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Abstract: The global pandemic sparked by the emergence of SARS-CoV-2 and its variants has imposed
a substantial burden of morbidity and mortality. Central to the battle against these viral threats is
the immune response, with a spotlight on the pivotal role played by neutralizing antibodies. This
comprehensive review delves into current research, unravelling the dual functionality of neutralizing
antibodies acting as formidable barriers to viral replication and crucial facilitators of adaptive immune
memory. Beyond this dual purpose, the review illuminates the nuanced variability characterizing
neutralizing antibody responses to SARS-CoV-2. Emphasizing the dynamic nature of these responses,
the review advocates for the plausible challenges in targeted therapeutic interventions. This review
also attempts to compare various vaccination approaches and their impact on SARS-CoV-2, as well
as offer insights into various Omicron variations. Recognizing the ever-evolving viral landscape,
this exploration underscores the necessity of flexible approaches to address the diverse challenges
posed by SARS-CoV-2 and its variants, contributing valuable insights to the ongoing global efforts in
pandemic mitigation and public health safeguarding.

Keywords: neutralizing antibodies; SARS-CoV-2; immune response; vaccine-induced immunity;
immune escape mechanisms; therapeutic monoclonal antibodies; JN.1

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the source of
COVID-19. Since its initial discovery in Wuhan, China in December 2019, the epidemic
has spread throughout the world. When an infected individual coughs or sneezes, the
virus mainly spreads by respiratory droplets. It can also spread by contacting contami-
nated surfaces. The immune system’s involvement in SARS-CoV-2 infection is critical to
understanding the dynamics of COVID-19, from early identification and containment to the
formation of memory responses [1]. To contain and eliminate this novel coronavirus, the
immune system must synchronize both an innate and adaptive defense. One of the intricate
and dynamic interactions between the immune system in SARS-CoV-2 infection is the In-
nate Immune Response, which comprises the Recognition and Early Response phase, when
the innate immune system acts as the first line of defense against SARS-CoV-2 [2]. This
interaction involves a variety of immune cell types and their reactions. Pattern recognition
receptors (PRRs), particularly Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs),
set off a sequence of events that recognize components of viruses. Following their identifi-
cation of the virus, dendritic cells and macrophages produce chemokines and cytokines
that elicit inflammation and attract immune cells to the site of infection. Natural killer cells,
or NK cells, are also crucial for early antiviral defense. They locate and eliminate infected
cells by inducing apoptosis, stopping the virus from spreading [3]. NK cells function as a
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bridge between the innate and adaptive immune responses by influencing the activation of
other immune cells. Initially, B cells are exposed to viral antigens by antigen-presenting
cells, specifically dendritic cells, which activate B cells and start the adaptive immune
response against the pathogen. This link determines when a robust immune response
begins. Then, B cell-mediated immunity starts to work, which helps to target several viral
proteins, most notably the spike protein [4]. Neutralizing antibodies could suppress an
infection by preventing the virus from attaching to host cells. It also consists of helper T
cells, or CD4+ T cells, which facilitate B cells’ production of antibodies and the activation
of cytotoxic T cells [5]. They are essential to the immune response’s maintenance and
coordination. Cytotoxic T cells, or CD8+ T cells, subsequently identify and eliminate the
infected cells. They play a crucial role in controlling the virus’s reproduction and halting
its propagation throughout the host [6]. Following an injection or infection, B lymphocytes
for memory are generated. These cells “remember” the virus and respond fast when it is
encountered again [7]. Furthermore, following re-infection, memory B cells differentiate
into plasma cells that generate antibodies, leading to a more potent and quick antibody
response. Moreover, memory T cells—both CD4+ and CD8+—help to maintain protection
over the long run. They can recognize viral antigens and react more rapidly and effectively
in the event of a re-infection [8]. However, an excess of pro-inflammatory cytokines and
chemokines that trigger a cytokine storm and intensify severe COVID-19 symptoms, ulti-
mately leading to tissue destruction and organ failure, deteriorates the patient’s state. As a
result, by supporting immune response control, preventing excessive inflammation and
immunopathology, and balancing pro- and anti-inflammatory signals, T regulatory (Treg)
cells serve a crucial role in preserving the delicate balance between immunopathology and
protective immunity. New variations of SARS-CoV-2 can evade immune response, even
though they have been shown to be effective against several strains of COVID-19 and are
employed by our bodies as a defense mechanism.

