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Abstract: The dynamical equations of the susceptible-infected-recovered/removed (SIR) epidemics
model play an important role in predicting and/or analyzing the temporal evolution of epidemic
outbreaks. Crucial input quantities are the time-dependent infection (a(t)) and recovery (µ(t)) rates
regulating the transitions between the compartments S → I and I → R, respectively. Accurate ana-
lytical approximations for the temporal dependence of the rate of new infections J̊(t) = a(t)S(t)I(t)
and the corresponding cumulative fraction of new infections J(t) = J(t0) +

∫ t
t0

dxJ̊(x) are available
in the literature for either stationary infection and recovery rates or for a stationary value of the ratio
k(t) = µ(t)/a(t). Here, a new and original accurate analytical approximation is derived for general,
arbitrary, and different temporal dependencies of the infection and recovery rates, which is valid for
not-too-late times after the start of the infection when the cumulative fraction J(t) ≪ 1 is much less
than unity. The comparison of the analytical approximation with the exact numerical solution of the
SIR equations for different illustrative examples proves the accuracy of the analytical approach.

Keywords: epidemics; temporal development; coronavirus; SARS CoV-2; COVID-19

1. Introduction

The susceptible-infected-recovered/removed (SIR) epidemics model, originally devel-
oped by Kermack and McKendrick [1] and refined by Kendall [2], is the simplest realistic
and, therefore, often-applied description of the temporal evolution of epidemics [3–47].
Here, persons from the considered population are assigned to the three compartment
fractions S (susceptible), I (infectious), and R (recovered/removed). The time-dependent
infection (a(t)) and recovery (µ(t)) rates regulate the transitions between the compartments
S → I and I → R, respectively. For a review, see [48].

In general, the time dependencies of these two rates will be different and determined
by different factors: the dedicated medication of infected persons will increase the recovery
rate from its initial value at the start of an epidemic outbreak, while nonpharmaceutical
interventions, such as social distancing, quarantining, and mask obligations, effectively
reduce the infection rate from its initial value. As a consequence, the ratio k(t) = µ(t)/a(t)
of the two rates is a time-dependent function, thereby increasing at early times from its ini-
tial value and decreasing at later times when some of the nonpharmaceutical interventions
are lifted. Such a behavior of the ratio k(t) has indeed been established recently from the
analyis of past COVID-19 mutants [49], as the ratio k(t) can be expressed in terms of the
well-monitored rate of new infections J̊(t) = dJ(t)/dt and its corresponding cumulative
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fraction J(t). In order to improve the forecast of future epidemic outbreaks using the
nonstationary ratio k(t), it is, therefore, highly desirable to derive analytical solutions or
accurate approximations of these solutions of the SIR model equations for arbitrary but
given time dependencies of the infection and recovery rates and their ratios defined by k(t).
This is the purpose of the present manuscript.

In the literature, very often the SIR model equations have been solved numerically
with adopted stationary infection (a0) and recovery (µ0) rates so that their ratio k0 = µ0/a0
is also stationary, although an analytical solution in terms of an inverse integral in this case
is available [3]. Additionally, analytical solutions for arbitrary but given time dependencies
of the infection rate a(t) have been derived for the infinite [4] and semitime (t ≥ t0) [5] time
domains for the case of a stationary ratio k = µ(t)/a(t), thereby implying that the recovery
rate has exactly the same time dependence as the infection rate. Analytical approximations
have been developed [50] for slowly varying ratios of k(t) in comparison with the typical
time characteristics of the epidemic wave. Below, we will derive approximate analytical
solutions of the SIR model equations for the limit of not-too-late times, where the cumulative
number of new infections J is much smaller than unity. For completeness, we investigate
the alternative, but less interesting, case at late times, when the fraction of susceptible
persons S ≪ 1 is much smaller than unity (Appendix B).

