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Abstract: Beautiful hair, so called “SHINAYAKA” hair in Japanese, has a good appearance not only
when stationary but also when in motion, and it is a highly desirable hair condition for Japanese
consumers. We investigated such SHINAYAKA hair, which was selected by sensory evaluation, for the
relationship between physical properties, such as flexibility and elasticity, and hair structure. It has
already been reported that human hair cortical cells have two types, similar to wool: the ortho-like
cortex and the para-like cortex. Microscopic observation revealed that the ortho-like cortex is distributed
in the outer layer of the hair (near the hair surface) and the para-like cortex exists in the inner layer
(near the center of the fiber). This cell distribution, a concentric double-layered structure, was deemed
to be a characteristic of SHINAYAKA hair. Furthermore, analysis of physical properties showed
the difference between the elasticity of the outer layer and inner layer, and that this difference was
bigger in SHINAYAKA hair compared to other hair. This phenomenon was observed not only in
Japanese hair, but also in Caucasian hair. In addition, we have developed a new technology for creating
“SHINAYAKA” hair by treatment with succinic acid. Inflexible and inelastic hair can be changed by this
treatment, and its flexibility and elasticity improve by selective reduction of stiffness of the outer layer.

Keywords: hair; flexible; elastic; dynamic; motion; ortho-like; para-like; cortex; bending; mechanical;
succinic acid; concentric double-layered

1. Introduction

Beautiful hair has been desired since ancient times. For this purpose, for several decades we have
investigated beautiful hair in depth, developing hair care technologies and launching various unique
products for consumers in the world. As important elements for beautiful hair, hair shine, surface
friction and hair shape are generally known. Based on our macroscopic and microscopic observations
of the hair fibers and their structures, relationships between hair appearance and its structure were
clarified. Well-ordered alignment of the hair fibers enhances the reflections by sharpening shine, and
a smooth surface and pore-less inside structure contributes to a good appearance. Our products apply
technologies developed on such knowledge. Some organic acids (e.g., malic acid, lactic acid, succinic
acid) are able to repair the surface of the hair fiber, create a pore-less internal hair structure or alter the
physical properties of the hair fiber [1–8].

In this study, we have focused on the motion of hair strands, especially beautiful movements, as if
polar auroras were fluttering or green grasses were waving on a prairie in the wind. This motion of
hair fibers is flexible and elastic like a fluid, but these fibers smoothly return to their original shape.
Such flexible and elastic behaviors are traditionally preferred in Japan and described as “SHINAYAKA”
in Japanese. In this report, thus flexible and elastic property is described as “flexible/elastic”, while the
opposite inflexible and inelastic property is described as “inflexible/inelastic”.
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Several evaluation methods for hair motion have been reported [9–11]. These reports suggest that
hair motion arises from damage and can be improved after treatment with a conditioner. They have
not mentioned, however, the difference in the motion among individual hairs. The motion of a hair
strand is a complex phenomenon, with the main contribution from hair–hair interactions, hair shape
and physical properties of hair fibers. In the cases of virgin straight hair, the individual differences of
the hair–hair interaction and hair shape are probably not so large, but a difference in the hair motion is,
however, still observed among individuals.

We considered bamboo and a composite (multi-layer) bow as the models for a flexible and elastic
fiber, because these are composite materials that have multipart mechanical properties such as flexible
and elastic behavior. Bamboo is composed of hard elastic fibers (vascular bundles) and soft material
(parenchyma cell) to absorb compressive deformation. A composite bow is composed of softer material
in the convex side and harder material in the concave side. The bamboo can be deformed resiliently and
flexibly without structural collapse [12]. The bow is easy to bend and returns to its original shape [13].
These composite materials can realize complex mechanical properties such as flexible and elastic
behavior; however, it is difficult to realize such complex properties with a homogeneous material.

Hair fibers are also composite materials; they are composed of a scaly cuticle, a porous medulla
and a fibrous cortex. The main component is the cortex, which makes up 85% of the hair fiber, and is
composed of fibrous intermediate filaments (IFs) and keratin-associated proteins (KAPs). This means
that the cortex is also a type of composite material. It is known that there are two types of cortices in wool.
The ortho-cortex shows relatively small and dispersed macrofibrils in the fiber cross-section and a spiral
alignment of IFs. On the other hand, the para-cortex shows relatively large and fused macrofibrils with
a parallel alignment of the IFs. Similar structures were found in human hair [14–17]. These hair fiber
physical properties are not simple.

