
cryptography

Article

Hardware Performance Evaluation of Authenticated
Encryption SAEAES with Threshold Implementation

Takeshi Sugawara

Department of Informatics, The University of Electro-Communications, Tokyo 182-8585, Japan;
sugawara@uec.ac.jp

Received: 30 June 2020; Accepted: 5 August 2020; Published: 9 August 2020
����������
�������

Abstract: SAEAES is the authenticated encryption algorithm instantiated by combining the SAEB
mode of operation with AES, and a candidate of the NIST’s lightweight cryptography competition.
Using AES gives the advantage of backward compatibility with the existing accelerators and
coprocessors that the industry has invested in so far. Still, the newer lightweight block cipher
(e.g., GIFT) outperforms AES in compact implementation, especially with the side-channel attack
countermeasure such as threshold implementation. This paper aims to implement the first threshold
implementation of SAEAES and evaluate the cost we are trading with the backward compatibility.
We design a new circuit architecture using the column-oriented serialization based on the recent
3-share and uniform threshold implementation (TI) of the AES S-box based on the generalized
changing of the guards. Our design uses 18,288 GE with AES’s occupation reaching 97% of the total
area. Meanwhile, the circuit area is roughly three times the conventional SAEB-GIFT implementation
(6229 GE) because of a large memory size needed for the AES’s non-linear key schedule and the
extended states for satisfying uniformity in TI.

Keywords: threshold implementation; SAEAES; authenticated encryption, side-channel attack;
changing of the guards; lightweight cryptography; implementation

1. Introduction

There is an increasing demand for secure data communication between embedded devices in
many areas, including automotive, industrial, and smart-home applications. To enable cryptography
in resource-constrained devices, researchers have studied lightweight cryptography that has a good
performance in implementation by design. Lightweight cryptography emerged from block cipher
design [1], which now covers a larger area in cryptography, including authenticated encryption (AE).
In particular, NIST is running a standardization process for lightweight AE algorithms (NIST LWC) [2].

Side-channel attack (SCA) [3,4] is a considerable security risk in lightweight cryptography’s
main targets: embedded devices under a hostile environment in which a device owner attacks the
device with physical possession. Consequently, NIST LWC considers the grey-box security model with
side-channel leakage [5]. In addition to security, the cost of implementing SCA countermeasures in
resource-constrained devices is a big issue because SCA countermeasures multiply the cost.

Threshold implementation (TI) [6] is an SCA countermeasure based on multi-party computation
(MPC) [7]. TI is popular for hardware implementations because it can provide the security in the
presence of glitches, i.e., transient signal propagation through a combinatorial circuit, which is
inevitable in common hardware design. Consequently, there are an increasing number of papers
reporting authenticated encryptions with TI [8–10]. Researchers are even optimizing the algorithms
for TI: the TI-friendly S-boxes [11,12] and the TI-friendly modes of operation [13,14].

SAEAES is an instantiation of the SAEB mode of operation [15] with the standard block cipher
AES [16], and is a NIST LWC candidate. Choosing AES is a practical decision for providing backward

Cryptography 2020, 4, 23; doi:10.3390/cryptography4030023 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/0000-0001-9356-534X
http://dx.doi.org/10.3390/cryptography4030023
http://www.mdpi.com/journal/cryptography
https://www.mdpi.com/2410-387X/4/3/23?type=check_update&version=3


Cryptography 2020, 4, 23 2 of 17

compatibility with the numerous AES accelerators and coprocessors that the industry has invested
so far. However, not so many NIST LWC candidates chose AES (COMET [17], mixFeed [18],
and SAEAES [19] our of the 32 candidates) because newer lightweight primitives outperform AES
in lightweight implementations. The impact of using AES is even larger with TI. Many lightweight
algorithms, such as GIFT [20] and SKINNY [21], use an S-box with which an efficient, i.e., 3-share
and uniform TI is available [21]. In contrast, this is not the case for AES [22], which was standardized
before TI become popular. The early AES TI compensated for this disadvantage by refreshing the
output share by adding fresh randomness [23–25], but this raised another implementation challenge of
generating fresh randomness at a high rate. Daemen’s changing of the guards [26] in 2017 opened the
door for enabling a uniform TI for a larger class of functions, and its generalization enabled the first
3-share TI for AES without fresh randomness in 2019 [27].