As of right now, neutralization antibodies are being developed against novel strains,
like the JN.1 variation, which was discovered in August 2023. Since then, it has been
spreading rapidly and infecting a sizable portion of the population. Based on the data
currently available, JN.1 is the most effective virus in terms of evading immune response.
This is because of the antigenic diversity it has acquired from the Omicron subvariant and
the addition of the RBD (S-L455) mutation [9], which allows it to become less dependent
on ACE 2 binding in humans. S-L455 is located between the ACE 2 and RBD domain.
Additionally, three mutations in non-S proteins have been discovered in it [10], which
is concerning because it can elude immune response in the methods indicated above.
Therefore, the emphasis of this review is to clarify the difficulties therapeutic antibodies
have in neutralizing SARS-CoV-2 as well as the conceivable ways in which neutralizing
antibodies can control an illness. This review also attempts to compare various vaccination
approaches and their impact on SARS-CoV-2, as well as offer insights into various Omicron
variations [11].

2. Materials and Methods

The purpose of conducting a literature review on neutralizing antibody response
against SARS-CoV-2 was to evaluate the treatment options and the risk factors associated
with SARS-CoV-2, as well as to provide insight on the challenges of therapeutic monoclonal
antibodies in neutralizing SARS-CoV-2 response along with its mechanism of action. All
the literature that was found in the searches was critically reviewed, both in terms of
quality reporting and usefulness to policymakers and decision-makers. The literature
searches dated from 1 August 2012 to 4 July 2023 were included from different journals
and publishers. The review aims to provide a comprehensive analysis of the neutralizing
antibody response against SARS-CoV-2, thereby enhancing our understanding of COVID-
19 immunity.
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3. Role of Neutralizing Antibodies in Immune Response

Neutralizing antibodies are a class of antibodies that play a crucial role in the immune
response against viral infections, including SARS-CoV-2. These specialized antibodies are
a part of the adaptive immune system [12]. When a virus, such as SARS-CoV-2, enters
the body, the immune system recognizes it as a foreign invader and triggers an immune
response. B cells, a type of white blood cell, are activated to produce the antibodies specific
to virus through the Identification of Antigens during their first encounter; i.e., when B
cells encounter the virus or any of its constituent parts, including the spike protein, during
an infection or immunization, they become activated. They also have sites for Antigen
Binding known as B cell receptors (BCRs) on their surface. The activation mechanism
of the virus is started when these BCRs attach to antigens on its surface, after which the
virus is internalized by the process of endocytosis and breakdown of the viral antigen
is done inside the B cell. Then, helper T cells interact with the presentation of antigen
through major histocompatibility complex class II (MHC-II) molecules on the surface of B
lymphocytes that are used to present the processed viral antigens [13]. The helper T cell
is activated by this contact in addition to co-stimulatory signals. Further, cytokines are
released by activated helper T cells, thereby giving vital signals to B cells and encouraging
their activation and differentiation. A population of memory B cells and plasma cells
are thus produced because of the activated B cell’s clonal growth. A portion of the B
cells that have been stimulated undergoes differentiation into plasma cells. These cells
have been trained to produce antibodies. During an infection or vaccination, plasma cells
generate a significant number of antibodies that are particular to the viral antigens that
were encountered. Antibodies are then secreted by plasma cells into the circulation and
other body fluids. By this process the spike protein and other components of SARS-CoV-2
are selectively recognized and bound to by the antibodies. Antibodies are responsible for
neutralization, which is achieved by stopping the virus from clinging to or invading host
cells, through opsonization and through triggering the complement system [14].

Neutralizing antibodies have been used as therapeutic agents to treat COVID-19
patients, either by isolating antibodies from convalescent individuals or by generating
them through monoclonal antibody therapies [15]. Neutralizing antibodies contribute to
the immune response through targeting the pathogen, as neutralizing antibodies are highly
specialized proteins which binds to the antigen. For example, in the case of SARS-CoV-2,
the spike protein on the virus’s surface is a primary target for neutralizing antibodies.
By binding to these antigens, neutralizing antibodies directly recognize and tag the virus
for destruction [16]; they can also neutralize the infectivity of the virus by binding to
viral antigens and preventing their attachment and entry into the host cells, they recruit
other immune cells, such as macrophages and natural killer (NK) cells, through a process
called antibody-dependent cellular cytotoxicity (ADCC), and they activate complementary
system leading to the formation of membrane attack complexes which punctures the viral
membrane, causing the virus to lyse or rupture [17] (Figure 1). Neutralizing antibodies that
are responsible for controlling infections are mentioned in Table 1. Vaccination strategies
leverage this immune response by priming the body to generate neutralizing antibodies
without causing severe illness. This proactive approach helps in the establishment of
immunity from the virus, protecting vulnerable populations, and ultimately reducing the
impact of infectious diseases like COVID-19. As research continues, a deeper understanding
of neutralizing antibodies’ dynamics and interactions with different pathogens will aid
in developing more effective vaccines and treatments for various viral infections [18].
However, it is essential to understand that the neutralizing antibody response to SARS-
CoV-2 can vary between individuals and may decline over time. Factors such as the severity
of the infection, age, underlying health conditions, and the emergence of viral variants can
influence the level and potency of neutralizing antibodies [13].
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Figure 1. Diagram depicting the potential antibody neutralization mechanisms targeting SARS-
CoV-2. 