2. SIR Model

The original SIR equations for the three-compartment fractions S(t), I(t), and R(t) at
given time-dependent infection and recovery rates read as follows [1,3,48]:

dS
dt

= −a(t)SI, (1a)

dI
dt

= a(t)SI − µ(t)I, (1b)

dR
dt

= µ(t)I, (1c)

where obeying the sum constraint yields

S(t) + I(t) + R(t) = 1 (2)

at all semitimes t ≥ t0 after the start of the wave at time t0, which are subject to the initial
conditions [5]

I(t0) = η, S(t0) = 1 − η, R(t0) = 0, (3)

where η is positive and usually very small such that η ≪ 1. In terms of the reduced time,
we have the following:

τ ≡
∫ t

t0

dx a(x) (4)

so that τ = 0 at t = t0, and the ratio is defined as follows:

k(τ) ≡ µ(τ(t))
a(τ(t))

(5)

Thus, the SIR set of equations in (1) for S(τ), I(τ), and R(τ) read as follows [4]:

dS
dτ

= −SI, (6a)

dI
dτ

= SI − k(τ)I, (6b)

dR
dτ

= k(τ)I. (6c)
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Recently, it has been demonstrated [49] that the reduced SIR set of equations in (6) is
equivalent to

k(τ) = 1 − J(τ)− d
dτ

ln
[

d
dτ

ln(1 − J(τ))−1
]

, (7)

where
J(τ) = J(0) +

∫ τ

0
dξ j(ξ) = 1 − S(τ) (8)

denotes the cumulative number of new infections, and

j(τ) = S(τ)I(τ) = −dS(τ)
dτ

(9)

denotes the rate of new infections. Using Equation (8), we can also write Equation (7) as

k(τ) = S(τ)− d
dτ

ln
[

d
dτ

ln
1

S(τ)

]
= S(τ)− d

dτ
ln I(τ), (10)

where we used Equation (9) as well for the revision. In the following, we will derive
approximate analytical solutions of the two nonlinear differential Equations (7) and (10) in
the two limits of small J(τ) ≪ 1 and large J(τ) ≃ J∞, respectively.

The first limit J ≪ 1 holds at early reduced times τ ≤ τc of the epidemic outbreak and
corresponds to values of S that are smaller but very close to S(t0). Provided it is reached,
which depends on the reduced time dependence of the ratio k(τ), the second limit J ≃ J∞
holds at the late reduced time τ > τc. As a rule of thumb [51], any pandemic wave ends
when 70% of the total population are infected, i.e. J∞ = 0.7, if nothing is done to reduce the
number of infections. We investigate the early time limit next. For completeness, we study
the less interesting late time limit in Appendix B.

3. Approximate Analytical Solutions
3.1. Solution in the Limit of Small J ≪ 1

Initially at a reduced time τ = 0, the cumulative number of new infections is extremely
small, where J(0) = η. In the limit J(τ) ≪ 1 and at later times where 0 ≤ τ ≤ τc, we use
the approximations 1 − J(τ) ≃ 1 and ln(1 − J(τ))−1 ≃ J(τ) to obtain the ratio derived
from (7):

k(τ) ≃ 1 − d
dτ

ln
[

dJ(τ)
dτ

]
= 1 − d

dτ
ln j(τ), (11)

which immediately integrates to

j(τ ≤ τc) = η(1 − η)eτ−
∫ τ

0 dξ k(ξ) = η(1 − η)e
∫ τ

0 dξ [1−k(ξ)], (12)

where we make use of the initial condition j(0) = η(1 − η). A further integration of (12)
provides

J(τ ≤ τc) = η + η(1 − η)
∫ τ

0
dτ′eτ′−

∫ τ′
0 dξ k(ξ). (13)
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In Appendix A, the integral of (13) in the case of general variations in k(τ) is evaluated
with the method of steepest descent in terms of error functions as

J(τ ≤ τc) ≃ η + η(1 − η)∑
m

√
π

2k′(τm)
exp

(
τm −

∫ τm

0
dξ k(ξ)

)
×[

erf

(√
k′(τm)

2
(τ − τm)

)
+ erf

(√
k′(τm)

2
τm

)]
, (14)

where k′(τ) denotes dk(τ)/dτ. In terms of the real time in this early time limit, one has

J̊(t ≤ tc) = a(t)η(1 − η)e
∫ t

t0
dx[a(x)−µ(x)]. (15)