In this study, we have investigated the relationship between the flexible/elastic behaviors of the hair
fiber, the hair composite structure and its physical properties. Previously, we have partially reported
this result [18], but here, in this report, we describe in detail the physical property changes due to hair
damage and a new treatment. We have developed a useful treatment method using succinic acid, for both
virgin and damaged hair, and demonstrate the effects of succinic acid on not only Japanese but also
Caucasian hair.

2. Materials and Methods

2.1. Hair Samples

2.1.1. Selection of Hair Samples

Chemically untreated hair was obtained from 50 Japanese female volunteers. Ten typical hair samples
that had variation in the flexible and elastic features were selected. These hair samples were classified
into flexible/elastic and inflexible/inelastic hair, according to the following sensory tests. The sensory tests
were performed by five special sensory evaluators in the laboratory. The viewpoints to evaluate were the
softness feeling and the bounce when the hair was swinging. The softness and bounce correspond to the
flexible and elastic behaviors, respectively. Each evaluator selected the softest and the bounciest sample,
and the stiffest and the least bouncy sample out of ten samples. The former was regarded as ‘score 1’, and
the latter was regarded as ‘score 10’. Based on this standard, they evaluated these ten samples on this 1–10
scale. Finally, the average score of each sample was taken from five evaluators’ scores (Table 1).
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Table 1. Results of the sensory evaluation.

Sample No. Sensory Score (SS) Evaluation

1 1.6 flexible/elastic
2 1.8 flexible/elastic
3 3.1 flexible/elastic
4 4.2 somewhat flexible/elastic
5 4.3 somewhat flexible/elastic
6 4.5 somewhat flexible/elastic
7 7.1 inflexible/inelastic
8 8.5 inflexible/inelastic
9 9.0 inflexible/inelastic

10 9.3 inflexible/inelastic

2.1.2. Chemical Treated Hair

For colored hair, a section 25 cm from the root end of a Japanese female’s hair that was treated
once with hair color one year ago was used for experiments. As an example of heavily damaged hair,
parts of the root and tip (30 cm from the root end) of a Japanese female’s hair which was treated with
hair color and permed once a month were used for the experiments.

2.1.3. Caucasian Hair

Eight Caucasian straight hair samples (chemically untreated, gender unknown) were purchased
from Kerling International Haarrfabrik GmbH (Backnang, Baden-Württemberg, Germany), and the
most flexible/elastic Caucasian hair was selected by the sensory tests as described in Section 2.1.1.

2.2. Preparation of the Hair Sample

2.2.1. Preparation of the Model Damaged Hair

A bleaching agent containing 3.33% H2O2 and 0.68% NH3, pH = 10 was used. Commercial
shampoo and conditioner were used in this treatment. The bleaching agent was applied to the hair
sample at a ratio of 1:1 for 30 min at room temperature, and then rinsed with water. The hair sample
was washed with shampoo, treated with conditioner and dried using a hair dryer. Model damaged
hair was obtained by treating undamaged hair with bleach one time followed by washing twelve times
as describe above. This treatment was repeated four times, totaling in 4 bleaches and 48 washes.