Table 1. List of neutralizing antibodies in controlling an infection. 

Factors Responsible for 
the Role of Neutralizing 

Antibodies 
Type of Neutralizing Agents Region of 

Action 
Site of Origin References 

Targeting the Pathogen Monoclonal antibodies targeting 
the spike protein of SARS-CoV-2 

Throughout 
the body 

Produced by B cells in lym-
phoid tissues and bone mar-

row 
[19] 

Virus Neutralization 
Convalescent plasma containing 
neutralizing antibodies against 

SARS-CoV-2 

Throughout 
the body 

Produced by plasma cells de-
rived from B cells 

[20] 

Immune Cell Recruitment 
Antibodies engaging in anti-

body-dependent cellular cytotox-
icity (ADCC) 

Localized to 
infected tis-

sue 

Produced by plasma cells de-
rived from B cells [21] 

Herd Immunity Vaccines inducing neutralizing 
antibodies in a population 

Population-
wide 

Not Applicable [22] 

Complement Activation 
Antibodies triggering the com-

plement system to lyse virus par-
ticles 

Throughout 
the body 

Produced by plasma cells de-
rived from B cells [23] 

Memory B Cells and Long-
Term Immunity 

Vaccines inducing memory B 
cells to produce neutralizing an-

tibodies 

Throughout 
the body 

Produced by memory B cells 
derived from B cells [24] 

3.1. Prevalence and Persistence of Neutralizing Antibodies 
The prevalence and persistence of neutralizing antibodies can vary depending on 

several factors, including the pathogen, the individual’s immune response, and the dura-
tion of follow-up. In the case of viral infections, including SARS-CoV-2, neutralizing anti-
bodies are typically detectable after an individual has been infected or vaccinated. The 
prevalence of neutralizing antibodies can be high during the acute phase of the infection 

Figure 1. Diagram depicting the potential antibody neutralization mechanisms targeting SARS-CoV-2.

Table 1. List of neutralizing antibodies in controlling an infection.

Factors Responsible for the Role of
Neutralizing Antibodies

Type of Neutralizing
Agents Region of Action Site of Origin References

Targeting the Pathogen
Monoclonal antibodies

targeting the spike
protein of SARS-CoV-2

Throughout the body
Produced by B cells in
lymphoid tissues and

bone marrow
[19]

Virus Neutralization

Convalescent plasma
containing neutralizing

antibodies against
SARS-CoV-2

Throughout the body
Produced by plasma

cells derived from
B cells

[20]

Immune Cell Recruitment

Antibodies engaging in
antibody-dependent
cellular cytotoxicity

(ADCC)

Localized to infected
tissue

Produced by plasma
cells derived from

B cells
[21]

Herd Immunity
Vaccines inducing

neutralizing antibodies
in a population

Population-wide Not Applicable [22]

Complement Activation
Antibodies triggering

the complement system
to lyse virus particles

Throughout the body
Produced by plasma

cells derived from
B cells

[23]

Memory B Cells and
Long-Term Immunity

Vaccines inducing
memory B cells to

produce
neutralizing antibodies

Throughout the body
Produced by memory B

cells derived from
B cells

[24]

