
����������
�������

Citation: Tene, M.; Adhikari, E.;

Cobo, N.; Jordan, K.W.; Matny, O.;

del Blanco, I.A.; Roter, J.; Ezrati, S.;

Govta, L.; Manisterski, J.; et al. GWAS

for Stripe Rust Resistance in Wild

Emmer Wheat (Triticum dicoccoides)

Population: Obstacles and Solutions.

Crops 2022, 2, 42–61. https://

doi.org/10.3390/crops2010005

Academic Editor: Il-Ryong Choi

Received: 30 December 2021

Accepted: 25 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

GWAS for Stripe Rust Resistance in Wild Emmer Wheat
(Triticum dicoccoides) Population: Obstacles and Solutions
May Tene 1, Elina Adhikari 2,3, Nicolas Cobo 4,5 , Katherine W. Jordan 2,6 , Oadi Matny 7 , Isabel Alicia del
Blanco 4, Jonathan Roter 1, Smadar Ezrati 1, Liubov Govta 8 , Jacob Manisterski 1, Pnina Ben Yehuda 1,
Xianming Chen 9,10, Brian Steffenson 7 , Eduard Akhunov 2 and Hanan Sela 1,8,*

1 Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv 6139001, Israel; tene.may@gmail.com (M.T.);
yoniroter@gmail.com (J.R.); ezrati@tauex.tau.ac.il (S.E.); jacobm@post.tau.ac.il (J.M.);
pninaby@tauex.tau.ac.il (P.B.Y.)

2 Department of Plant Pathology, Kansas State University, Manhattan, KS 66502, USA; elina1@ksu.edu (E.A.);
katherine.jordan@usda.gov (K.W.J.); eakhunov@ksu.edu (E.A.)

3 Department of Horticulture, University of Wisconsin, Madison, WI 54235, USA
4 Department of Plant Sciences, UC Davis, Davis, CA 95616, USA; nicolas.cobo@ufrontera.cl (N.C.);

iadelblanco@ucdavis.edu (I.A.d.B.)
5 Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco 4811230, Chile
6 USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
7 Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA;

onmatny@umn.edu (O.M.); bsteffen@umn.edu (B.S.)
8 Institute of Evolution, University of Haifa, Haifa 3498838, Israel; liubov@evo.haifa.ac.il
9 US Department of Agriculture Agricultural Research Service, Pullman, WA 99164, USA; xianming@wsu.edu
10 Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
* Correspondence: hans@evo.haifa.ac.il

Abstract: Stripe rust is a devastating disease in wheat that causes substantial yield loss around the
world. The most effective strategy for mitigating yield loss is to develop resistant cultivars. The wild
relatives of wheat are good sources of resistance to fungal pathogens. Here, we used a genome-wide
association study (GWAS) to identify loci associated with stripe rust (causal agent: Puccinia striiformis
f. sp. tritici) resistance in wild emmer (Triticum dicoccoides) at the seedling stage, in the greenhouse,
and at the adult plant stage, in the field. We found that the two major loci contributing to resistance
in our wild emmer panel were the previously cloned seedling-stage resistance gene, Yr15, and the
adult-plant-stage resistance gene, Yr36. Nevertheless, we detected 12 additional minor QTLs that
additionally contribute to adult plant resistance and mapped a locus on chromosome 3AS that
tentatively harbors a novel seedling resistance gene. The genotype and phenotype data generated
for the wild emmer panel, together with the detected SNPs associated with resistance to stripe rust,
provide a valuable resource for disease-resistance breeding in durum and bread wheat.

Keywords: GWAS; crop wild relatives; stripe rust; wheat; wild emmer; Triticum dicoccoides

1. Introduction

Stripe (yellow) rust is a devastating disease in wheat that is caused by the biotrophic
fungus Puccinia striiformis f. sp. tritici (Pst). It is ranked fourth among the biotic stress
factors in terms of its negative impact on yield, accounting for 2% of the annual global
wheat yield losses [1]. In sub-Saharan Africa, the estimated impact of stripe rust on
yield is 5%, while in western Europe, the disease results in a 6% yield loss [1], with the
loss in an individual field being as high as 50% [2]. Pst is a highly diverse pathogen
with new virulent races (pathotypes) appearing every year [3]. Because Pst spores are
airborne and travel long distances, the pathogen can rapidly cause large-scale epidemics [2].
Currently, there are 83 designated genes and 67 provisionally designated genes for stripe
rust resistance. Moreover, 61 quantitative trait loci (QTLs) have also been described for
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stripe rust resistance in wheat or its wild relatives [4–6]. However, many of the known
resistance genes are no longer effective, at least in some parts of the world, due to the
emergence of Pst races that are virulent on the resistance genes used for developing widely
grown commercial cultivars [3]. There are two main types of resistance to stripe rust:
(i) all-stage resistance (ASR), which is usually controlled by one major R gene conferring
a strong resistance response that is usually race-specific, and (ii) adult plant resistance
(APR), which is effective only at the adult plant stage, is under polygenic control and is
less race-specific [5]. Eighteen designated Yr genes confer APR, of which three have been
cloned (Yr18, Yr36, and Yr46) [7–9]. Each of the cloned genes belongs to a different protein
family. Although APR provides only partial resistance against rusts, it is considered more
durable than resistance conferred by ASR, but it is more complicated to use than ASR in
breeding programs, due to its polygenic nature.