2.2.2. Preparation of the Surface-Removed Hair

Surface-removed hair (Figure 1) was prepared by grinding with alumina beads (2–2.5 mm in diameter).
The thickness of the removed surface layer was determined as approximately 5 µm by microscopic
observation. This thickness corresponds to the cuticle layer (approximately 2 µm, 5–6 sheets) plus the
cortical cell layer (approximately 3 µm) near the hair surface, in the cases of the hair samples used in
this study. The tip of the hair fiber was attached to a drum, and the drum was rotated in alumina beads.
A strand of hair 10 cm in length was fixed at a position that was 7 cm from the rotation axis so that the
tip of the hair is at the front in the rotation direction. It was stirred for 8–12 h at a rotational speed of
40 rpm. The hair samples were periodically removed and the diameter scanned with a light microscope.
The surface-removed hair prepared in this way was used to measure the bending elastic modulus of the
hair’s inner layer [19].
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Figure 1. Surface layer was removed by using alumina beads. rtotal = radius of whole hair, rinner = 
radius of surface removed hair. 
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developed. The first step was just shampooing with a composition containing 11.5% ammonium 
polyoxyethylene(1.0) alkyl(C10–16) ether sulfates, 0.35% hydroxyethyl cellulose hydroxypropyl 
trimethylammonium chloride ether and 1.2% succinic acid, pH = 3.9. The second step was the 
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2.3. Microscopic Observation Of Hair Cross-Sections 
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to determine the structural difference in cortical cell distribution between the flexible/elastic and 
inflexible/inelastic hairs. Hair samples were rinsed in ethanol to clean their surface and then dried 
before being put in embedding molds. Hair samples embedded in Spurr’s resin (Spurr 
Low-Viscosity Embedding Media; Polysciences Inc., Warrington, Pennsylvania, USA) were sliced 
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(Sigma-Aldrich, St. Louis, Missouri, USA) containing lead nitrate (II) and lead acetate (II) trihydrate, 
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performed at an acceleration voltage of 85 kV.  

2.3.2. Fluorescent Light Microscope (FLM)  

The cortical cell distribution was also confirmed with a differential staining method. Hair 
cross-sections of 5 µm thicknesses were prepared and sequentially stained with sodium fluorescein 
and sulforhodamine 101 [14]. The hair samples were placed on slide glass and a few drops of 0.002% 
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Figure 1. Surface layer was removed by using alumina beads. rtotal = radius of whole hair, rinner =

radius of surface removed hair.

2.2.3. Treatment with Succinic Acid

A hair sample was treated with 2.0% succinic acid (SA) solution, pH = 3.7, for 30 min at 40 ◦C.

2.2.4. The Three-Step Treatment System

In order to provide realistic usage during in-bath conditions, a three-step treatment system was
developed. The first step was just shampooing with a composition containing 11.5% ammonium
polyoxyethylene(1.0) alkyl(C10–16) ether sulfates, 0.35% hydroxyethyl cellulose hydroxypropyl
trimethylammonium chloride ether and 1.2% succinic acid, pH = 3.9. The second step was the
application of the first conditioner containing 20% dipropylene glycol, 0.6% sodium 2-naphthalene
sulfonate, 1.6% hydroxyethyl cellulose and 1.5% succinic acid, pH = 6.0. The third step was the
application of the second conditioner containing 2.6% stearoxypropyl dimethylamine, 7.0% stearyl
alcohol, 3.0% dimethicone and 0.5% amodimethicone, pH = 3.4, without rinsing off the first conditioner.
This combination was left on the hair for 5 min and then finally all materials were rinsed off.

2.3. Microscopic Observation Of Hair Cross-Sections

2.3.1. Transmission Electron Microscopy (TEM)

Hair cross-sections were prepared using a microtome and observed using a transmission electron
microscope (TEM) (H-7100; Hitachi High-Technologies Corporation, Minato, Tokyo, Japan) to determine
the structural difference in cortical cell distribution between the flexible/elastic and inflexible/inelastic
hairs. Hair samples were rinsed in ethanol to clean their surface and then dried before being put in
embedding molds. Hair samples embedded in Spurr’s resin (Spurr Low-Viscosity Embedding Media;
Polysciences Inc., Warrington, Pennsylvania, USA) were sliced with a microtome (Leichert Ultracut N;
Leica Microsystems, Wetzalar, Germany). The thickness of the hair section was 200 nm. Then, the section
was stained with 0.2% uranyl acetate solution, left for 10 min and rinsed with deionized water. Next,
it was stained with lead citrate solution (Sigma-Aldrich, St. Louis, Missouri, USA) containing lead nitrate
(II) and lead acetate (II) trihydrate, left for 10 min, rinsed with deionized water and dried naturally.
The TEM observation was performed at an acceleration voltage of 85 kV.