3.1. Prevalence and Persistence of Neutralizing Antibodies

The prevalence and persistence of neutralizing antibodies can vary depending on
several factors, including the pathogen, the individual’s immune response, and the duration
of follow-up. In the case of viral infections, including SARS-CoV-2, neutralizing antibodies
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are typically detectable after an individual has been infected or vaccinated. The prevalence
of neutralizing antibodies can be high during the acute phase of the infection or shortly after
vaccination. However, the levels of these antibodies may decline over time. Studies have
shown that neutralizing antibodies against SARS-CoV-2 can persist for several months,
providing some level of protection against reinfection. Vaccination plays a crucial role in
inducing neutralizing antibodies. In case of many viral vaccines, including measles, mumps,
and rubella (MMR) and hepatitis B vaccines, neutralizing antibodies can persist for years
and even decades, providing long-lasting protection against the respective infections [25],
antibodies can also be generated in response to bacterial infections. For example, tetanus
and diphtheria vaccines induce the production of neutralizing antibodies against the
toxins produced by these bacteria. The variation in the response of neutralizing antibodies
in this case is because Clostridium tetani is a bacterial infection which produces stable
toxins and does not itself undergo any frequent genetic changes, while SARS-CoV-2, a
new coronavirus, can evade the immune response and undergoes genetic mutations over
time. In immunocompromised individuals, the prevalence and persistence of neutralizing
antibodies is affected. These individuals have a reduced ability to produce and maintain a
robust immune response, leading to lower levels of neutralizing antibodies and potentially
increased susceptibility to infections [26]. Prevalence and persistence of neutralizing
antibodies can influence the risk of reinfection and the impact of viral variants. Studies
have shown that individuals with higher levels of neutralizing antibodies are less likely to
experience severe disease upon reinfection. However, the duration of protection provided
by neutralizing antibodies may not be uniform for all infections (Figure 2). In some cases,
waning levels of neutralizing antibodies over time may lead to a higher susceptibility
to reinfection, particularly with new variants of the virus that might partially evade the
immune response [27]. Some infections, such as influenza (flu), are caused by viruses
that undergo frequent antigenic changes, leading to seasonal outbreaks. The prevalence
and persistence of neutralizing antibodies against influenza viruses can vary between
different strains and may not always confer complete protection. As a result, seasonal flu
vaccines are updated regularly to match circulating strains and to stimulate the production
of strain-specific neutralizing antibodies [28]. In chronic viral infections, such as HIV
and hepatitis C, neutralizing antibodies may be generated but the virus can evade the
immune response and persist in the body. These viruses have evolved mechanisms to
evade neutralization by mutating their surface proteins, thus making it challenging to
maintain the persistence of neutralizing antibody responses [29]. The timing of vaccination
can influence the persistence of neutralizing antibodies. Some vaccines may require booster
doses to maintain protective levels of neutralizing antibodies over an extended period. For
example, tetanus and diphtheria vaccines requires booster shots after every ten years to
ensure sustained protection [30]. Neutralizing antibodies can vary with age. In some cases,
older individuals may experience reduced immune responses and a decline in neutralizing
antibody production, which may affect the effectiveness of certain vaccines. It is essential
to note that the prevalence and persistence of neutralizing antibodies are dynamic and may
change over time. Immune responses can be influenced by various factors including age,
health status, and the presence of coexisting medical conditions.
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3.2. Effectiveness of Vaccination on Neutralizing Antibodies

Effectiveness of vaccination on neutralizing antibody is a critical aspect of immune
response generated by vaccination. By the introduction of harmless form of the virus or
its components (e.g., viral proteins), vaccines prime the immune system to recognize the
virus as a threat and mount a targeted response [31]. Here is how vaccination improves
the effectiveness of neutralizing antibodies: (a) Production of Neutralizing Antibodies:
Vaccination prompts the immune system, specifically B cells, to produce neutralizing
antibodies against the virus’s specific antigens. For example, in the case of COVID-19
mRNA vaccines (Pfizer-BioNTech, Moderna), the vaccines contain genetic instructions to
produce the spike protein found on the surface of the SARS-CoV-2 virus. The immune
system recognizes the spike protein as foreign and start producing neutralizing antibodies
against it [32]. (b) Increase in Neutralizing Antibody Levels: Vaccination leads to an
increase in the levels of neutralizing antibodies in the bloodstream. Although vaccination
aids the functioning of neutralizing antibodies, it may not be helpful for all, hence requiring
us to observe every aspect possible. Some of the aspects are mentioned in Table 2.



COVID 2024, 4 1401

Table 2. Comparison of COVID-19 vaccination strategies and their effects.

Vaccination
Aspect

Data for Two-Dose
mRNA Vaccination

Data for Booster
Vaccination

Data for Bivalent Booster
Strategies and Omicron

Variant
References

Dosage
Two doses of

mRNA-based COVID-19
vaccine

The additional dose
administered after the

primary
vaccination series

Two different COVID-19
vaccines administered in

sequence or
simultaneously

[33–36]

Examples Pfizer-BioNTech
(Comirnaty), Moderna

Pfizer-BioNTech or
Moderna as a
booster dose

Examples:
Pfizer-BioNTech (mRNA) +
AstraZeneca (viral vector)

[33,37–39]

Drawbacks Requires ultra-cold
storage (Moderna)

Potential rare adverse
effects with booster

May increase logistical
challenges and

vaccine hesitancy
[40–43]

Site of action
Produces immunity in

lymph nodes and tissues
near the injection site

Enhances immunity in
lymphoid tissues and

generates a
systemic response

Both vaccines may elicit
distinct immune responses

in different tissues
[43–46]

Effect on different age
groups

Efficacious across a wide
age range with varying

immune response

Reinforces protection in
all age groups, especially

older individuals

Limited data on bivalent
strategies’ effect on
different age groups

[47–50]

Side effects
Common side effects:

Pain at the injection site,
fatigue, mild fever

Side effects similar to the
primary series but
generally milder

Side effects may vary
depending on the

combination of vaccines
[51–54]