Wild emmer wheat (Triticum dicoccoides; WEW) is the progenitor of hexaploid bread
wheat (T. aestivum) and tetraploid durum wheat (T. durum), which are the most widely
grown wheat crops in the world. WEW is indigenous to the Fertile Crescent, where
its population is divided into a northern population (Turkey, northern Syria, Iraq, and
Iran) and a southern population (Israel, the Palestinian Territories, Jordan, Lebanon, and
southern Syria). Previous studies have shown that WEW was domesticated from the
northern population, but there are some genetic components from the southern popu-
lation [10–13]. The southern population is more diverse and is probably the origin of
speciation of WEW [13–15]. At the beginning of the 20th century, WEW was proposed
as a valuable genetic source for breeding by Aaronsohn (1910) [16], but the progress of
transferring traits into domesticated wheat was accelerated only recently with the genome
sequencing of WEW, T. durum, and T. aestivum [17–19]. Nevertheless, several stripe rust
resistance genes were transferred from WEW into domesticated wheat, including Yr36,
Yr15, Yr35, Yr-SM139, and additional ASR and APR genes that are described in Elkot et al.
(2020) [9,20–23].

The genes Yr15 and Yr36 have been cloned. Yr15 encodes a tandem kinase–pseudokinase
protein (WTK1) that is located on the short arm of chromosome 1B and confers broad-
spectrum ASR. Only a few very rare Pst races are virulent on Yr15 [20]. Yr15 is present in
16% of the WEW accessions from Israel, mainly from the northern part of the country, and is
absent in the Fertile Crescent’s northern WEW population [24]. The protein structure of the
APR gene encoded by Yr36 includes a kinase and a START lipid-binding domain (WKS1).
WKS1 was shown to reduce the ability of the thylakoid-associated ascorbate peroxidase to
detoxify reactive oxygen species [25]. Yr36 is located on the short arm of chromosome 6B
and is present in 67% of WEW accessions from Israel but is absent from the Fertile Crescent
northern WEW population [26].

Genome-wide association studies (GWAS) have been extensively applied to culti-
vated crops but are far less common in crop wild relatives (CWRs). GWAS in CWRs are
very challenging, due to the low levels of LD, complex population structure, and high
overall background diversity [27]. To the best of our knowledge, only one GWAS study
was conducted in WEW and employed the 9k SNP platform [28]. This study detected
ASR-associated loci for stripe rust resistance. In cultivated wheat, many GWAS have
been completed, yielding more than 80 QTLs that can be used in marker-assisted selec-
tion [5,29–33]. Most of the GWAS for adult plant stripe rust resistance in wheat used
single-locus association algorithms that may not capture the multi-locus complexity of agro-
nomic traits. However, in recent years, more GWAS to identify stripe rust APR have been
using multi-locus analysis models such as FramCPU, BLINK, MMLM, and mrMLM [33–39].

In the current study, we aimed to elucidate the genetic basis of APR and ASR against
stripe rust in WEW from Israel by using a GWAS, which was shown to be a powerful
approach for mapping resistance genes in wheat and its wild relatives [40]. The advantage
of using WEW for GWAS is the fast rate of linkage disequilibrium (LD) decay in the
populations of wheat wild relatives, which increases the resolution of trait mapping [28]. We
used complexity-reduced whole-genome sequencing to characterize the genetic diversity
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in the WEW panel. The goals of this study were to explore the utility of WEW from Israel
as the source of novel QTLs associated with ASR and APR to Pst.

2. Materials and Methods
2.1. Plant Material

A diversity panel of 480 WEW accessions was selected from over 2500 accessions
housed at the Harold and Adele Lieberman Germplasm Bank, in the Institute for Cereal
Crops Research (ICCR) at Tel Aviv University. These accessions were collected from 123 sites
across Israel. Selection of the accessions was performed to maximize the geographic
distribution of the species and to minimize the number of accessions originating from
the same collection site. No more than eight accessions were from the same collection
site. Plant passport data and the geographic distribution of accessions in the collection
are presented in Table S1 and Figure S1, respectively. For the GWAS of APR, we used a
subset of 188 accessions that were susceptible to race PST5006 in the seedling resistance
tests (see below).

2.2. Field Trials

Field trials to assess APR to Pst were conducted in Israel at two locations, Zafriyya
in central Israel and Barkai in northern Israel, during the cropping seasons of 2016, 2017,
and 2018. In the USA, field trials were conducted at the University of California’s Davis
Experimental Field Station, during the cropping seasons of 2016 and 2017. In each of the
trials, we planted 1–2 replicates (Table 1). Each replicate consisted of all accessions, in a
completely randomized design. In total, the trial was replicated 11 times in eight field–year
combinations. Seeds of the test accessions were planted in 0.3 m rows with 0.5 m spacing
between the rows. Susceptible spreaders, cv. Falchetto in Israel and cv. D6301 in the Davis
Experimental Field Station, were planted every 10 rows and around the field to promote
stripe rust epidemics. The fields in Israel were artificially inoculated with PST5006 spores
mixed with talc. Inoculation was performed every week from mid-January to mid-February.
Although natural stripe rust infections occur regularly in California, we inoculated the
susceptible spreader with a mixture of Pst spores collected at the Davis field station during
the previous season to ensure strong disease pressure. We used the 0–9 infection-type (IT)
scale to assess plant reactions to Pst, where 0 indicates a highly resistant phenotype (without
visible symptoms or signs) and 9 indicates a highly susceptible phenotype, as described by
Line and Qayoum (1992) [41]. Photographed scales were used as a reference [42]. Infection
types (IT) on the test accessions were scored when the spreader plants were at a disease
severity of 70%. Rust scoring was performed twice, approximately 2 weeks apart. Feekes
growth-stage estimations were taken at the same time as the stripe rust readings [43].

Table 1. Field experiments: location, year, and the number of replicates.

