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Abstract: In this paper, within the framework of virtual crystal approximation, the mathematical
modeling of the dependence of the density of states of polariton excitations in a 1D photonic crystal—
a system of pores (tunnel-coupled microresonators) containing quantum dots—on the concentration
of structural defects is performed.
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1. Introduction

Currently, the creation of cutting-edge nanocomposite-based sources of coherent
radiation and the building of them into user-ready devices entails the necessity of an
adequate conceptual understanding of nanocrystalline photonic systems [1,2]. One of the
challenges encountered on this path deals with the study of the properties of the so-called
polaritonic crystals [3]. The latter constitute a special class of photonic crystals [4] exhibiting
a strong coupling between the quantum excitation of media (excitons) and optical fields.
Hence, we have seen the emergence of polaritonics as a subdiscipline of photonics.

As examples of polaritonic structures, one can mention, e.g., the spatially periodic
systems of coupled microcavities (microresonators) [5,6], along with the arrays of quantum
dots (QDs) embedded in photonic nanostructures [7,8]. Lately, there has been an increasing
interest in optical modes when used in the combined media of microresonators and quan-
tum dots. Ref. [9] offers evidence for the realization of a strong coupling between a QD and
a microresonator. It is worth mentioning various studies [3,8] devoted to the coupling of
quantum solitons to lower-dispersion-branch (LDB) polaritons in a microresonator chain.
It is conjectured therein that microresonators may serve as constituent elements for the
creation of quantum information processing devices.

Another actively developing field is that of the photonics of imperfect structures. For
instance, the authors of Refs. [9–11] examine the effect of structural defects on the dispersion
of polaritonic excitations in a lattice of tunnel-coupled microresonators with embedded
QDs and that of exciton-like excitations in microcavities with no QDs. Calculational
methods in the photonics of imperfect structures permit researchers to demonstrate that
the introduction of structural defects, along with various kinds of external actions (elastic
deformation being one of them [12]), results in a substantial alteration of the energy
spectrum of electromagnetic excitations and of the optical properties of an overall structure.

Investigations into the density of energy states hold a prominent place in the field of
condensed matter physics. This has motivated the present study into the density of states
of quasiparticle excitations in a defect-containing one-dimensional microcavity lattice with
embedded quantum dots.
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2. Theoretical Model

The general model of quasiparticle excitation in an ideal lattice of microcavities (res-
onators, which can be viewed as a photonic subsystem) with embedded nanoclusters
(which can be viewed as an atomic subsystem) has previously been developed by us in
Refs. [9–11,13]. Following this line of reasoning, in the theoretical model below, we assume
that the density of the excited states of structural elements in photonic and atomic subsys-
tems is small. This permits us to retain only the quadratic term Ĥex (describing elementary
excitations) in Hamiltonian, Ĥ, which, within the one-level model and Heitler–London
approximation [8,14], in the case of an ideal crystal takes the form:

Ĥex = ∑
n,m,α,β,

λ,σ

Dλσ
nα,mβΦ̂+

nαλΦ̂mβσ =
r

∑
α,β=1

∑
λ,σ,k

Dλσ
αβ (k)Φ̂

+
αλ(k)Φ̂βσ(k), (1)

where Dλσ
αβ (k) is the Fourier transform of the matrix Dλσ

nαmβ (indices λ, σ assume values
1, 2), and r is the number of structural elements in the crystal elementary cell.

D11
nα,mβ = h̄ωat

nαδnα,mβ + Vnα,mβ, D22
nα,mβ = h̄ω

ph
nαδnα,mβ − Anα,mβ,

D12
nα,mβ = D21

nα,mβ = g→
n α

δnα,mβ, Φ̂λ=2
nα = Ψ̂nα, Φ̂λ=1

nα = B̂nα

(2)

In expressions (1) and (2), ω
ph
nα is the photonic mode frequency of electromagnetic

excitation localized at the nα-th node (resonator), Ψ̂+
nα, Ψ̂nα are the Bose–Einstein creation

and annihilation operators of this photonic mode in the node representation, h̄ωat
nα is the

QD excitation energy at the nα-th node, B̂nα, B̂+
nα are the Bose creation and annihilation

operators of this excitation, Anαmβ is the matrix of resonance interaction, describing an
overlap between the optical fields of resonators at the nα-th and mβ-th lattice sites and, thus,
defining the tunneling probability of the corresponding electromagnetic excitation, Vnαmβ

is the resonance interaction matrix of QDs at the nα-th and mβ-th lattice sites, and gnα is
the matrix of resonance interaction between QD at the nα-th site and the electromagnetic
field localized at the same site. The indices λ, σ indicate the presence (value 1) or absence
(value 2) of a QD at a corresponding cavity.