1.1. Purpose and Approach

The question that naturally arises is the cost of the backward compatibility: how many more gates do
we need by choosing AES instead of other lightweight algorithms with TI? The question has been unanswered
because of the gap between the conventional works on lightweight AE and efficient TI implementation:
the conventional SAEAES implementations are all without TI [15,19,28]. The purpose of this paper is
to implement the first threshold implementation of SAEAES and to evaluate the cost we are trading
with the backward compatibility.

Our approach is to extend the recent AES implementation with the 3-share and uniform TI using
the generalized changing of the guards [27], but we redesign the AES circuit architecture to satisfy
the additional requirements by the mode of operation. Then, we evaluate our design’s performance
and compared it with the previous implementation of SAEB-GIFT [13]: the same mode of operation
instantiated with the state-of-the-art lightweight block cipher GIFT [20].

1.2. Contributions

Here we summarize our key contributions.

(I) Identification of design challenges in extending AES implementation to SAEAES (Section 4)
Our design is based on the 3-share and uniform TI of AES using the generalized changing of
the guards [27]. We identify that the mode of operation enforces the byte order, making the
conventional row-oriented serialization inefficient [23]. Also, the mode of operation should
preserve the secret key that the on-the-fly key schedule overwrites.

(II) Column-oriented AES implementation (Section 5.2) We propose a new AES circuit architecture
that uses the column-oriented data serialization to address the aforementioned incompatibility
with the row-oriented serialization.

(III) The first SAEAES implementation with threshold implementation (Section 5) We show the
first TI of SAEAES that uses the column-oriented serialization and the 3-share and uniform AES
S-box. The design has an independent key store for preserving the secret key until the next
AES call.

(IV) Improved TI of key array (Section 5.5) We show the concrete realization of the key array for TI
that reduces the register size by 216 bits or 32% from the original design [27].

(V) Performance evaluation and comparison (Section 6) We synthesize our design using a standard
cell library to evaluate its circuit area in GE (gate equivalents). We show that our design uses
18,288 GE with TI composed of AES (14,256 GE, 78%), the key store (3422 GE, 19%), and the
mode of operation (610 GE, 3%). Compared with the conventional SAEB-GIFT implementation
that uses 6229 GE [13], the SAEAES implementation is roughly three times larger. We identify
that the non-linear key schedule and the extended states for satisfying uniformity as the major
factors for this difference.



Cryptography 2020, 4, 23 3 of 17

1.3. Organization

This paper is organized as follows. We begin by reviewing the algorithm of SAEAES in Section 2,
and the previous TI of AES in Section 3. Then, we state the design challenges we address in the paper
in Section 4. We describe our proposed design Section 5 followed by the performance evaluation in
Section 6. Section 7 is the conclusion.

2. SAEAES

2.1. Authenticated Encryption

Authenticated encryption (AE) is a cryptographic algorithm that provides confidentiality and
integrity using a symmetric key. An AE encryption algorithm converts a plaintext and an associated
data into a ciphertext and authentication tag. The corresponding AE decryption algorithm converts
the ciphertext and the unencrypted associated data, back into the original plaintext. By using the tag
during the decryption, the algorithm checks the integrity, i.e., detects changes in the original ciphertext
or the associated data, to prevent forgery attacks. A common AE construction is to combine a block
cipher with a mode of operation, and AES [16] with the Galois/counter mode (AES-GCM) is by far
the most popular AE approved by NIST SP800-38D [29] and RFC5288 [30], and being used in major
systems including SSL/TLS.

Lightweight cryptography is a branch of cryptography on designing cryptographic algorithms
that achieve efficient performance in resource-constrained devices. The demand for such lightweight
cryptography is higher than ever before for the recent technology trend of adding connectivity to
embedded devices. Moreover, NIST is running a standardization process called NIST LWC [2] since
2017, which makes lightweight AE an even more active research area.

2.2. SAEAES and its Algorithm

SAEAES [19] is an instantiation of the lightweight mode of operation SAEB [15] using AES,
which is a candidate of NIST LWC [2]. We focus on SAEAES_128_64_128 with the 128-bit key, 64-bit
associated data block, and 128-bit tag among the ten variants.

SAEAES is composed of HASH, Encryption, and Decryption algorithms that process the associated
data (AD), plaintext, ciphertext blocks, respectively. SAEAES is based on the sponge construction,
in which the data blocks are absorbed into the internal state in between iterated AES calls, as shown in
Figure 1.