3.2. Properties of the Approximate Solution (12)

The approximate solution (12) is predominantly determined by the reduced time
variation of the ratio k(τ). For the first and second time derivatives of the solution (12), we
obtain

dj
dτ

= η(1 − η)[1 − k(τ)]eτ−
∫ τ

0 dξ k(ξ), (16)

d2 j
dτ2 = η(1 − η)

[
(1 − k(τ))2 − k′(τ)

]
eτ−

∫ τ
0 dξ k(ξ). (17)

Consequently, the extrema of the rate of new infections occur at reduced times τE, which
are determined by

k(τE) = 1. (18)

Then,
d2 j
dτ2

∣∣∣∣
τ=τE

= −η(1 − η)k′(τE)eτE−
∫ τE

0 dξk(ξ), (19)

thus meaning that the extrema are maxima for an increasing reduced time variation, with
k′(τE) > 0, and are minima for a decreasing reduced time variation, with k′(τE) < 0. The
extreme values of the rate of new infections are given by

jE(τE) = η(1 − η)e
∫ τE

0 dξ [1−k(ξ)]. (20)

4. Special Cases
4.1. Constant Ratio k(t)

We first consider the special case of a stationary ratio k(t) = k0 =const. for which very
accurate analytical approximations have been derived [5,52]. In this case, the approxima-
tions (12)–(15) reduce to

j(τ ≤ τc) = η(1 − η)e(1−k0)τ , (21a)

J(τ ≤ τc) = η +
η(1 − η)

1 − k0

[
e(1−k0)τ − 1

]
, (21b)

J̊(t ≤ tc) =
a(t)η(1 − η)

1 − k0
e(1−k0)

∫ t
t0

dx a(x), (21c)

and determining Equation (A15) becomes

e(1−k0)τc − 1 =
J∞(1 − k0)

η(1 − η)
=

0.7(1 − k0)

η(1 − η)
, (22)
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or, equivalently,

τc =
1

1 − k0
ln
[

1 +
0.7(1 − k0)

η(1 − η)

]
≃

ln 0.7(1−k0)
η

1 − k0
, (23)

which agrees favorably well with the exact numerical result for the time τc at which J(t)
has reached half of its final valu J∞. (see Figure 1).

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

analytic

numerically exact

Figure 1. Performance of the analytic approximation (23) for the crossover τc versus k0 at η = 10−5.
The numerical result is obtained from J(τc) = J∞/2.

4.2. Linearly Increasing Ratio k(τ) = k0 + k1τ

We note that for a linearly increasing ratio k(τ) = k0 + k1τ, the analytical approxima-
tion (12) is given by the Gaussian distribution

j(τ ≤ τc) = η(1 − η)e−[
1
2 k1τ2−(1−k0)τ], (24)

which, for a constant infection rate a0 yielding τ = a0(t − t0), leads to a Gaussian distribu-
tion in real time. Such Gaussian distributions have been successfully used to predict the
temporal evolution of earlier COVID-19 waves [51,53–56].

5. Illustrative Examples

In order to illustrate the usefulness of our approximate solution (12), we consider
two illustrative examples for the reduced time variation of the ratio k(τ). The first one is
monotonically rising and therefore well suited to represent a single wave of a pandemic
outburst. The second one varies periodically in reduced time and is therefore well suited to
represent a series of repeating pandemic outbursts. In both cases, we compare the exact
numerical solution of the SIR set of equations in (6) with the approximative solution (12).
We consider both examples in turn.