In equality (1), quantities Dλσ
αβ (k) and Φαλ(k) take the form of

Dλσ
αβ (k) = ∑

m
Dλσ

nαmβ exp
[
ik ·

(
rnα − rmβ

)]
and Φ̂αλ(k) = 1√

N ∑
→
n

Φ̂nαλ exp(−ik · rnα), where

N is the number of elementary cells in the considered lattice. The wave vector k, charac-
terizing the eigenstates of electromagnetic excitations in the crystal, varies within the first
Brillouin zone.

The eigenvalues of Hamiltonian (1) are found through diagonalization with the use of
the Bogolyubov–Tyablikov transformation [14]. This leads to the following equation:

det‖Dλσ
αβ (k)− h̄Ω(k)δαβδλσ‖ = 0 (3)

the solution of which gives the dispersion relation Ω(k), defining the elementary excitation
spectrum.

Next, following the concepts developed in Refs. [9–11] regarding imperfect pho-
tonic structures and utilizing the virtual crystal approximation (VCA) [15,16], let us ex-
amine the dependence of the polaritonic excitation density of states in a topologically
ordered defect—containing a two-sublattice chain of coupled microresonators with quan-
tum dots—on the concentration of structural defects. For this purpose, it is convenient to
express the configuration-dependent positions of micropores, whereby an1 = a1

1η1
n1 + a2

1η2
n1,

an2 = a1
2η1

n2 + a2
2η2

n2, in terms of random variables. The positions of microcavities in the
first and the second sublattices can be varied, thereby producing various types of crystals
with different lattice constants, whereby dn = an1 + an2. Here, ην

n1(2) is a configuration-
dependent random variable, and ην

n1(2) = 1 if the position 1(2) of the resonator is de-
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termined by the value aν
1(2) but is equal to 0 in any other case. As follows on from the

configuration averaging technique [15,16],
〈

η
ν(µ)
n1(2)

〉
=

Nν(µ)
1(2)
N = Cν(µ)

1(2) , where Cν(µ)
1(2) is the

concentration of resonators occupying a ν(µ) position in 1(2) sublattices, and Nν(µ)
1(2) is the

number of ν(µ) grade positions in the first (second) sublattices.
Each of the tunnel-coupled resonators contains a single optical mode. Calculation

of the quasiparticle excitation spectrum Ω(k) in a defect-containing photonic system is
performed within the virtual crystal approximation with the use of an averaged Green’s
function apparatus [14,15]. Under these approximations, the averaged resolvent of the
quasiparticle Hamiltonian is equal to the resolvent of the averaged Hamiltonian. This allows
us to replace the quantities for Dλσ

nα,mβ in equality (1) by their configurationally averaged

values, Dλσ
nα,mβ →

〈
Dλσ

nα,mβ

〉
. The procedure of configurationally averaging is carried out

for all feasible positions of the resonators and is denoted by angular brackets. It “restores”
the translation invariance and permits coming over to k-representation and the subsequent
diagonalization of Hamiltonian through the Bogolyubov–Tyablikov transformation [14].
As a result, we arrive at Equation (3), which defines the dispersion spectrum of elementary
excitations. The wave vector varies within the first Brillouin zone of the virtual lattice,
with the period 〈dn〉 = 〈an1〉+ 〈an2〉 = C(1)

1 a(1)1 + C(2)
1 a(2)1 + C(1)

2 a(1)2 + C(2)
2 a(2)2 . Obviously,

C(1)
1 + C(2)

1 = 1 and C(1)
2 + C(2)

2 = 1; therefore, C(2)
1 = 1− C(1)

1 ≡ C1, C(2)
2 = 1− C(1)

2 ≡ C2.

Hence, 〈d〉 = a1(C1) + a2(C2) ≡ d(C1, C2), where a1(C1) = a(1)1 +
(

a(2)1 − a(1)1

)
C1 and

a2(C2) = a(1)2 +
(

a(2)2 − a(1)2

)
C2.

The quasiparticle spectrum shape must inevitably have an effect on the correspond-
ing density of states, ρ(Ω). It has been our goal to use virtual crystal approximation to
elucidate the dependence of the quasiparticle density of states ρ(Ω) on structural defect
concentrations.

3. Results and Discussion

To address the above, general ideas, let us consider a defect-containing two-sublattice
(α = 1, 2; β = 1, 2) microresonator chain (see Figure 1), with same-type quantum dots
embedded in one of the sublattices (e.g., in the first one). The concentrations of structural
defects associated with variations in the microcavity positions are represented by C1 and C2.
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Figure 1. Schematic of a virtual two-sublattice chain of tunnel-coupled microcavities with embedded
quantum dots. a1, a2 represent the positions of micropores in the first and second sublattices, obtained
as a result of the configuration averaging of the structure under study.