Field Location Field Name 2016 2017 2018 Geographical
Location DD.DD

Barkai, ISR BR 2 rep 2 rep 1 rep 32.47◦ N, 35.02◦ E

Zafriyya, ISR ZA 1 rep 2 rep 1 rep 32.00◦ N, 34.84◦ E

Davis, CA, USA US 1 rep 1 rep 38.53◦ N, 121.77◦ W

2.3. Seedling Resistance Tests

The WEW panel was screened for seedling resistance to four Pst isolates, as described
in Huang et al. (2018) [44]. The PST5006 Pst isolate, representing race 38E134 (race PST5006
hereafter), originated from Israel, while the three other isolates, representing races PSTv-14,
PSTv-37, and PSTv-40, originated from the United States [45,46]. Rust assays with the Israeli
isolate were conducted at Tel Aviv University, whereas assays for isolates from the United
States were conducted at the University of Minnesota. The rust inoculum suspension
consisting of 700 µL Soltrol® oil (Chevron Phillips Chemical) and 10 mg of spores, was
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sprayed onto 12-day-old plants at the two-leaf stage. Post inoculation, plants were placed
inside a dew chamber at 10 ◦C and 100% RH for 24 h. Thereafter, for the incubation period,
plants were moved into a growth chamber with a diurnal temperature cycle, gradually
changing from 10 ◦C at 2 a.m. to 15 ◦C at 2 p.m., with a 16-hour photoperiod provided by
high-pressure sodium lamps. Each accession was tested in three replicates. The readings
were taken using the 0–9 scale, as described above. The highest IT for each accession to
each race was recorded. A unified IT value for all races was calculated as the maximum IT
among all races for each accession (UIT hereafter).

2.4. Genotyping

DNA was extracted from the leaves of 1-month-old plants using the DNeasy Plant
Pro Kit (Qiagen), according to the manufacturer’s protocol. The panel was genotyped with
the genotyping by sequencing method (GBS), using PstI–MseI restriction enzymes [47,48].
The wild emmer Zavitan genome, version 1 (WEW_v1.0), was used as a reference [17].
Variants were called using the TASSEL GBS pipeline [49]. The genotype data were imputed
using BEAGLE with all available variants [50]. For GWAS, we used only those variants
and accessions that originally had less than 50% of missing data. The data were filtered for
a minor allele frequency (MAF) of 1%. Variants that had more than 10% heterozygosity
were removed. Filtering was performed using TASSEL v5 [49].

2.5. Yr36 and Yr15 Presence Markers

The primers WKS1_557F and WKS1_559R were used to detect the presence of Yr36 [9].
PCR conditions were as described by Huang et al. (2016) [26]. The KASP marker Kin1 was
used to detect the presence of the functional ASR gene, Yr15 [24].

2.6. Statistical Analysis

The manipulation of data was performed using the data.table R package [51]. To
test the differences between environments, we plotted a biplot using the GGEBiplotGUI
R package [52]. On the basis of the observation that the differences between replicates
were similar to the differences between fields (Figure 1), we considered each replicate as an
environment. The best linear unbiased predictors for IT (BLUP-IT) were calculated for each
accession, using the rrBLUP R package [53]. The BLUP calculation accounted for the fields
(environments) and the growth stage (Feekes) as fixed effects. Broad-sense heritability (H2)
was calculated using the repeatability function within the heritability R package [54].

2.7. PCA

Principal component analysis (PCA), used to detect population structure, was based on
10% of the total variants in the genotype matrix and was performed using the pcaMethods
R package [55]. Additionally, we conducted spatial PCA (sPCA), as implemented in the
adegenet R package [56]. The sPCA yields scores that summarize both the genetic variability
and the spatial structure among individuals [57].
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Figure 1. Environment biplot of the 11 environments (fields) used in the study, showing the rela-
tionship of IT distribution among environments. This is a genotype plus genotype-by-environment
(GGE) biplot. The plot is based on the infection-type (IT) scores in the environments.

2.8. GWAS of Stripe Rust APR

The GAPIT [34] and mrMLM [35] R packages were used to detect associations between
variants and BLUP-IT. We used all models of the two packages, except for GLM in GAPIT,
which showed inflation of low p-values, and the pLARmEB method from the mrMLM
package, which had a technical problem. GAPIT uses single and multi-variant detection,
while mrMLM is multivariate-oriented. To correct for population structure bias, the first
three principal components of PCA were used as fixed-effect covariates, and a kinship
matrix was used as a random effect. The PCA and the kinship matrix were calculated using
the GWAS software. On the basis of the quantile–quantile (QQ) plots, a −log10 p-value
= 4 was selected as the threshold for significance (Figure 2). Above this point, p-values
deviated from the trend line of the expected uniform distribution. The 20 best variants
that had a −log10 p-value > 4 in at least two models were tested together in one mixed
model, using the lmekin function from the coxme R package [58]. The model included the
20 variants as fixed effects, while the environment, accession ID, and kinship matrix of the
accessions were included as random effects. The model was permuted 1000 times. Only
13 variants were significant in the mixed model, including the Yr36 marker (p < 0.05). To
find the best combination of subsets of the 13 variants, all possible subset combinations
were tested using the lmekin fitted model within the MuMIn R function [59]. The AIC
(Akaike information criterion) [60] was used as the criterion for the best combination.
Interactions between variants were tested using lmekin.
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models used to detect MTA for adult plant BLUP-IT.