2.3.2. Fluorescent Light Microscope (FLM)

The cortical cell distribution was also confirmed with a differential staining method. Hair cross-sections
of 5 µm thicknesses were prepared and sequentially stained with sodium fluorescein and sulforhodamine
101 [14]. The hair samples were placed on slide glass and a few drops of 0.002% fluorescein sodium
phosphate buffer solution was applied. After being left for 18 h under conditions of darkness and high
humidity so as not to dry out, the samples were rinsed with deionized water 6 times and dried naturally
for 20 min. Then, drops of 0.005% sulforhodamine 101 solution phosphate buffer were applied and left
for 1.5 h under the same conditions above, rinsed with deionized water 6 times, and dried. Para- and
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ortho-like cortical cells in the hair sections were differentially stained with the green fluorescein and red
sulforhodamine, respectively. The stained hair samples were observed using a fluorescent light microscope
(FLM) (Carl Zeiss AG, MPM 800, fluorescent filter: BP450-490/FT 510/LP520; Carl Zeiss AG, Oberkochen,
Baden-Württemberg, Germany).

2.4. Measurement of Bending Elasticity in the Outer and Inner Layers

Hair fibers that were equilibrated at 20 ◦C/65% relative humidity (RH) for 24 h were used.
The bending elasticity of each hair fiber was measured under the same conditions and 20 hair fibers
were used for each measurement. The bending elasticity in both the minor and major axes of the
hair samples were measured using a fiber bending measurement system (FBS900/FDAS765; Dia-Stron
Limited, Andover, Hampshire, UK).

Bending elasticity (bending stress normalized with curvature and moment) was obtained as
follows according to the general material dynamics relationship formula [20].

The following formula describes the relationship between bending stress (M), bending elasticity (E),
the second moment of cross-section (I) and the radius of curvature (ρ) (Equation (1)).

M = E × I/ρ, (1)

The hair cross section is regarded as an ellipse; the radius on the major axis side is R, and the
radius on the minor axis side is r. Assuming that the hair is bent to the minor axis side, the second
moment of cross section of the elliptic cylinder with one end fixed is I = πRr3/4. When the hair is
deformed as shown in Figure 2 as an end-loaded cantilever, the bending elasticity (E) is given by
Equation (2) [21].

E = 4ML3/3πRr3d, (2)

where L is sample length and d is deflection due to the bending stress.
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Figure 2. Schematic diagram showing measurement image of bending elastic modulus of hair.
L = sample length; d = deflection due to bending stress.

First, when a load of 2 mg was detected, d was set to 0 mm, and deformation was performed from
d = 0 to 0.1 mm at a speed of 0.01 mm/s.

In order to determine the mechanical properties in the outer and inner layers, a double-layered
cylinder model was adopted. The bending elasticity of the whole hair fiber (Ewhole) can be described by
Equation (3) (Figure 3) [22]:

Ewhole = Eouter

1− Rinnerr3
inner

Rtotalr3
total

+ Einner
Rinnerr3

inner

Rtotalr3
total

, (3)

where Eouter and Einner are the bending elasticities of the outer and inner layers (surface-removed hair),
Rtotal and Rinner are the hair radii in the major axis of the intact whole hair and surface-removed hair,
rtotal and rinner are the hair radii in the minor axis of the intact whole hair and surface-removed hair,
respectively, and bending direction is assumed to be in the direction of the minor axis. Ewhole, Einner,
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Rtotal, Rinner, rtotal and rinner are measurable, therefore Eouter can be calculated according to the above
Equation (3). Twenty fibers were randomly selected from each individual and the bending properties
of whole hair and surface-removed hair were measured. Then, the average values of the bending
elasticities in the outer and inner layers of flexible/elastic and inflexible/inelastic hairs were obtained.
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Figure 3. Geometry of double-layered model. Eouter = the bending elasticity of the outer layer, Einner = the
bending elasticity of the inner layer (surface-removed hair), Rtotal = the hair radius in the major axis of the
whole hair, Rinner = the hair radius in the major axis of surface-removed hair, rtotal = the hair radius in the
minor axis of the whole hair, rinner = the hair radius in the minor axis of the surface-removed hair.