5.1. Monotonically Rising Ratio

Here, we choose
k(τ) = B tanh(Cτ), (25)

with the two positive constants being B and C. The ratio (25) increases monotonically from
zero at τ = 0 to its maximum value B at large reduced times of τ ≫ B−1. According to
Equation (18), a single extremum of the rate of new infections occurs at the time τE and is
given by

B tanh(CτE) = 1, (26)

which can only be solved for values of B ≥ 1 with

τE = C−1arctanh (B−1) =
1
C

ln
B + 1√
B2 − 1

. (27)
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Because the first derivative of the ratio (25) is given by

dk
dτ

=
BC

cosh2(Cτ)
=
[
1 − tanh2(Cτ)

]
BC, (28)

one finds

k′(τE) =
C(B2 − 1)

B
> 0, (29)

thus meaning that the extremum is a maximum. For values of B < 1, the rate of new
infections monotonically increases with reduced time. With the choice of (25), the rate of
new infections of (12) can be reduced to

j(τ ≤ τc) = η(1 − η)eτ [cosh(Cτ)]−B/C

= η(1 − η)eτ [1 − tanh2(Cτ)]B/2C. (30)

We note the two asymptotic exponential behaviors j(τ ≤ C−1 ≤ τc) ≃ η(1 − η)eτ and
j(C−1 ≤ τ ≤ τc) ≃ η(1 − η)2B/Ce(1−B)τ .

Only for values of B > 1, a single maximum rate

jmax = j(τE) = η(1 − η)

[
B2 − 1

B2

] B
2C

eC−1arctanh (1/B)

= η(1 − η)
(B2 − 1)

B−1
2C (B + 1)

1
C

B
B
C

(31)

occurs at τE, provided that τE ≤ τc, or for τc in the case where τE > τc, we have

jmax = j(τc) = η(1 − η)eτc [cosh(Cτc)]
− B

C . (32)

In Figure 2 (center panels), we compare the approximative analytical rate of new infections
of (30) as a function of the reduced time for this choice of the ratio k(τ) with the exact
numerical solution of the SIR set of equations in (6). The agreement is almost perfect,
thereby proving the accuracy of our analytical approximation.

The corresponding cumulative number of infections is given by

J(τ) = J(0) +
∫ τ

0
dx j(x) = η + η(1 − η)H(τ), (33)

H(τ) =
∫ τ

0
dx ex[cosh(Cx)]−B/C. (34)

By substituting y = e2Cx, which corresponds to x = ln(y)/2C, the integral (34) becomes

H(τ) =
2B/C

2C

∫ e2Cτ

1
dy y

B+1
2C −1(1 + y)−B/C, (35)

which can be expressed as the difference of two hypergeometric 2F1 functions by using
integral 3.194 of [57]. One then obtains

H(τ) =
2B/C

B + 1

[
e(B+1)τ

2F1

(
B
C

,
B + 1

2C
; 1 +

B + 1
2C

;−e2Cτ

)
− 2F1

(
B
C

,
B + 1

2C
; 1 +

B + 1
2C

;−1
)]

. (36)

For τ ≪ 1, the first terms of the series expansion are H(τ) = τ + τ2/2 + (1 − BC)τ3/6,
which are derived in Appendix C.
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Figure 2. Left: Plot of the monotonically rising ratio (25) for (a) C = 4 and (b) C = 0.15, with B = 1.5
and η = 10−5, respectively. Middle: Corresponding rate of new infections j(τ) as a function of
the reduced time for these choices of the ratio k(τ). Right: Corresponding cumulative rate of new
infections J(τ). Shown are the numerical (black dashed curve) solutions of the SIR set of equations
in (6) in comparison with the analytical approximations (green curve) according to Equations (12)
and (30). The agreement is almost perfect. The maximum relative deviations are smaller than (a) 0.5%
and (b) 2.5%. In addition, we show (hardly visible red dot–dash curve) the approximant (39) in panel
(a) for C > 1 and Equation (36) in panel (b) for C < 1. The agreement is against almost perfect. The
black dotted lines were obtained for comparison using the method of steepest descent, Equation (45),
which provides a lower limit to the cumulative fraction, because all other contributions far from the
maximum are not adequately accounted for (Appendix A).