2.9. GWAS for ASR

GWAS was implemented for detecting the associations with ITs obtained from the
seedling trials. We used all the models in GAPIT except GLM and SUPER, which demon-
strated inflation in low p-values. We tested the reactions to each Pst race separately with
each of the six models. The results from all runs of the individual races were collated using
the data.table package in R. The association score threshold was set to a false discovery rate
(FDR)-adjusted p-value (padj) of < 0.05 [61]. Additionally, we tested the association with
UIT scores. In the latter test, we also included the SUPER model. We validated the results
of the UIT association test using the ITs from each race separately. To perform this, we used
a mixed model, as implemented in the lmekin function in the coxme R package, where
the dependent variable was the IT for each accession (Pst–race combination); the variants
from the two UIT significant loci (Qpst.icci-1BS and Qpst.icci-3AS) were fixed effects, and
the accession ID, Pst race, and the kinship matrix were random effects. The model was
permuted 10,000 times.

3. Results
3.1. Field Tests

The distribution of IT values across the 11 environments is presented in Figure 3 and
Tables S2 and S3. The majority of the accessions had high ITs (>7), especially at the Israeli
sites. ITs on accessions tested at Davis showed a more even distribution. The broad-sense
heritability (H2) for ITs was very high at 0.91. The Pearson correlation coefficients between
the environments ranged between 0.39 and 0.84 (mean 0.62 ± 0.15), where the highest
correlations (>0.8) were between replicates within the same field (Figure 4). The range of
the BLUP values for ITs was 2.7–8.8, while BLUP values for accessions that were susceptible
in the seedling test ranged between 4.0 and 8.8 (Figure 3). Twenty accessions, scored as
susceptible (IT > 6) at the seedling stage, had a resistant response to stripe rust in the field
experiments (BLUP-IT values < 5), suggesting that these accessions may carry levels of
APR that would be useful in breeding.
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The genotype plus genotype-by-environment (GGE) biplot showed that the differences
between replicates from the same field were similar to the differences between fields
(Figure 1). Therefore, we treated field replicates as different environments.

3.2. Seedling Resistance Scoring

Susceptible reactions (IT > 6) were the most common phenotypes observed. For the
races PSTv-14, PSTv-37, PSTv-40, and PST5006, resistant reactions were observed in 19%,
8%, 12%, and 17% of the panel, respectively (Figure 5). The IT distribution was different
among the Pst races. To PST5006, most of the accessions were highly susceptible (IT = 9),
with only a few accessions exhibiting highly resistant reactions (IT = 1). In the case of
PSTv-37, most of the accessions showed intermediate reactions, with ITs ranging between 5
and 7 (Figure 5).
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3.3. Genotyping

Complexity-reduced genotyping resulted in the discovery of 341,228 variants. The
entire dataset was imputed using BEAGLE with default arguments, then filtered to retain
variants with MAF > 1% and a proportion of missing data in individual accessions, or SNP
sites < 50% in the raw data. Using the genotypic data, we conducted PCA and identified a
separate group of ~70 accessions belonging to the subgroup of T. dicoccoides ssp. judaicum.
These accessions were removed from the analysis since our previous study showed that they
have a substantial effect on LD that may increase the false-positive rate [28]. The final panel
for the seedling resistance GWAS was composed of 419 accessions and 202,113 variants,
whereas for the APR GWAS, the panel was composed of 188 accessions and 44,052 variants.
Only those accessions susceptible to PST5006 were included in the APR GWAS, to avoid
the masking of APR by major-effect seedling resistance genes.

3.4. Population Structure

sPCA was conducted only for the T. dicoccoides ssp. horanum accessions (those that
were not detected as the judaicum spp.). The sPCA resulted in one PC that describes most
of the spatial genetic variance. The sPCA revealed a clear geographic structure along a
north–south axis, where accessions in the south were associated with positive values of
PC1, while accessions from the north were associated with negative values. The accessions
from the north were much more diverse than the accessions from the south (Figure S1).
Superimposing APR BLUP-IT values on a PCA plot revealed that most of the resistant
accessions were clustered in one corner of the plot, with negative PC1 values. This cluster
originated mainly from northern Israel (Figure S2).

Linkage disequilibrium analysis revealed a rapid decay in LD along the chromosomes.
Average LD values were halved from r2 = 0.85 to r2 = 0.425 within 800 bp and dropped
below r2 = 0.2 within 6 kbp and below r2 = 0.1 within 150 kbp (Figure S3).

3.5. GWAS for ASR

GWAS for seedling resistance was performed using six models in the GAPIT R package
for the ITs to four individual races of Pst (PSTv-14, PSTv-37, PSTv-40, and PST5006) and
for UIT. The significance threshold was set to a FDR-adjusted p-value (padj) = 0.05. Two
loci were associated with the UIT for all methods. One 30 Mb QTL (Qpst.icci-1BS hereafter)
spanning several variants was identified in the distal region of the chromosome arm 1BS
(63–93 Mb). The region encompassed by this QTL contains the Yr15 locus, located close
to the QTL distal border at ~65 Mb (1B:64865841) [20]. The variant with the strongest
GWAS signal in Qpst.icci-1BS was located at ~92 Mb (1B:91719364), which is close to the
proximal border of the QTL region (FarmCPU model MAF = 12%; padj = 2.69 × 10−9).
Variants in the region within Qpst.icci-1BS (63–93 Mb) were associated with the presence
of the functional Yr15 gene, as determined by the Yr15 Kin1 KASP marker, especially
variant 1B:65387461 (Fisher test p = 5.5 × 10−5, N = 50). A second locus associated with
IT was found on the chromosome arm 3AS at ~25 Mb (3A:25212609) (FarmCPU model,
MAF = 4.5%; padj = 5.38 × 10−10; Figure S4; Qpst.icci-3AS hereafter). The seedling IT effect
of the two marker-trait associations (MTAs) differed significantly from race to race. The
highest effects were observed for race PST5006 (5.4–5.2), while for race PSTv-37, the effects
were much lower (1.6–1.8; Figure S5). The distributions of effects for each of the two
QTLs were similar (1.5–5.5). We tested the two QTLs together in a mixed model using the
lmekin R function, where the dependent variable was the IT for each accession. Variants
from Qpst.icci-1BS and Qpst.icci-3AS were set as fixed effects. The accession ID, Pst race,
and kinship matrix were set as random effects. The model was permuted 10,000 times.
Qpst.icci-1BS and Qpst.icci-3AS were significantly associated with IT in the original model
(p = 0 and p = 17 × 10−5, respectively) and after the permutation test analysis (p < 0.0001
and p = 0.002, respectively). Three accessions with no favorable alleles in Qpst.icci-1BS and
Qpst.icci-3AS were resistant (IT < 5) to all the Pst races tested. Because they do not carry the
Yr15 favorable allele and still show a broad resistance to Pst, these accessions from Central
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Samaria, Lower Galilee, and Golan Heights can be used for discovering new Pst resistance
loci other than Yr15.