2.5. Atomic Force Microscopy (AFM)

In order to investigate the elasticity of each structure, hair cross-sections were measured
using atomic force microscopy (AFM) (MFP-3D-SA-J; Oxford Instruments, Abingdon-on-Thames,
Oxfordshire, U.K.). Hair samples embedded in light-curable resins (ARONIX LCR D-800; TOAGOSEI
Co., Ltd., Minato, Tokyo, Japan) were sliced with a microtome, as outlined previously. The elasticity of
each structure was measured by pushing a cantilever (NCHV; Bruker, Billerica, Massachusetts, USA)
into the samples using AFM. The force curve was analyzed according to the Hertz model [23].

2.6. Differential Scanning Calorimetry (DSC)

In order to investigate the interaction between organic acid and hair, differential scanning calorimetry
(DSC) (DSC7000X; Hitachi High-Tech Science Corporation, Minato, Tokyo, Japan) measurement was
performed. Hair samples were stored under 20 ◦C, 65% RH for 4 days. An empty pan was used as
a reference. Samples were cooled to −70 ◦C, followed by a temperature increase to 250 ◦C at 10 ◦C/min.

3. Results

3.1. Distribution of Cortical Cells

3.1.1. TEM Observation of Hair Cross-Sections

Typical Japanese flexible/elastic and inflexible/inelastic hairs were selected by the sensory tests as
described in Table 1 above and the microstructures of those hairs were observed using a TEM.

There were no significant differences in the cuticle or medulla. On the other hand, there were
some differences in the cortices. There are two types of cortices in human hair. One is called the
“ortho-like cortex”, where the intermediate filament (IF) alignment is spiral. It shows relatively small
and dispersed macrofibrils in the hair cross-section. The other is the “para-like cortex” where the
IF alignment is parallel. It shows relatively large and fused macrofibrils [14–17]. The TEM image
of the flexible/elastic hair (sensory score 3) is shown in Figure 4. The flexible/elastic hair shows the
characteristic double-layered distribution of the two types of cortical cells (ortho-like and para-like
cells). The ortho-like cells (Figure 4a) tend to be located near the hair surface, while the para-like cells
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(Figure 4b) tend to be located near the center of the hair fiber. The thickness of the ortho-like cell layer
and cuticle layer are nearly 3 µm and 2 µm, respectively.
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Figure 4. The distribution of two types of cortices in SHINAYAKA (flexible/elastic) hair. (a) Ortho-like
cortex, (b) para-like cortex [18].

3.1.2. FLM Observation of Hair Cross-Sections

The distributions of the ortho- and para- like cortices in flexible/elastic and inflexible/inelastic hair
were confirmed with a differential staining method. One hundred hair samples from each individual
(in Table 1) were stained with two types of fluorescent dyes and observed using FLM. Shown in Figure 5
is an image that clearly represents this feature. The flexible/elastic hairs showed the ortho-like cortex
distributed near the hair surface (outer layer) and the para-like cortex distributed near the center of the
hair fiber (inner layer), as shown in Figure 5a. On the other hand, the inflexible/inelastic hairs show
a dispersed pattern of the two types of cortical cells, as shown in Figure 5b, indicating a structural
difference between the flexible/elastic hairs and the inflexible/inelastic hairs.
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Figure 5. Distribution of two types of cortical cells: (a) flexible/elastic hair (Table 1; No. 1) [18],
(b) inflexible/inelastic hair (Table 1; No. 10). The para-like cortical cells look green and the ortho-like
cortical cells look red in these pictures.

3.2. Distribution of Hair Mechanical Properties

Next, the mechanical differences between flexible/elastic and inflexible/inelastic hair were
investigated by various means.

3.2.1. Bending Elasticity of Outer and Inner Layers

The results of the bending elasticity of the outer and inner layers obtained with typical flexible/elastic
hair (Table 1: No. 1/Sensory Score = 1.6) and inflexible/inelastic hair (Table 1: No. 10/ Sensory
Score = 9.3) are shown in Figure 6. These measured values were Eouter = 3.4 GPa, Einner = 5.6 GPa and
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Eouter = 5.1 GPa, Einner = 5.3 GPa of each. In this case, the ratios of bending elasticity (Eouter/Einnr) were
0.60 and 0.96, respectively.
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The bending elasticity in the outer layer is lower than that in the inner layer and this difference in
the flexible/elastic hair is bigger than that in the inflexible/inelastic hair.