For C > 1, an approximant can be derived by substituting x = ln y in Equation (34).
This yields

H(τ) = 2B/C
∫ eτ

1
dy [yC + y−C]−B/C

= 2B/C
∫ eτ

1
dy yB[1 + y2C]−B/C. (37)

Since y is greater than unity, we approximate 1 + y2C ≃ y2C to yield

H(τ) ≃ 2B/C
∫ eτ

1
dy y−B =

e(1−B)τ − 1
1 − B

. (38)

Consequently, the cumulative fraction of infections of (33) becomes

J(τ) ≃ η + η(1 − η)2B/C e(1−B)τ − 1
1 − B

= η + η(1 − η)


2B/C e(1−B)τ−1

1−B for B < 1
21/Cτ for B = 1
2B/C 1−e−(B−1)τ

B−1 for B > 1

(39)

We first note that the absolute level of the cumulative fraction is proportional to 2B/C. If the
parameter C is small, one obtains a much higher amplification of the cumulative fraction
at later times compared to its initial value than in cases where C is large. This is clearly
evident from the last panels of Figure 2.
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Moreover, we notice that for values of B > 1, the cumulative fraction (39) approaches
the finite value J(τ = ∞, B > 1) = η(1 − η)2B/C/(B − 1), which is much smaller than
J∞ = 0.7, since η ≪ 1. In this case, the early time solutions of (30) and (39) are valid for all
times. This is easy to understand, because for values of B > 1, the ratio (25) becomes greater
than unity after finite times so that then the recovery rate µ(τ) > a(τ) is greater than the
infection rate; therefore, the rate of new infections is decreasing with time in agreement
with the right side of Figure 2. In this case, not many new infections add to the cumulative
fraction.

The opposite behavior holds for values of B ≤ 1. In this case, at all times, the ratio (25)
is less than or equal to unity so that the infection rate is never smaller than the recovery
rate. Consequently, the cumulative fraction (39) increases exponentially with time for B < 1
and linearly with time for B = 1. In this case, the early time solutions of (30) and (39) can
only be used for times less than τc, which are provided according to Equation (A15), and
we work with the following equation:∫ τc

0
dτ eτ [cosh(Cτ)]−B/C = H(τc) =

J∞

η(1 − η)
. (40)

Using Equation (39), we obtain

τc =
1

1 − B
ln
[

1 +
(1 − B)J∞

2B/Cη(1 − η)

]
. (41)

For B ≤ 1, the rate of new infections (A12) at late times becomes

j(τ ≥ τc) ≃ (1 − J∞)A1 cosh−B/C(Cτ)

= η(1 − η)eτc cosh−B/C(Cτ), (42)

where we determined A1 = η(1 − η)eτc /(1 − J∞) from equating the two rates of (30)
and (42) at τc, whose value is given explicitly by Equation (41).

For the interesting case of values B > 1, we calculate the cumulative fraction of (33)
with the integral of H(τ) using the method of steepest descent according to Equation (14).
Here, a single maximum in j(τ) occurs at

τm = τE =
1
C

ln
B + 1√
B2 − 1

, (43)

which is given by Equation (27) and k′(τm) = (B2 − 1)C/B, which is inferred from
Equation (29). Moreover,

τm −
∫ τm

0
dξ k(ξ) = τm − B

C
ln cosh(Cτm)

=
1
C

[
ln

B + 1√
B2 − 1

− B ln
B√

B2 − 1

]
. (44)

Consequently, the cumulative number of infections of (14) in this case becomes

J(τ) ≃ η + η(1 − η)

√
πB
2C

(B + 1)
1
C B− B

C (B2 − 1)
B−C−1

2C ×erf

√C
√

B2 − 1
2B

(τ − τm)

+ erf

√C
√

B2 − 1
2B

τm

. (45)

In Figure 2 on the right, we compare the approximation of (45) with the exactly integrated
cumulative fractions of (33)–(39) in this case. The good agreement indicates that the method
of steepest descent is indeed appropriate to calculate cumulative fractions for B > 1 and
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C < 1. For values of C > 1, this method is correct within a factor of 1.8, as indicated by
Figure 2a (right). The reason that the method of steepest descent works better for small
values of C is due to the inverse dependence of the exponents in Equation (31) for the
maximum rate and in Equation (27) for the time of maximum. Consequently, the smaller
the value of C, the later the time that the maximum appears and with a larger amplitude as
compared to the case of large values of C. In the case of a large amplitude maximum, the
dominating contribution to the cumulative fraction stems from the maximum.