Effect on
immunocompromised

patients

May have reduced
immune response, may

benefit from booster dose

Immunocompromised
patients may gain

additional protection
from booster

Limited data on the effect
of bivalent strategies in
immunocompromised

patient

[55–58]

Effectiveness against
virus strain

High efficacy against the
original virus and

some variants

Enhances protection
against variants,

providing
broader coverage

Effectiveness against
Omicron and other

emerging variants may
vary depending on the

combination and
vaccine efficacy

[59–63]

4. Omicron Variant and Immune Escape

The emergence of the SARS-CoV-2 Omicron variant has raised significant concerns due
to its high number of mutations. The spike protein is a key target for neutralizing antibodies,
and the substantial mutations in this region have led to questions about the variant’s
potential to evade the immune response [64]. The rapid spread of the Omicron variant
has raised concerns about its ability to evade immune response. The Omicron variant,
also known as B.1.1.529, was first detected in November 2021 and since then has spread to
numerous countries [65]. This variant’s spike protein has more than 30 mutations, including
the key mutation in receptor-binding domain (RBD) which may influence its interaction
with the host’s immune system [66]. Several mutations in RBD and other regions of the
spike protein are thought to influence the variant’s ability to partially evade neutralizing
antibodies produced in response to prior infections or vaccinations [67]. Studies have
suggested that certain monoclonal antibodies and convalescent plasma may have reduced
effectiveness against the Omicron due to certain mutations on the spike protein on which
monoclonal antibodies bind for virus neutralization. Additionally, breakthrough infections
in fully vaccinated individuals have been reported, indicating partial immune escape
from existing vaccines [68]. Initial reports on the Omicron variant’s impact on vaccine-
induced immunity have been concerning. Despite this, vaccines have still demonstrated
a degree of protection against the disease, including the situation of hospitalization and
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death caused by the Omicron variant. Vaccine developers have begun to modify existing
vaccines to better match the Omicron variant’s spike protein. Early data from these adapted
vaccines have shown improved neutralizing activity against the variant, offering hope for
maintaining protection against emerging variants [69]. Further information on omicron
variants along with their site of action is summarized in Table 3.

Table 3. Omicron variant overview: Mechanism of immune escape, challenges, immune response,
site of action, and drawbacks.

Types of
Omicron
Variant

Mechanism of Immune
Escape Possible Challenges Immune

Response Site of Action Drawbacks References

B.1.1.529

Multiple spike protein
mutations, especially in
the RBD and N-terminal
domain (NTD). These
mutations may alter

critical epitopes,
reducing recognition by
neutralizing antibodies.

1. Reduced efficacy of
existing vaccines in
preventing infection
and transmission.
2. Increased risk of
breakthrough infections
in previously infected
and vaccinated
individuals.
3. Challenges in
developing effective
treatments targeting
Omicron’s evading
mechanisms.

-Reduced
neutralizing
antibody
response against
the Omicron
variant.
-T cell response
may still provide
some level of
protection.

-Spike protein’s
RBD and NTD
regions.

-Potential for
vaccine
breakthrough
infections.
-Uncertainty
about long-term
immunity.

[69–71]

AY.4.2

Contains additional
spike protein mutations,

distinct from the
original Omicron
variant (B.1.1.529).

These mutations may
contribute to enhanced
immune evasion and

infectivity.

1. Challenges in
developing
variant-specific vaccines
due to unique
mutations in AY.4.2.
2. Potential for more
severe infections and
increased transmission,
requiring heightened
public health measures.

-Impact on
neutralizing
antibodies and T
cell response is
yet to be fully
understood.

-Spike protein’s
RBD and NTD
regions.

-Potential for
global vaccine
ineffectiveness.
-Challenges in
controlling
spread.

[72–74]

Other
Sub-Lineages

Different sub-lineages
of the Omicron variant

may arise due to
continuous viral
evolution. Each
sub-lineage may
possess distinct

mutations affecting
immune escape

mechanisms.

1. Difficulties in
tracking and
understanding the
potential impact of
evolving sub-lineages
on immune escape and
vaccine efficacy.
2. Need for ongoing
surveillance and
research to identify
emerging sub-lineages
and their characteristics.

-Immune
response to
different
sub-lineages may
vary.

-Spike protein’s
RBD and NTD
regions.

-Challenges in
predicting
immune
responses to
emerging
sub-lineages.

[43,75,76]

New
Mutations

and Variants

The Omicron variant
continues to undergo

genetic changes, leading
to the emergence of
novel mutations and

variants. These genetic
variations may further

enhance immune escape
mechanisms.

1. Challenges in
predicting the evolution
of Omicron and its
potential impact on
global health.
2. Urgent need for
real-time monitoring
and research to respond
effectively to emerging
variants.

-Immune
response may
need to be
constantly
updated with
evolving variants.

-Spike protein’s
RBD and NTD
regions.