3.2.2. Influence by Hair Damage

Damaged hair is usually classified as inflexible/inelastic because of its inflexible/inelastic
behavior [9–11]. Changes in the mechanical properties between untreated hair and model damaged
hair, in the way described above, as well as the root and tip of heavily damaged hair, were compared.
The results are shown in Figure 7a,b. When untreated hair (No. 1; described in Table 1) was model
damaged as described above, the bending elasticity of the outer layer increased from 3.4 GPa to 4.2 GPa.
The ratios of bending elasticity were changed from 0.60 to 0.74, which is significant. When comparing
changes in the mechanical properties between the root and tip of heavily damaged hair, the outer layer
of the tip was harder than the root (tip: 4.8 GPa, root: 4.2 GPa). The ratios of bending elasticity were
0.89 (tip) and 0.80 (root). The ratio of the tip was bigger than that of the root. These results suggest that
the mechanical property is stiffened by the damage, especially in the outer layer.
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hair (Table 1; No. 1) and model damaged hair (Table 1; No.1). (b) Root and tip of heavily damaged hair.
Measurements at 20◦C and 65% relative humidity (RH), n = 20, SS = sensory score.
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3.3. Modification of the Mechanical Properties

The above results suggest that the concentric double-layered distribution of the mechanical
properties (softer outer layer and stiffer inner layer) is important for flexible/elastic hair. These results
also suggest that the softening of the outer layer is possibly effective for the improvement of hair
property from inflexible/inelastic to flexible/elastic. We have studied how to modify the mechanical
properties of the hair fiber by investigating the effect of organic acids. Some organic acids have strong
interactions with keratinous proteins and can modify mechanical properties [3–8]. Several organic
acids, i.e. maleic acid, aspartic acid, or succinic acid, which have hair softening abilities, were tested to
investigate whether these acids could selectively soften the outer layer. Succinic acid (SA) was found
to be the most effective of these materials.

3.3.1. Treatment with Succinic Acid

The colored hair (shown in Section 2.1.2) with model damage treatment (ratio of bending
elasticity = 0.99; sensory score = 7.0) were used. The hair was treated with the solution containing
SA by the method described in Section 2.2.3. With this treatment, only the outer layer was softened
from 5.4 GPa to 3.7 GPa, and the mechanical difference between the outer layer and the inner layer
became clear. At this time, the sensory score changed from 7 to 3. Furthermore, the same tendency
was confirmed by the method shown in Sections 2–5 (Figure 8a,b) [18].
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Figure 8. The difference in mechanical properties of model damaged hair and hair treated with
a solution containing succinic acid (SA) [18]. (a) Bending elasticity, Measurements at 20 ◦C and 65%
relative humidity (RH), n = 20, SS = sensory score (b) elasticity of each structure measured using atomic
force microscopy (AFM).

3.3.2. Treatment with the Three-Step Treatment System

The colored hair with model damage treatment (same as above) and untreated inflexible/inelastic
hair (No. 10 shown in Table 1, sensory score = 9.3) were treated with the three-step system using SA.
As a result, only the outer layer was softened from 5.4 GPa to 3.7 GPa (above) and from 5.1 GPa to
3.9 GPa (Table 1; No. 10). The difference between the outer layer and the inner layer became more
clearly defined (Figure 9), even under realistic usage in in-bath conditions.
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Figure 9. Change in mechanical properties when treated with three-step system using SA. (a) Model
damaged hair (b) inflexible/inelastic chemically untreated hair. Measurements at 20◦C and 65% relative
humidity (RH), n = 20, SS = sensory score.

3.3.3. Application to Caucasian hair

Similar results were obtained on Caucasian hair. The outer layer became harder after damage
(the elasticity of the outer layer increased from 2.9 GPa to 4.8 GPa), and the outer layer was softened
with treatment by the three-step system using SA (the elasticity of the outer layer decreased from
4.8 GPa to 2.8 GPa) (Figure 10).
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Figure 10. Bending elasticity of the outer and inner layer of Caucasian hair. Measurements at 20 ◦C
and 65% relative humidity (RH), n = 20; SS = sensory score.