5.2. Oscillating Ratio

Here we choose
k(τ) = 1 + α sin(βτ), (46)

with the two positive constants α and β. The ratio (46) oscillates periodically around its
intial value of one (see Figure 3a). It is therefore well suited to represent a series of repeating
pandemic outbursts. For values of k that are greater than unity, the recovery rate is greater
than the infection rate; so, the rate of infections decreases. When the ratio k is smaller than
unity, the infection rate is greater than the recovery rate, and the rate of infections increases
with time.

With the choice of (46) and using the rate of new infections of (12) at early times, we
have

j(τ ≤ τc) = η(1 − η)e
α
β [cos(βτ)−1]. (47)

The approximative analytical rate of new infections (47) as a function of the reduced
time for the oscillating ratio (46) is compared with the exact numerical solution of the SIR
set of equations in (6) in Figure 3. The agreement is almost perfect, thereby proving the
accuracy of our analytical approximation using Equation (12).
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Figure 3. Left panels: Plot of the oscillating ratio of k(τ) according to Equation (46) for (a) α = 0.5,
β = 4, and (b) α = 0.8, β = 0.5. Centered panels: The corresponding rates of new infections of j(τ)
as a function of reduced time using η = 10−5. Right panels: Cumulative fraction of J(τ). Shown
are the numerical (black dashed curve) solutions of the SIR set of equations in (6) in comparison
with the analytical approximations (green curve) according to Equations (47) and (48). Because
α/β ≪ 1 for case (a), only the first term of expansion (48) had to be used, while the first three terms
of Equation (48) were used in (b) in accord with Figure 4. The agreement is almost perfect. The
maximum relative deviations are smaller than 0.2% for all cases.
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Integrating the rate of (47) over reduced time provides us with the corresponding
cumulative fraction,

J(τ ≤ τc) = η +
η(1 − η)

β
e−

α
β

∫ βτ

0
dy e

α
β cos(y)

= η + η(1 − η)e−
α
β

[
τ I0

(
α

β

)
+ 2

∞

∑
n=1

In(
α
β )

nβ
sin(nβτ)

]
, (48)

where we have used J(0) = η and the series expansion (Equation 9.6.34 of ref. [58])

ez cos θ = I0(z) + 2
∞

∑
n=1

In(z) cos(nθ) (49)

in terms of the modified Bessel function of the first kind In(z). In order to obtain deviations
of less than one percent from the series (49) at a finite summation index n, one has to choose
N according to Figure 4. For the example provided in Figure 3a, z = α/β = 0.5/4 ≪ 1, just
the first term of the expansion, N = 1, is sufficient to capture the behavior of J(τ) for this
case. Instead, N = 3 is used to calculate J(τ) in Figure 3b, which is in accord with the value
of z = 0.8/0.5 = 1.6 in Figure 4.

The third panel of Figure 3 and Equation (48) show that the cumulative fractions
predominantly increase linearly with reduced time so that at some finite time τc, the
cumulative fractions approach J∞. There, the validity of the early time approximation ends
and J(τ ≥ τc) ≃ J∞, as is discussed in Appendix B. The value of τc and the variation in
the corresponding late-time spontaneous rate j(τ ≥ τc) can be calculated according to
Equations (A15) and (A20), respectively.

From the part of Equation (48) that is proportional to τ, one can read off the character-
istic time τc using J(τc) ≃ J∞, which translates to

τc ≃
eα/β

I0

(
α
β

) J∞

η(1 − η)
. (50)
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Figure 4. The integral
∫ τ

0 ez cos θ is approximated for all τ within 1% precision by the integrated
Equation (49), thus resulting in the expression shown inside the figure if the z-dependent order of the
summation, N, is chosen as depicted. The required order grows as N ∝

√
a.
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6. Summary and Conclusions

The dynamical equations of the SIR epidemics model play an important role in pre-
dicting and/or analyzing the temporal evolution of epidemic outbreaks. Crucial input
quantities are the time-dependent infection (a(t)) and recovery (µ(t)) rates, which reg-
ulate the transitions between the compartments S → I and I → R, respectively. Ac-
curate analytical approximations for the temporal dependence of the rate of new in-
fections J̊(t) = a(t)S(t)I(t) and the corresponding cumulative fraction of infections
J(t) = J(t0) +