-Continuous
adaptation of
vaccines and
therapeutics.

[77–79]

Unknown
Implications

The full extent of the
Omicron variant’s

immune escape
mechanisms is still

being studied.
Discoveries and insights
into viral evolution may

reveal further
challenges for
neutralization

strategies.

1. Uncertainties
regarding the long-term
impact of the Omicron
variant on global
pandemic control.
2. Need for
international
collaboration and
data-sharing to address
emerging concerns.

-Ongoing
research is
required to
understand
immune response
against new
variants.

-Spike protein’s
RBD and NTD
regions.

-Difficulties in
predicting future
immune escape
mechanisms.

[43,80]
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5. Therapeutic Monoclonal Antibodies and Neutralization

Development of therapeutic monoclonal antibodies targeting the viral spike protein’s
RBD, and other critical regions has offered a promising avenue for treatment. These mono-
clonal antibodies aim to neutralize the virus and limit its replication, thereby mitigating
the severity of the disease and preventing hospitalizations [81]. Therapeutic monoclonal
antibodies neutralize SARS-CoV-2 through various mechanisms. They typically target
the RBD, which is essential for viral entry into host cells. Casirivimab and Imdevimab
form a cocktail that binds to the RBD, blocking viral attachment and entry [82]. Similarly,
Sotrovimab targets a conserved epitope on the RBD, hindering viral entry and replica-
tion. REGN-COV2, a combination of casirivimab and imdevimab, and tixagevimab with
cilgavimab each target non-overlapping epitopes on the RBD to reduce the likelihood of
escape mutants. Therapeutic monoclonal antibodies not only directly neutralize the virus
but also trigger an immune response (Figure 3). The spike protein’s RBD is the potential
site of action for a variety of therapeutic monoclonal antibodies. By engaging the immune
system, these antibodies aid in viral clearance and limits viral replication [83] (please refer
Table 4 for more information). The immune response may include the activation of natural
killer (NK) cells, phagocytes, and other components of the immune system to mount an
antiviral defense. The primary site of action for most therapeutic monoclonal antibodies
is the RBD. However, the virus’s continuous evolution and emergence of new variants
pose challenges in targeting specific epitopes effectively [84]. Variants like B.1.1.529 have
mutations in the RBD that may reduce the binding efficacy of certain monoclonal antibod-
ies, leading to potential breakthrough infections. Monoclonal antibody production entails
advanced biotechnological procedures, commonly employing mammalian cell cultures.
These procedures demand a significant number of resources and necessitate strict quality
control measures to guarantee the uniformity, purity, and effectiveness of the end product.
Expanding manufacturing to satisfy worldwide demand is a difficult task. Constructing
and running the necessary infrastructure for mAb production is costly, and the process
of developing these manufacturing capabilities can cause significant delays in making
them widely accessible. Supply chain constraints arise due to the intricate nature of the
mAb supply chain, spanning from the procurement of raw ingredients to the ultimate
distribution, leading to potential shortages. This is particularly troublesome in low- and
middle-income nations, where access to these medicines may be limited [85]. The pro-
duction expenses contribute to the high price of mAbs, making them less accessible to
broad portions of the worldwide population. Health systems in many regions of the world
may struggle to fund these therapies, limiting their distribution and usage. Administra-
tion of mAbs can induce immunological reactions, ranging from moderate symptoms like
fever and chills to severe anaphylaxis, a life-threatening allergic reaction. These potential
dangers require careful observation before and after the administration of the treatment,
which can make it more difficult to carry out in environments without sufficient medical
oversight. In order to reduce these risks, patients frequently need to take pre-medications
(such as antihistamines and corticosteroids) and follow precise infusion protocols. This can
increase the overall burden and complexity of the treatment [86]. Viruses, especially RNA
viruses like SARS-CoV-2, mutate rapidly. Variants with mutations in the areas targeted
by mAbs can develop, potentially lowering the efficiency of these antibodies. This needs
continual surveillance and the creation of novel mAbs to keep pace with viral evolution.
The necessity for variant-specific treatments means that mAbs may have a limited useful
lifespan, requiring continual research and development to meet new strains. This dynamic
further complicates the manufacturing and distribution processes, as fresh formulas must
be regularly developed and disseminated.
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Figure 3. (A,B) When an antigen enters the human body, it elicits an immune response after which
plasma cells are formed and the antigen is memorized. This process generally takes time and can be
fastened with the help of therapeutic antibodies.

Table 4. List of therapeutic monoclonal antibodies, depicting possible challenges in neutralizing
SARS-CoV-2 response along with its mechanism of action.

Therapeutic
Monoclonal

Antibody
Mechanism of Action Immune Response Dosage Possible Challenges Advantages References

Casirivimab and
Imdevimab

Neutralization of
SARS-CoV-2 by

binding to the spike
protein’s RBD,

blocking viral entry
into host cells.