From the GWAS results conducted for each race separately, we removed the results
of PSTv-40 tested with the single-variant models, namely, MLM, CMLM, and ECMLM, as
well as all results from the SUPER model since the QQ plots showed inflated low p-values
for these analyses (Figure S6). The remaining results did not converge to a single significant
variant across all races and all models. However, all race × model combinations showed
association signals in the Qpst.icci-1BS region (63–93 Mb). This genomic region, harboring
the Yr15 locus, has high LD levels (Figure S7). The highest association values were obtained
by the multi-locus models Blink, FarmCPU, and MMLM for variant 1B:66240332, which
was associated with the IT of PSTv-40 (padj = 3.2 × 10−82, 3.9 × 10−33, and 2.5 × 10−16,
respectively). The same variant was also highly associated with ITs to PST5006, according
to FarmCPU (padj = 1.9 × 10−9). FarmCPU revealed a strong association of ITs to PSTv-37
with a nearby locus (1B:72049807, padj = 8.0 × 10−14, Table 2).

Table 2. Association estimates of IT in the seedling stage for each Pst race. Variants were clustered
into 40 Mb windows using Zavitan WEW_v1.0 as a reference genome. 1 Markers were aligned to
QTL data from Wang and Chen (2017) [5].

Chr
40 Mb

Window
Center Mb

No. of Race/Model
Combinations

Significant Results
Pst Race List Models Max

−log10(p)
Max

−log10(padj)
Aligned
QTL 1 [5]

1B 80 12 37, 40, 5006,
14

Blink, CMLM,
FarmCPU,

MLMM
86.83 81.52 Yr15 [20]

1A 560 3 5006, 37 Blink, CMLM,
FarmCPU 30.83 25.52 Q.1A.9 [62]

4B 640 4 5006 Blink, CMLM,
FarmCPU 21.73 16.72 Q.4B.14 [63]

3A 680 3 5006 Blink, CMLM,
FarmCPU 15.25 9.94

2A 120 6 37

Blink, CMLM,
ECMLM,

FarmCPU,
MLMM, MLM

9.25 4.15 Q.2A.17 [64]

3A 720 5 5006, 37
Blink, CMLM,

ECMLM,
MLMM, MLM

8.44 3.43

4A 160 3 14 ECMLM,
MLMM, MLM 7.72 2.42

2B 160 4 37

CMLM,
ECMLM,

FarmCPU,
MLM

6.68 2.26 Yr31 [65]

1A 320 4 37 Blink, CMLM,
ECMLM, MLM 6.54 1.84

5B 120 9 37 CMLM,
ECMLM, MLM 6.08 1.62

1B 560 3 37, 5006 Blink,
FarmCPU 5.79 1.47 Yrv3 [66]

3.6. GWAS for APR

The GWAS for APR-associated loci was performed using 11 methods from the GAPIT
and mrMLM packages [34,35]. The GLM method from the GAPIT package was not included
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because of an inflated low p-value distribution. The pLARmEB method from the mrMLM
package was not used due to technical problems.

Twenty significant variants were detected by at least two methods (−log10 p-value > 4).
The only marker that was detected using all methods was the PCR marker for Yr36 (Table 3).
No significant variants from the GBS matrix were found near the Yr36 locus, probably
because the gene region is deleted in the Zavitan reference genome [9,17]. To further test
the significance of the markers, we included all of them as fixed variables in a mixed model
using the IT scores from each of the 11 environments. The kinship matrix, environment
(field), and genotype ID were used as random variables. The mixed model detected
13 significant markers, including the Yr36 marker (p < 0.005). All 13 markers remained
highly significant (p < 0.001) after further testing of the model by 1000 permutations.

Table 3. Variants that are significantly associated with adult plant resistance. The results of GWAS
with various models and results of mixed models, with all variants together, using the coxme::lmekin
R function.