∫ t
t0

dxJ̊(x) are available in the literature for either stationary infection and
recovery rates or for a stationary value of the ratio k(t) = µ(t)/a(t). Here apparently
for the first time, a new accurate analytical approximation has been derived for arbitrary
and different temporal dependencies of the infection and recovery rates, which is valid
for not-too-late times after the start of the infection when the cumulative fraction J(t) is
much less than unity. Equations (12) and (15) provide analytical expressions for the rate
of new infections as a function of real time j(t) and reduced time j(τ), with the reduced
time τ =

∫ t
t0

dxa(x). Likewise, Equation (14) gives the corresponding cumulative fraction
J(t) = J(τ).

The comparison of the analytical approximation with the exact numerical solution of
the SIR equations for different illustrative examples proves the accuray of the analytical
approach. These examples include the cases of a monotonically rising ratio, as well as an
oscillating ratio as a function of reduced time. The former one is well suited to represent a
single wave of a pandemic outburst, where, during the outburst, the recovery rate becomes
greater than the infection rate due to the combined effects of nonpharmaceutical interven-
tions and/or the dedicated medication or vaccination of infected people or noninfected
persons, respectively. The case of an oscillating ratio is well suited to represent a series of
repeating epidemic outbursts over a longer time span. The future predictions or analyses
of epidemics on the basis of the SIR model equations will certainly benefit from the newly
derived analytical solutions.
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Appendix A. Cumulative Fraction for General Reduced Time Dependencies k(τ)

In the examples discussed in Sections 4 and 5, the cumulative fractions have been
calculated by integrating the respective rates of new infections. If such exact integrations
are not possible for general reduced time dependencies of the ratio k(τ), we suggest to use
the method of steepest descent [59,60]. Here, we write the cumulative fraction (13) as

J(τ ≤ τc) = η + η(1 − η)F(τ), (A1)

with
F(τ) =

∫ τ

0
dx e− f (x), f (x) =

∫ x

0
dξ k(ξ)− x. (A2)

We expand the function f (x) to the second order near its minima values at x = τm,
which are given by

k(τm) = 1. (A3)
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We emphasize that, depending on the choosen variation of the ratio k(τ), there may be
several minima, as in the case of the oscillating ratio discussed above in Section 5.2. Then,
we have

f (x) ≃ f (τm) +
1
2

k′(τm)(x − τm)
2. (A4)

For a minimum to occur, the ratio has to have an increasing reduced time variation
with k′(τm) > 0. With the approximation (A4), the integral (A2) can be evaluated in terms
of error functions, thus providing

F(τ) ≃ ∑
m

√
π

2k′(τm)
exp

(
τm −

∫ τm

0
dξ k(ξ)

)
×[

erf

(√
k′(τm)

2
(τ − τm)

)
+ erf

(√
k′(τm)

2
τm

)]
. (A5)

Consequently, the cumulative number of infections (A1) becomes Equation (14). In
principle, calculating the cumulative fraction by the method of steepest descent is essen-
tially identical to approximating the corresponding rate of new infections using a sum
of Gaussian distributions centered at their maxima. If there is only one maximum, as in
the case discussed in Section 5.1, the method of steepest descent provides a lower limit
to the cumulative fraction, because all other contributions far from the maximum are not
adequately accounted for.