Elicits an immune
response by targeting

the virus and
enhancing natural
immune defenses.

Administered
together via IV

infusion.

1. Variants with
mutations in the RBD
may reduce binding

efficacy.
2. Potential for viral

escape from
antibody-mediated

immunity.

Effective early in mild
to moderate COVID-19

cases to prevent
disease progression.

[87–90]

Sotrovimab

Binds to a conserved
epitope in the spike

protein’s RBD,
preventing viral

attachment and entry
into host cells.

Stimulates an immune
response that aids in
viral clearance and

limits viral replication.

Administered via IV
infusion.

1. Potential for
reduced efficacy
against certain

variants.
2. Viral escape from
antibody-mediated

immunity.

Effective against
certain variants, useful

for early COVID-19
treatment.

[91–94]

REGN-COV2
(Casirivimab +

Imdevimab)

Targets two
non-overlapping

regions of the spike
protein’s RBD,
reducing the

likelihood of escape
mutants.

Triggers an immune
response by targeting

the virus and engaging
natural immune

defenses.

Administered
together via IV

infusion.

1. Challenges in
treating variants with
mutations outside the

targeted regions.
2. Possibility of

emerging resistant
variants.

Effective early in mild
to moderate COVID-19

cases to prevent
disease progression.

[95–98]

Bamlanivimab and
Etesevimab

Neutralization of
SARS-CoV-2 by

binding to the spike
protein, inhibiting

viral attachment and
entry into host cells.

Boosts the immune
response, aiding in
viral clearance and
reducing viral load.

IV infusion with
loading and

maintenance doses.

1. Reduced efficacy
against certain
variants with

mutations in the RBD.
2. Potential for viral

escape from
antibody-mediated

immunity.

Used for early
treatment in

individuals with mild
to moderate COVID-19

and risk factors.

[99–102]



COVID 2024, 4 1405

Table 4. Cont.

Therapeutic
Monoclonal

Antibody
Mechanism of Action Immune Response Dosage Possible Challenges Advantages References

Tixagevimab and
Cilgavimab

Targets
non-overlapping

epitopes in the spike
protein’s RBD,

reducing the risk of
escape mutants.

Triggers an immune
response by targeting

the virus and engaging
natural immune

defenses.

IV infusion at
regular intervals.

1. Possibility of
reduced efficacy

against certain RBD
variants.

2. Risk of viral escape
from

antibody-mediated
immunity.

Effective against
certain variants, used
for early COVID-19

treatment.

[103–106]

Regdanvimab

Blocks viral
attachment and entry

by binding to the spike
protein’s RBD and

inhibiting its
interaction with ACE2

receptors.

Enhances natural
immune responses and

viral clearance.

In subcutaneous
injection, the dosing

frequency varies
based on the
indication.

1. Reduced efficacy
against certain viral
variants with RBD

mutations.
2. Potential for viral

escape from
antibody-mediated

immunity.

Offers an option for
early treatment of

COVID-19 in high-risk
individuals.

[32,107–
109]

Etesevimab

Binds to the spike
protein’s RBD,
inhibiting viral

attachment and entry
into host cells.

Stimulates an immune
response that aids in
viral clearance and

reduces viral
replication.

Administered via IV
infusion.

1. Potential for
reduced efficacy
against certain

variants.
2. Viral escape from
antibody-mediated

immunity.

Used in combination
therapy for early

COVID-19 treatment.
[110–113]

Regkirona
(Sotrovimab)

Binds to the spike
protein’s RBD,

preventing viral
attachment and entry

into host cells.

Stimulates an immune
response that aids in
viral clearance and

reduces viral
replication.

Variable dosing
based on indication,
usually given as an

IV infusion.

1. Potential for
reduced efficacy
against certain

variants.
2. Risk of viral escape

from
antibody-mediated

immunity.

Useful for early
COVID-19 treatment,

effective against
certain variants.

[114–116]