4. Discussion

4.1. Characteristic Structural Pattern

Microscopic observations revealed a structural difference between flexible/elastic hair and
inflexible/inelastic hair. For flexible/elastic hair, ortho-like cells tend to concentrate in the outer layers
of the hair fiber (near the hair surface), while para-like cells concentrate in the inner layers (near the
center). These results indicated that flexible/elastic hair shows a concentric double-layered distribution of
cortical cells, as observed by TEM and FLM. In contrast, inflexible/inelastic hair demonstrated a dispersed
distribution of the two cortex types.

4.2. Characteristics of Bending Elasticities

We considered that flexible/elastic hair not only had structural differences but also had mechanical
differences when compared to inflexible/inelastic hair. Generally, a material’s structure is closely
related to a material’s property. The mechanical property of hair should be important for hair motion.
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If we could understand the relationship between mechanical properties and beautiful hair motion,
it would be helpful to develop new technologies to control hair motion. So, we investigated the
mechanical difference between flexible/elastic and inflexible/inelastic hair. The elasticity of ortho-like
cortical cells is relatively lower than that of para-like cortical cells [24,25]. Therefore, it is expected that
for flexible/elastic hair, the outer layer of the hair fiber is softer than the inner layer. In general, it is
understood that the cuticle is the hardest tissue in the hair. Most outer layers of each cuticle cell (called
the A-layer) are the hardest tissue in the hair. On the other hand, most inner layers of each cuticle
(called the endocuticle) are softer than the cortex. When bending the hair, the softer tissue like the
endocuticle can be preferentially deformed, as published previously [19]. Therefore, the contribution
of the cuticle to bending elasticity is small.

The bending elasticity was measured by deformation of a straight hair strand into a curled shape
with a 25 mm curl radius for 10 s, creating a deformation velocity of 0.004 per millimeter second.
This velocity corresponds to the change in curvature from straight to 220 mm curl radius in one second.
The tip end of the 300 mm long hair strand moved approximately 170 mm away within one second.
Therefore, the deformation velocity of this system is comparable to the velocity of actual hair swinging
while walking and/or turning around (Figure 11).

Cosmetics 2019, 6, x FOR PEER REVIEW 11 of 15 

 

hair motion. If we could understand the relationship between mechanical properties and beautiful 
hair motion, it would be helpful to develop new technologies to control hair motion. So, we 
investigated the mechanical difference between flexible/elastic and inflexible/inelastic hair. The 
elasticity of ortho-like cortical cells is relatively lower than that of para-like cortical cells [24,25]. 
Therefore, it is expected that for flexible/elastic hair, the outer layer of the hair fiber is softer than 
the inner layer. In general, it is understood that the cuticle is the hardest tissue in the hair. Most 
outer layers of each cuticle cell (called the A-layer) are the hardest tissue in the hair. On the other 
hand, most inner layers of each cuticle (called the endocuticle) are softer than the cortex. When 
bending the hair, the softer tissue like the endocuticle can be preferentially deformed, as published 
previously [19]. Therefore, the contribution of the cuticle to bending elasticity is small. 

The bending elasticity was measured by deformation of a straight hair strand into a curled 
shape with a 25 mm curl radius for 10 seconds, creating a deformation velocity of 0.004 per 
millimeter second. This velocity corresponds to the change in curvature from straight to 220 mm 
curl radius in one second. The tip end of the 300 mm long hair strand moved approximately 170 
mm away within one second. Therefore, the deformation velocity of this system is comparable to 
the velocity of actual hair swinging while walking and/or turning around (Figure 11). 

 
Figure 11. The deformation velocity at the measurement point and the deformation of the actual 
hair swing. 

The results suggest that the bending elasticity in the outer layer is lower than that in the inner 
layer and this difference between the outer and inner layers in flexible/elastic hair is bigger than in 
inflexible/inelastic hair. We confirmed that the difference is smaller in damaged hair. In other words, 
damaged hair did not show the characteristics of the concentric double-layer. 

Plotting the ratio of bending elasticity versus sensory score of all samples shown in this report 
showed a relationship between them. A lower ratio of bending elasticity correlated with a lower 
sensory score (Figure 12). A lower sensory score indicates a better hair feel and a lower ratio of 
bending elasticity, indicating a strong separation between the inner and outer layers. The above 
results suggest that the concentric double-layered distribution of the mechanical properties (softer 
outer layer and stiffer inner layer) is important for flexible/elastic hair. These results also suggest 
that softening of the outer layer is possibly effective for the improvement of these hair properties 
from inflexible/inelastic to flexible/elastic. 
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hair swing.