Variants
Minimum
p-Value of

GWAS
GWAS Models Estimate

lmekin
p-Value
lmekin

Aligned QTL 1

[5,6] Putative Genes 2

1A_571777232 9.20 × 10−9
mrMLM,

FASTmrMLM,
pKWmEB

−0.198 1.30 × 10−4 Q.1A.9 15% 3 F 4

[62]
TRIDC1AG060480

WRKY domain [67]

1B_39276972 2.15 × 10−10 mrMLM,
FASTmrMLM 0.390 1.10 × 10−12 MQTL4-1B 15% F

[6]

TRIDC1BG006690
Papain-like cysteine

peptidase [68]

3B_550434503 7.03 × 10−15 FASTmrMLM,
FASTmrEMMA −0.295 6.20 × 10−5 Q.3B.24 6% F [69]

TRIDC3BG050030
Eukaryotic translation

initiation factor 3
subunit eif-3 [70]

3B_707838360 9.82 × 10−10
FarmCPU, MLM,
BLINK, mrMLM,

FASTmrMLM
−0.221 1.80 × 10−3

TRIDC3BG067020
Peptidase A22B, signal
peptide peptidase [71]

3B_88645297 5.40 × 10−5 ECMLM, MLMM,
SUPER −0.190 2.70 × 10−3

Q.3B.8 6% F [72]
Q.B3.9 20% F [73]
Q.3B.10 5% F [74]
Q3B.12 30% F [75]
Q3B.14 5% F [65]

TRIDC3BG015830
alpha/beta hydrolase

fold [76]

5B_157144166 8.75 × 10−8
mrMLM,

FASTmrMLM,
pKWmEB

0.371 2.30 × 10−7 Q.5B.2 6% F [77]
TRIDC5BG018210

AIG1-type guanine
nucleotide-binding [78]

5B_24593659 3.12 × 10−10 mrMLM,
FASTmrMLM −0.337 1.30 × 10−8 Q5B.2 6% F [77]

Q5B.3 27% [79]

TRIDC5BG004210
Methyl-CpG DNA

binding [80]

5B_527982577 2.32 × 10−12 mrMLM,
FASTmrMLM 0.205 2.30 × 10−4

Q.5B.18 33% [81]
Q5B.19 3% F [82]
Q5B.20 30% F [83]

TRIDC5BG053620
NAC domain [84]

6B_132922231 1.60 × 10−7 FASTmrEMMA,
pKWmEB −0.221 3.30 × 10−3

Q.6B.3 15% F [62]
Q.6B.6 35% F [85]
Q.6B.7 6% F [86]

TRIDC6BG018950
NB-ARC [87]

6B_138700000_Yr36 3.25 × 10−23

CMLM, ECMLM,
FarmCPU, MLM,
MLMM, SUPER,
BLINK, mrMLM,

FASTmrMLM,
pKWmEB, ISIS
EM-BLASSO

−0.792 7.70 × 10−12 Yr36 F [9] kinase_START



Crops 2022, 2 53

Table 3. Cont.

Variants
Minimum
p-Value of

GWAS
GWAS Models Estimate

lmekin
p-Value
lmekin

Aligned QTL 1

[5,6] Putative Genes 2

6B_664322346 4.74 × 10−5 ECMLM, MLMM,
SUPER −0.206 3.90 × 10−4

Q.6B.16
Q.6B.17

Q.6B.18 [5]

TRIDC6BG064680
WD repeat HIR1 [88]

7A_501622609 5.75 × 10−13 FASTmrMLM,
pKWmEB 0.260 5.00 × 10−6 Q.7A.9 6% F [89]

TRIDC7AG048010
Ubiquitin-Conjugating

Enzyme E2 [90]

7B_105138786 6.93 × 10−11 mrMLM,
FASTmrEMMA −0.390 5.60 × 10−9

TRIDC7BG013060
Cellulose Synthase

Interactive [91]

1 Markers were aligned to QTL data from Wang and Chen 2017 [5] and Jan et al. (2021) [6] (Figure S9). 2 The
putative genes are the closest genes to the SNP that have some relation to disease resistance or the regulation of
expression. The putative function is given under the gene name from wild emmer genome annotation v1 [17].
3 Percentage of explained variation of the cited QTL. 4 Indication that the QTL was found in a field experiment.

To ensure that the model was not overfitted, we used an Akaike information criterion
(AIC) wherein all possible subset combinations of the 13 loci were tested. The full model
had the lowest AIC, meaning it was the best model to describe the association of the 13 loci
with ITs. We used a similar mixed model to test the variance explained by the different
components. In this model, we tested the BLUP-ITs instead of the ITs of each field, to
exclude field variations from the model. The pseudo-R-squared calculation, using the
likelihood-ratio test, showed that the 13 genetic loci explained 83% of the variance, of which
one-quarter was explained by Yr36 and the rest by the other 12 loci. A similar mixed model
was also used to test for interactions between Yr36 and the other 12 variants; however, no
significant interactions were detected (p > 0.05). The number of favorable alleles (i.e., alleles
associated with IT reduction) in each genotype was calculated on the basis of the 12 variants
and plotted against the BLUP-IT, once for genotypes with Yr36 and once for genotypes
without Yr36. The trend in both cases showed a clear negative correlation between the
number of favorable alleles and the mean BLUP-IT, where genotypes with Yr36 had lower
BLUP-IT than those without Yr36 (Figure 6). The interactions of the 12 variants and Yr36
were visualized using boxplots (Figure S8). In 10 of the variants, the effect of the favorable
allele was larger in the presence of Yr36. Looking at the results from a different perspective,
it was evident that all of the variants enhanced the positive effect of Yr36 on resistance. The
distribution of the 13 loci along the genome was uneven, with most (11) being detected in
the B-genome chromosomes (1B and 7B, each with one; 3B, 5B, and 6B, each with three)
and two in chromosomes from the A genome (1A and 7A, each with one).
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Figure 6. Correlation of infection types with the number of favorable alleles in wild emmer accessions.
Colors indicate the presence (1, blue line and dots) and the absence (0, red line and dots) of Yr36
in the genotype. Y-axis: BLUP values for infection types (BLUP-IT); X-axis: number of favorable
(reducing IT) alleles of the 12 significant loci in each accession.

4. Discussion

The main goals of this study were to identify the loci associated with stripe rust
resistance at the seedling stage (ASR) and the adult plant stage (APR), and to identify
accessions that may carry novel APR or ASR resistance genes.

