5(3Km + 4Gm)

(
G f − Gm

)
9Km + 8Gm + 6(Km + 2Gm)

G f
Gm

(5)

K = Km + v f

(
K f − Km

)3Km + 4Gm

3K f + 4Gm
(6)

where G is the shear moduli of the nanocomposites, K is the bulk moduli of the nanocom-
posites, f is the volume fraction of inclusions, and subscript m and f are the matrix and
inclusions, respectively [26].

The average Young’s modulus, Poisson’s ratio, and shear modulus of BNP/PEDOT:PSS
nanocomposites are predicted to be ~3 GPa, ~0.32, and ~1.1 GPa, respectively. For the
GNP/PEDOT:PSS nanocomposite, the average Young’s modulus, Poisson’s ratio, and
shear modulus are ~3 GPa, ~0.32, and ~1.1 GPa, respectively. The global densities of the
composites are 1.12 g/cm3 and 0.88 g/cm3 for the BNP/PEDOT:PSS and GNP/PEDOT:PSS
nanocomposites, respectively.

Figure 1. RVE details of PEDOT:PSS film, GNPs, and BNPs.
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Table 2. Elastic properties of BNP/PEDOT:PSS and GNP/PEDOT:PSS nanocomposites.

Mechanical
Parameter Dimension (nm) Moduli (GPa)

Volume
Fraction

(%)
Aspect
Ratio Diameter Thickness E1

(MPa)
E2

(MPa)
E3

(MPa) v12 v13 v23
G12

(MPa)
G13

(MPa)
G23

(MPa)

BNP/PED-
OT:PSS 4 0.01 29.00 0.29 2962.24 2961.66 2957.15 0.32 0.32 0.32 1093.12 1090.50 1096.23

GNP/PED-
OT:PSS 4 0.01 29.00 0.29 2984.52 2961.30 2981.71 0.32 0.32 0.32 1105.77 1104.08 1103.23

Table 3. The calculated effective moduli for the nanocomposite using FEM and H-T methods.

Composites FE
(MPa)

H-T Model
(MPa)

BNP/PEDOT:PSS 2960.35 2952.59
GNP/PEDOT:PSS 2975.84 2952.07

In comparison to pristine PEDOT:PSS with a maximum elastic modulus of 2.7 GPa,
the incorporation of BNPs and GNPs translates to a 9.6% and 10.2% enhancement in
moduli. The improvement in mechanical property is attributable to the homogeneous
random dispersion of the BNPs and GNPs in the PEDOT:PSS matrix. Moreover, the platelet
morphology of the inclusions is another noteworthy structural property that improves
the composites’ Young’s modulus. The calculated elastic moduli for the nanocomposites
from the H-T model are ~3 GPa and ~3 GPa for BNP/PEDOT:PSS and GNP/PEDOT:PSS
nanocomposites, respectively, which are in excellent agreement with the FEM prediction.
The experimental result of Young’s modulus for GNP/PEDOT:PSS reported in the literature
is 4.6 GPa [16]. This result showed a significant difference from the FEM and H-T findings.
The discrepancy between the experimental and theoretical results is mainly due to the
incorporation of additional reinforcement with PAA which resulted in ~54% enhancement
to the modulus of pristine PEDOT:PSS matrix. Moreover, PEDOT:PSS and PAA benefit from
hydrogen bonding which promotes strong bonding between the matrix and the reinforcer.

The equivalent von Mises stress and maximum primary total strain distribution of
the nanocomposites are shown in Figure 2. The portion of the PEDOT:PSS film where
two inclusions come near to one another experiences the most strain, resulting in greater
stiffness. Meanwhile, the stiff inclusions embedded in the softer matrix carry the most
stress. Figure 3 shows the findings of the Digimat-FE stress-strain prediction in the RVE of
the BNP/PEDOT:PSS and GNP/PEDOT:PSS nanocomposites. The nanocomposites exhibit
similar responses which are linear and conform to the elastic range of material’s behavior.
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Figure 2. Stress and strain distribution of the (a) BNP/PEDOT:PSS nanocomposites and (b)
GNP/PEDOT:PSS nanocomposites.

Figure 3. FE prediction of stress-strain relation of BNP/PEDOT:PSS and GNP/PEDOT:PSS nanocomposites.

4. Conclusions

We introduce borophene and graphene sheets as reinforcing materials for PEDOT:PSS
in this work. Both resulting nanocomposites have an increased elastic modulus of 9.6% and
10.2% in their mechanical properties, respectively. BNP and GNP are feasible additives to
PEDOT:PSS to improve its mechanical durability. The modeling method used in this study
might be useful for the FEM investigation of BNP and GNP fillers in PEDOT:PSS composites.
Furthermore, the FEM and H-T conclusions were shown to be in great agreement with
theoretical approaches. The stress-strain curves predicted from the RVE models of the
nanocomposites show elastic response based on the assumed critical strain of 0.03.
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