The polaritonic spectrum Ω(k) of such a system is obtained according to the reasoning
described in Ref. [13]. Diagonalization of the averaged Hamiltonian (1) and the use of
approximations of the virtual crystals and nearest neighbors yield a system of homoge-
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neous equations, the solvability condition of which is the equality to zero of the following
determinant: ∥∥∥∥∥

h̄ωat
1 −V11(k)− h̄Ω g1 0

g1 h̄ω
ph
1 − h̄Ω(k) −A12(k)

0 −A21(k) h̄ω
ph
2 − h̄Ω(k)

∥∥∥∥∥ = 0 (4)

Here, A12(21) is the Fourier transform of the matrix An1m2, which characterizes an
overlap in the optical fields of resonators located at the n1 and m2 lattice nodes and,
therefore, determines the probability of a tunnel transition of corresponding electromagnetic
excitation; V11 is the Fourier transform of the matrix Vn1m1 of the resonant interaction of
quantum dots in nodes n1 and m1; g1 is the parameter of the resonant interaction of a
quantum dot in node nα, with an electromagnetic field localized in this node.

Finding the roots of the cubic equation with respect to frequency Ω, as yielded by the
expansion of determinant (4), is performed with the use of the fzero.m standard library
program in the MATLAB language for technical computing, based on Newton’s iterative
method. Since the QDs are all assumed to be of the same type, parameter g1 of the resonance
interaction between a QD and an electromagnetic field is the same at all sites.

Figure 2 shows 3D plots depicting the dependence of polaritonic dispersion Ω1,2,3(k, C1, C2)
in the considered system (the surfaces are numbered upward). Comparison of the shapes
of the surfaces depicted in Figure 2a (obtained previously by the authors of Ref. [17]) and
Figure 2b points to their smooth dependence on the value of parameter g; with an increase
in the g value, the gap between the dispersion surfaces increases. The wave vector k varies
within the first Brillouin zone: − π

d(C1,C2)
< k < π

d(C1,C2)
(shaded region of the

(
k, C1(2)

)
plane in Figure 2).
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tions for a particular value of the parameter g≡g1/ℏ of the resonance interaction between a QD and 
an electromagnetic field localized at the same site: (a) g = 1012 and (b) g = 1014. 

Figure 2. Polaritonic dispersion Ω1,2,3(k,C1,C2), plotted as a function of structural defect concentra-
tions for a particular value of the parameter g ≡ g1/h̄ of the resonance interaction between a QD and
an electromagnetic field localized at the same site: (a) g = 1012 and (b) g = 1014.

In this case, the expression for the density of states function ρ1,2,3(Ω, C1, C2) takes the
form of:

ρ1,2,3(Ω, C1, C2) =
d(C1, C2)

2π ∑
i

1∣∣∣ dΩ1,2,3(k,C1,C2)
dk

∣∣∣
ki

. (5)

We have performed a numerical evaluation of function (5) for wave vector ki values
falling in the first Brillouin zone for all three polaritonic branches.
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In Figures 3–5, which depict functions ρ1,2,3(Ω, C1, C2), one can clearly see the so-
called Van Hove singularities, which arise due to the presence of local minima of functions
Ω1,2,3(k, C1, C2) in the k-space (see Figure 2). At these critical points (which may occur both
at k = 0 and k 6= 0), the group velocity of the quasiparticle excitations changes to zero.
The described peculiarities of the shape of spectrum Ω3(k, C1, C2) in Figure 2, along with
the singularities in Figure 5b,d, indicate the possibility of the formation of Bose–Einstein
polaritonic condensate for certain concentrations of structural defects.
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4. Conclusions

The obtained results reported in this study demonstrate the effect of changes in the
spectrum of polaritonic excitations in a defect-containing one-dimensional microcavity
lattice with embedded quantum dots on the corresponding density of states. We have
employed virtual crystal approximation to calculate the dependence of the polaritonic
density of states on the concentrations of structural defects associated with the variable
positions of microcavities. It is also of interest to trace the renormalization of the energy
structure of the crystal and the changes in its optical use, for example, in the framework
of the approach [17,18], as well as to study the photon emission properties of a quantum
dot cavity system via the master equation for the density matrix [19,20]. Our results also
indicate the possibility of the formation of Bose–Einstein polaritonic condensate due to the
presence of local minima in the quasiparticle spectrum Ω(k), both for k = 0 and (which is
a less common phenomenon).
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