4.1. LD Levels

Linkage disequilibrium (LD) levels in the wild emmer population decayed very
rapidly, within the first 1 kb, as r2 values were halved from ~0.85 to 0.425. This rapid
decay was observed in the same population, using the 9k SNP array [29], and in another
WEW panel and a wild barley panel, using Sanger sequencing [92,93]. These LD estimates
are much lower than the estimates in the selfing wild population of Arabidopsis thaliana,
where LD decayed within 250 kb [94]. The estimates of LD extent in wild populations
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are several times lower than the LD extent in domesticated wheat, where LD can extend
several centimorgans [38,95]. These low LD levels are favorable, in the sense that they
increase the resolution of GWAS; however, a much higher marker density is required in the
panel to detect significant associations [95].

4.2. All-Stage Resistance

The ASR GWAS identified two loci that were associated with UIT, indicating that they
confer resistance to all four Pst races. Qpst.icci-1BS (63–93 Mb) colocalizes with the Yr15
locus [20]. This QTL extends over a wide interval, and LD analysis indicates that high
LD levels in the region may be the reason (Figure S7). Therefore, it is highly probable
that all of the associations found in this region are caused by Yr15. However, the most
significant associations from the GWAS did not identify the closest variant to the Yr15 locus.
Testing for associations between Qpst.icci-1BS variants and the Yr15 KASP marker detected
variants closer to the Yr15 locus than the GWAS results, based on ITs. This means that
the GBS-based GWAS in wild populations are limited in their precision, probably because
of missing data, low allele frequencies, and variations in the phenotypic expression of
resistance, due to the large diversity in the genetic background of accessions. This result
may also suggest that other ASR genes are located in Qpst.icci-1BS but are masked by Yr15
and the LD block.

Qpst.icci-3AS (~25 Mb) is located in the same region as Yr76. This gene originated from
the hexaploid club wheat cultivar, Tyee, which includes in its pedigree a stripe rust-resistant
T. durum landrace from Ethiopia [96,97]. Yr76 is genetically located 2.3 cM proximal to
wmc11, which is physically located at ~168 Mb of chromosome 3A in the Zavitan WEW_v1.0
reference genome (3AS:16784689) [98]. We cannot rule out the possibility that Yr76 and
Qpst.icci-3AS are at the same locus. Qpst.icci-3AS overlaps with Q3A.1, a QTL that was
observed only once in one environment, probably originating from cv. Sarr (Figure S9) [5,99].
Qpst.icci-3AS is located between two copies of genes encoding a wall-associated receptor
kinases (TRIDC3AG005570 and TRIDC3AG005580), which are located 60 kb apart. These
genes may be involved in resistance to stripe rust [100,101].

Of the 10 race-specific loci, five loci were aligned with previously reported QTLs or
genes, including Yr31 and Yrv3 (Table 2, Figure S9) [5].

Additional resistance genes may also be present in the WEW population from Israel.
However, the masking effect of Yr15, coupled with the low frequency of these putative
genes, likely complicates their detection by GWAS. Nevertheless, we identified several
accessions that do not have favorable alleles at these two QTLs, which may be useful for
biparental linkage analysis.

The effect of the two QTLs, detected on the basis of UITs, was highly dependent on
the Pst race used in the assay. For PST5006, the effect of the favorable allele of either locus
on the IT was a shift from highly susceptible to highly resistant, while for PSTv-37, the shift
was from moderately susceptible to moderately resistant. For PSTv-14 and PSTv-40, the IT
shift was intermediate (Figure S5). This observation underlines the importance of using
multiple pathogen races in plant resistance studies and reveals that the host-pathogen
interactions are affected not only by virulence/avirulence patterns but also by varying
aggressiveness in the pathogen.

4.3. Adult Plant Resistance

The GWAS for APR revealed that the main locus determining this trait in the WEW
panel from Israel is Yr36. However, the level of resistance is also affected by at least
12 additional minor-effect loci that have an additive effect. We observed that Yr36 alone
does not explain most of the variance in resistance to Pst of the WEW population.

Wang and Chen (2017) reported on 327 QTLs for stripe rust resistance in wheat, with
many overlaps (Figure S9). More than 80 of these QTLs were identified using GWAS [5],
and many were identified in field trials, suggesting that they may confer APR. Numerous
additional QTLs for APR to Pst have been detected since 2017 [30–33,66]. We aligned
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the APR GWAS results with those QTLs reported in the QTL reviews of Wang and Chen
(2017) and Jan et al. (2021) (Figure S9) [5,6]. We found that 3 of the 13 APR loci do not
align with any previously identified QTL and, therefore, may be novel (Table 3). The
remaining loci were aligned to previously published QTLs, with most being identified in
field trials. However, many of these QTLs had large confidence intervals, were mapped
against different genomes using a different panel or mapping population, or employed
a different marker system. Therefore, it is difficult to determine with certainty whether
the loci detected in the current study are allelic to previously published QTLs. However,
we found several loci with a precise alignment to previously published narrow QTLs,
potentially indicating that the loci from the current study are allelic to the previously
published QTLs. These loci were 3B:88645297, which aligned with five QTLs, and with Yr4,
which is not an APR gene [5], 5B:527982577, which aligned with three narrow APR QTLs,
and the locus on 6B:664322346, which aligned with three APR QTLs [5] (Table 3, Figure S9).
Nevertheless, none of the previously published QTLs originated directly from WEW. We
searched for candidate genes in the vicinity of the SNPs (up to 1 Mbp) using WEWv1
annotation. We found genes that are involved in disease perception, such as NB-ARC
and WD repeat HIR1; genes that are involved in regulation, such as WRKY and NAC;
genes controlling cell-wall biosynthesis, such as cellulose synthase; genes controlling the
ubiquitination of a pathogen effector (ubiquitin-conjugating enzyme); and genes controlling
epigenetic regulation (methyl-CpG-binding domain) (Table 3).