The results suggest that the bending elasticity in the outer layer is lower than that in the inner
layer and this difference between the outer and inner layers in flexible/elastic hair is bigger than in
inflexible/inelastic hair. We confirmed that the difference is smaller in damaged hair. In other words,
damaged hair did not show the characteristics of the concentric double-layer.

Plotting the ratio of bending elasticity versus sensory score of all samples shown in this report
showed a relationship between them. A lower ratio of bending elasticity correlated with a lower sensory
score (Figure 12). A lower sensory score indicates a better hair feel and a lower ratio of bending elasticity,
indicating a strong separation between the inner and outer layers. The above results suggest that the
concentric double-layered distribution of the mechanical properties (softer outer layer and stiffer inner
layer) is important for flexible/elastic hair. These results also suggest that softening of the outer layer is
possibly effective for the improvement of these hair properties from inflexible/inelastic to flexible/elastic.
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4.3. Modification of the Mechanical Properties

4.3.1. Effect of Succinic Acid

We have investigated the effect of organic acids on the mechanical properties of hair fibers.
Succinic acid selectively softened the outer layer. We predicted that SA only penetrated the outer
layer. On the other hand, malic acid has been found to penetrate deeper into the hair’s inner layer [6].
It was hypothesized that succinic acid interacts more strongly with hair proteins and thus likely
penetrates less. The interaction between the organic acid and hair proteins was analyzed using DSC.
The glass transition temperature (Tg) is shown by the derivative differential scanning calorimetry
(DDSC) spectrum at the time of temperature rise (Figure 13). DDSC showed the differential of the
DSC spectrum and it could indicate the inflection point more clearly. Both malic acid-treated hair and
succinic acid-treated hair decreased in Tg compared to untreated hair. In this case, the Tg of succinic
acid treatment decreased more. Assuming that the larger the Tg decrease, the more strongly it interacts
with hair proteins, it can be said that succinic acid interacts more strongly with hair proteins compared
to malic acid. It follows that succinic acid tends to stay in the surface layer of the hair. In addition, it is
thought that succinic acid efficiently softens the proteins, as the decrease in Tg indicates that water and
organic acid plasticized the protein [26–28].
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4.3.2. The Three-Step Treatment System

We tried to add succinic acid (SA) to shampoo and/or conditioner. When SA is added to shampoo,
no sufficient effect was obtained, because shampoo is usually rinsed off immediately. When SA is
added to a conditioner, no sufficient effect was obtained, because anionic SA is possibly trapped by
cationic materials. SA has two pKa values, at 4.2 and at 5.6. The pKa means acid constant expressed
in common logarithm. The dissociation state differs depending on pH. Therefore, penetration and
solubility can be controlled by pH.

A three-step treatment system was developed. It is composed of shampoo, the first conditioner with
SA but without cationic materials, and the second conditioner with cationic materials. We considered
that in the second step, SA can easily penetrate into the hair due to its higher solubility at pH 6 without
inhibition by cationic materials. In the third step, SA can be fixed into the hair fiber by the cationic
materials at pH 3.4. Based on this system, we have succeeded in controlling the mechanical properties
even under realistic usage in in-bath conditions, even when only used one time. The effect of the three-step
system was confirmed with Japanese consumers. Perceived changes in hair properties (softness, bounce,
flexible and elastic) after use of the three-step treatment system are shown in Figure 14.
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5. Conclusions

Microscopic observation revealed the concentric double-layered distribution of the two types of
cortical cells in flexible/elastic (SHINAYAKA) hair. The ortho-like cortex tends to distribute in the outer
layer of the hair (near the hair surface), while the para-like cortex tends to distribute in the inner layer.
Based on this observation, it was found that the concentric double-layered distribution of mechanical
properties (softer outer layer and stiffer inner layer) is important for the flexible/elastic behavior of the
hair. The characteristic mechanical properties were changed due to hair damage and our developing
treatment containing SA. It was demonstrated that the mechanical property change occurred not only
for Japanese but also Caucasian hair.
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