6. Strategies for Adaptive Pandemic Control

Adaptive pandemic control strategies for handling COVID-19 and getting ready for
future pandemics depend on adaptive pandemic control plans. These techniques call for a
flexible, evidence-based strategy that one can change depending on the situation. Early
detection and surveillance constitute the fundamental components. Early discovery of new
diseases depends on strong worldwide surveillance systems being established. Networks
should combine data from digital platforms, labs, and hospitals to track illness patterns
instantly. Furthermore, thorough genome sequencing is essential to find and monitor viral
mutations and variations, enabling quick changes in control strategies. Also, rapid response
and containment techniques are quite important. Developing and improving methods
for the quick isolation of sick people and quarantining exposed people will greatly help
to stop the virus from spreading. This calls for building surge capacity for quarantine
facilities and guaranteeing compliance via social support systems and legal systems [117].
Quickly identifying and managing epidemics depends on improving contact tracing ca-
pacity, through conventional techniques as well as digital tools including mobile apps. By
separating instances before they spread to others, good contact tracing helps to stop general
transmission. Using localized data, adaptive public health measures entail conducting
focused actions. For instance, selective application of regional lockdowns, mask require-
ments, and gathering restrictions help to balance limiting the transmission of the infection
by reducing social effects. Real-time data constantly evaluating transmission hazards lets
public health policies be dynamically changed. By helping to predict possible epidemics,
predictive models allow proactive scaling-up of treatments to prevent catastrophes [118].
Keystones of pandemic control are vaccination development and distribution. Investing in
fast-developing platforms for vaccines, such mRNA technology, helps to create vaccines for
new diseases quickly. Establishing pre-existing vaccination candidates that can be rapidly
altered for new challenges is absolutely vital. Vaccine equitable distribution under coordi-
nated international initiatives such as COVAX is essential to stop the virus from spreading
and evolving among unprotected people, therefore undermining world attempts to manage
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the epidemic. Public compliance with health standards depends on public communication
and engagement [119]. Maintaining open and honest communication fosters confidence
and promotes following of policies. Giving the public correct and timely information on
hazards, policies, and the justification for decisions allows them to appreciate the signifi-
cance of the actions. Especially in diverse communities, using behavioral science techniques
such nudges and culturally customized messaging helps to increase compliance even more.
Health system resilience is improving healthcare systems’ ability to manage major epidemic
outbreaks. This includes increasing ICU beds, ventilator availability, and staffing of health-
care workers through pre-emptive investments and planning [120]. Creating integrated
care networks that links hospital systems, primary care, and public health guarantees
coordinated and effective responses [121]. Using digital health tools and telemedicine can
help to preserve continuity of treatment even in cases of strained healthcare systems. The
emphasis of research and development should be on building structures for quick mobiliza-
tion of ideas. This helps pathogen research, pharmaceutical development, and intervention
testing right before an epidemic start. Crucially are adaptive clinical studies capable of
pivoting fast to assess newly developed treatments as they become accessible. Compre-
hensive solutions addressing all facets of pandemic control depend on multidisciplinary
collaboration among virologists, epidemiologists, social scientists, and other experts [122].
Pandemic readiness and response depend critically on international cooperation. By means
of institutions such as the World Health Organization (WHO), strengthening worldwide
coordination guarantees that reactions are coordinated internationally. By use of data, tools,
and best practices, sharing helps present a cohesive front against the epidemic. Ensuring a
worldwide coordinated response depends on negotiations and application of pandemic
preparation agreements establishing criteria for openness, resource sharing, and mutual aid
during crises. Managing the difficult issues that develop during pandemics requires both
ethical and legal frameworks. Clearly defining legislative frameworks helps to establish
the extent of emergency authority including resource allocation, mandated vaccines, and
lockdowns. These systems ought to reconcile public health requirements with personal lib-
erties. Especially with relation to resource allocation, treatment prioritizing, and balancing
individual freedoms with community health, developing ethical rules for decision-making
during pandemics is also vital [123]. Finally, pandemic readiness depends mostly on
education and training. Improving readiness is achieved by means of bettering public
health campaigns, training courses for public health officials, healthcare professionals, and
the general population. Frequent drills, simulations, and ongoing education on newly
developing infectious diseases guarantee that every participant is ready to react. Including
communities in pandemic preparedness planning and response initiatives guarantees that
policies are culturally relevant and generally accepted, therefore strengthening the public
health response by means of more resilient and cooperative approach.

7. Conclusions

SARS-CoV-2, a formidable adversary since its emergence on 12 December 2019, has led
to an ongoing global challenge. Neutralizing antibodies, crucial in curtailing viral efficiency,
face new challenges with emerging variants capable of modulating their receptor-binding
domains (RBD). This adaptability threatens the efficacy of existing neutralizing antibodies,
potentially necessitating additional booster doses for robust viral detection. As we confront
the evolving virus, our response must also evolve. It is imperative to explore innovative
strategies to effectively manage the mutating strains. Current therapeutic monoclonal
antibodies offer promise, but their potential breakthrough hinges on a strategic synthesis
of their characteristics. Combining the strengths of available therapeutic monoclonal
antibodies into a unified approach could yield a more potent and versatile solution. This
underscores the importance of ongoing research and collaborative efforts to navigate the
intricate landscape of viral evolution, ensuring that our strategies for combating SARS-CoV-
2 align with the dynamic challenges posed by its mutating strains. In the face of uncertainty,
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adaptability and innovation are key to staying ahead in the ongoing battle against this
resilient virus.
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