Appendix B. Solution at Late Times

Appendix B.1. Limit J ≃ J∞ = 0.7

In this limit, R∞ = J∞, S∞ = 1 − J∞ = 0.3, I∞ = 0, and j(τ = ∞) = 0. For values of
k ≫ S∞ = 0.3, we approximate Equation (10) as

k(τ) ≃ −d ln I(τ)
dτ

. (A6)

Equation (A6) integrates to
I(τ ≥ τc) ≃ A1e−

∫ τ
0 dξk(ξ), (A7)

with the integration constant being A1. The approximation (A7) is in agreement with the
final value of I∞ = 0. Integrating Equation (6c) with Equation (A8) inserted then readily
provides

R(τ ≥ τc) ≃ A2 − A1e−
∫ τ

0 dξk(ξ) = A2 − I(τ > τc) (A8)

with the further integration constant being A2, which has to be set to A2 = J∞ so that

R(τ ≥ τc) ≃ J∞ − A1e−
∫ τ

0 dξk(ξ), (A9)

thereby implying that

J(τ ≥ τc) = 1 − S(τ ≥ τc) = I(τ ≥ τc) + R(τ ≥ τc) = J∞, (A10)

S(τ ≥ τc) = 1 − J∞, (A11)

j(τ ≥ τc) = S(τ ≥ τc)I(τ ≥ τc) = (1 − J∞)A1e−
∫ τ

0 dξk(ξ). (A12)

In terms of the real time in this late-time limit, we have

J(t ≥ tc) = J∞ = 0.7, (A13)

J̊(t ≥ tc) = a(t)(1 − J∞)A1e−
∫ t

t0
dxµ(x). (A14)
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Due to our approximation of the exact SIR equations, the solutions (A10) and (A12), as well
as (A13) and (A14), no longer fulfill the properties j(τ) = dJ(τ)/dτ and J̊(t) = dJ(t)/dt.
We regard this inconsistency as minor and therefore tolerable, because the exponentially
decaying rates of (A12) and (A14) of new infections contribute little to the corresponding
cumulative fractions. The constant A1 appearing in the approximate solutions of (A7), (A9),
(A12), and (A14) is determined by the continuity conditions of the rate of new infections
and the cumulative fraction at τc, with the approximate solutions for (12)–(13) existing at
small values of J ≪ 1.

Appendix B.2. Continuity Conditions

The reduced time of τc is determined by equating the early (13) and late (A10) cumu-
lative number approximations at τc to yield∫ τc

0
dx ex−

∫ x
0 dξk(ξ) =

J∞

η(1 − η)
=

0.7
η(1 − η)

. (A15)

For prescribed reduced time variations of k(τ), Equation (A15) can be reduced further.
Likewise, with the accordingly determined value of τc, the constant A1 is determined

by equating the early (12) and late (A12) rate of new infections at τc to yield

A1 =
η(1 − η)

1 − J∞
eτc . (A16)

Consequently, with (A16), the late time approximations (A7), (A9), (A11), and (A12) become

I(τ ≥ τc) =
η(1 − η)

1 − J∞
eτc−

∫ τ
0 dξk(ξ), (A17)

R(τ ≥ τc) = J∞ − η(1 − η)

1 − J∞
eτc−

∫ τ
0 dξk(ξ), (A18)

S(τ ≥ τc) = 1 − J∞, (A19)

j(τ ≥ τc) = η(1 − η)eτc−
∫ τ

0 dξk(ξ). (A20)

Appendix C. Expansion of H(τ) at Small Times

Substituting x = 1 + z into Equation (35) provides for the integral of (A15):

H(τ) =
2B/C

2C

∫ e2Cτ−1

0
dz (1 + z)

B+1
2C −1(2 + z)−B/C

=
1

2C

∫ e2Cτ−1

0
dz (1 + z)

B+1
2C −1(1 +

z
2
)−B/C. (A21)

For times that are much smaller than τ ≪ ln 2/(2C), one notices that e2Cτ − 1 ≪ 1, i.e.,
e2Cτ − 1 ≈ 2Cτ + (2Cτ)2/2 + (2Cτ)3/6 ≡ Z. Expanding the integrand for small values of
z ≤ e2Cτ − 1 ≪ 1 to the second order in z provides the approximation

H
(

τ ≪ ln 2
2C

)
≃ 1

2C

∫ Z

0
dz
[

1 +
1 − 2C

2C
z +

(
1 − 6 + B

8C
+

1
8C2

)
z2
]

≃ τ +
τ2

2
+

(1 − BC)
6

τ3 +O(Cτ)4, (A22)

which is the expression mentioned after Equation (36).
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