4.4. The Effect of Diverse Genetic Background on Major Gene Resistance

The two main Yr genes in the WEW Israeli gene pool are Yr15 for ASR and Yr36
for APR. Other resistance genes may be present, but their frequencies were too low to be
detected by GWAS. However, we can detect resistant accessions that do not have the Yr15
or Yr36 favorable alleles and cross them with a susceptible genotype to isolate the gene.
The range of ITs observed in accessions that have Yr15 or Yr36 was wide. This indicates
that the effects of these genes on Pst infection are impacted by the genotypic background.
For Yr36, we showed that its effect is dependent on at least 12 other loci. We also know
from our own observations that the effect of Yr15 in its original source (accession G25) and
in hexaploid wheat with Yr15 introgressions (such as Avocet-Yr15) is much stronger than
what we have observed in the WEW panel in the field. These observations suggest that the
discovery of novel resistance genes, especially those conferring APR, may be complicated
by the highly heterogeneous background of accessions in wild populations.

4.5. Performance of GWAS Methods

We used two R packages for the GWAS of APR in WEW. Each package includes
several GWAS methods. The mrMLM package has models for multiple variants, while
GAPIT has models for single variants, as well as for multiple variants [34,35]. In the APR
GWAS, 9 out of the 13 variants were detected only by multiple-variant methods from
the mrMLM package, while only 2 variants were detected by GAPIT methods alone, and
2 variants were detected by both packages. It seems that the mrMLM package, which uses
multivariant models, is better at detecting variants in the WEW quantitative APR GWAS.
Our approach to detect MTAs consisted of three steps: (i) detecting the trait-associated
variants by applying multiple GWAS models, either for multiple variants or single variants;
(ii) validating and filtering the detected variants using a mixed model that tests all selected
variants in one model and accounts for genotype relatedness and the variation between
environments, with validation by permutation analysis; (iii) selecting the model with
the best combination of variants based on the AIC criterion. This approach may help to
overcome the reduction in the power of GWAS tests caused by the heterogeneity of genetic
backgrounds in wild populations. Moreover, adding the environment (field) variance into
the mixed model enhances the robustness of the model, leading to more reliable results. To
the best of our knowledge, this is the first time that this combination of steps has been used
for GWAS validation. We believe that this combination of analytical steps will enhance the
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power of GWAS and reduce false associations. For the ASR GWAS, we used only those
models that were implemented in the GAPIT package since we were expecting single-gene
resistance. In our study, the best-performing models were MMLM, FarmCPU, and Blink,
which are multiple-variant models. The single-variant models (e.g., MLM, CMLM, and
ECMLM) resulted in high p-values with more noise, while the SUPER and GLM models
generated inflated low p-values (Figure S6).

5. Conclusions

We demonstrated that multiple-variant GWAS methods are able to detect major and
minor resistance genes in wild wheat populations, using the GBS approach. However,
we see value in increasing the marker density in genetically diverse populations of wild
relatives, beyond the density provided by GBS technology, to increase the rate of marker-
trait association discovery. As demonstrated, reference- and GBS-based GWAS may miss
key resistance genes due to the absence of the gene in the reference genome and due to very
low LD levels. The advances in sequencing technologies and the drop in sequencing costs
may facilitate high-resolution reference-free GWAS that can overcome these limitations.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/crops2010005/s1: Table S1. Infection type data and passport data
of the association panel; Table S2. ITs of the accessions; Table S3. Summary statistics of ITs from the
fields; Figure S1. Geographical distribution of wild emmer genotypes in Israel and its vicinity. Colors
represent the assignment of the genotype to a bin along the first principal component, as calculated
by sPCA. Pie represents the proportion of genotypes assigned to the bins within 20 × 20 km. The size
of the pie is proportional to the number of genotypes; Figure S2. PCA based on the GBS matrix of the
wild emmer population. Colors represent BLUP-IT to Pst at the adult plant stage; Figure S3. Linkage
disequilibrium (LD) levels along the wild emmer genome. Left, distance 0–10 kbp; Right, distance
0–1 Mbp; each dot is the mean of a 100 bp window. Blue line, Loess averaging; Figure S4. Circular
Manhattan plot of the associations with UIT at the seedling stage, using seven GWAS models. Red
stars indicate significant associations after Bonferroni correction (α = 0.01/N); Figure S5. Seedling ITs
in four Pst races partitioned into alleles in the two significant seedling resistance MTAs. The length of
the line is proportional to the number of accessions with the same IT; Figure S6. QQ plots of GWAS
results using the SUPER model with the seedling IT; Figure S7. Linkage disequilibrium r2 estimates
near the Yr15 locus on 1BS; Figure S8. Level of BLUP-IT at the adult plant stage. For each of the 12
significant loci, ITs are partitioned into four boxplots by the Yr36 X allele combination; Figure S9.
Chromosomal locations of wheat genes or quantitative trait loci (QTLs) for resistance to stripe rust.
Resistance genes with permanent and provisional Yr symbols are shown on the left, and QTLs are
shown on the right of each chromosome. QTLs are coded by numbers and can be found in Table
5.4 of Wang and Chen (2017) [5]. Loci detected in the current study are indicated by colored boxes:
red—APR; green—ASR UIT (unified IT); blue—ASR race-specific loci. The figure is based on Figure
5.1 in from Wang and Chen (2017) [5].
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