HASH consumes AD blocks A1, . . . , An and a 120-bit nonce {NU , NL}, to generate an initial value
for the subsequent Encryption or Decryption denoted by {IVU , IVL}. Encryption consumes the message
blocks in the same way: for previous AES output {tU , tL} and the message block Mi, the next AES
input is {Mi ⊕ tU , tL} and the corresponding ciphertext block is Ci = Mi ⊕ tU . In Decryption, on the
other hand, it recovers the message block Mi = Ci ⊕ tU , and feeding {Ci, tL} as the next AES input.
The tag is the final AES output {TU , TL}, as shown in Figure 1.

The SAEAES (and SAEB) satisfies the following four properties that contribute to a
lightweight implementation:

(1) Minimum state size No extra memory in addition to AES, which reduces the register size in
hardware implementation.

(2) Inverse free No need for AES decryption. This reduces the cost of implementing inverse AES
operations and overhead for selectors or conditional branches.

(3) XOR only The extra operation in addition to AES is XOR only, which is more efficient than
other options, such as GF(2128) multiplication in AES-GCM.

(4) Online The message and ciphertext blocks are scanned only once. There is no need for a buffer
storing the blocks until the second scan.

(5) Efficient handling of repeated associated data SAEAES can skip shortcut some operations for
several Encryption/Decryption with the same (i.e., repeated) associated data.



Cryptography 2020, 4, 23 4 of 17

A1

0

0

An-1 An

1/2

NU

3

M1

C1

Mm-1

Cm-1

Mm

Cm

M1

C1

Mm-1

Cm-1

Mm-1

Cm-1

1/2

1/2

IVU

IVL

IVU

IVL

IVU

IVL

TU

TL

TU

TL

AES
128

AES
128

AES
128

AES
128

AES
128

AES
128

AES
128

AES
128

AES
128

AES
128

64

64

64

64

64

64

64

64

64

64

64

64

HASH

Encryption

Decryption

64 64 64 64

64 64 64

64 64 64

56

NL

ComINIT ComE ComE ComN

ComE ComE ComE ComT

ComD ComD ComD ComT

Figure 1. Diagram of SAEAES_128_64_128. ComINIT, ComE, ComN, ComD, and ComT correspond to the
commands supported in our implementation (see Section 5.4).

2.3. Hardware Implementations of SAEAES

The original SAEB paper reported a compact hardware implementation of SAEB instantiated
with AES [15] using 3502 GE. The design uses the byte-serial architecture [23] that we discuss later
in more detail. Balli et al. further reduced the circuit area to 2067 GE using the bit-serial technique,
and compared it with with many other AEs using SKINNY and GIFT [28].

There is no TI of SAEAES as far as the authors are aware. Meanwhile, there is a TI of SAEB
instantiated with the GIFT lightweight block cipher [13,20]. Caforio et al. evaluated a number of NIST
LWC candidates with TI [10].

3. Threshold Implementation of AES

3.1. Side-Channel Attack and Countermeasure

Many embedded devices, such as a smartcard, store a service provider’s key and should withstand
attacks by the legitimate device owners. Under such a hostile environment, the attacker with
physical access uses side-channel attack that exploits information leakage in power consumption
and/or electromagnetic radiation [4]. Designing cryptographic modules secure against such attacks
is challenging, and researchers have studied new attacks and countermeasures for more than
two decades.

Masking based on MPC is by far the most well-studied countermeasure against a power
side-channel attack [4,7]. In (additive) masking, we encode a sensitive variable x into a set of variables
called a share x = [xa, xb, xc] satisfying x = xa ⊕ xb ⊕ xc thereby randomizing and decoupling the
sensitive value from the data representation. An attacker with a limited access to only a proper
subset of the share cannot reconstruct the original value x. Masking provides a way to realize a target
cryptographic algorithm (e.g., AES) while preserving the shared representation, thereby providing the
protection against side-channel attack.

3.2. Threshold Implementation

Threshold implementation (TI) proposed by Nikova et al. [6] is an MPC-based countermeasure
suitable for hardware implementation because it can be secure even in the presence of glitches, i.e.,



Cryptography 2020, 4, 23 5 of 17

transient signal propagation through combinatorial circuit inevitable in the common hardware design.
In TI, for a target function f , we compose a set of functions called the sharing { fa, fb, fc} given by

Xa = fa(xb, xc), Xb = fb(xc, xa), Xc = fc(xa, xb) (1)

wherein [xa, xb, xc] and [Xa, Xb, Xc] are the input and output shares. { fa, fb, fc} should satisfy the
following three properties:

(1) Non-completeness The sharing { fa, fb, fc} is non-complete if each of fa, fb, and fc receives only
a proper subset of the input share x = [xa, xb, xc]. The sharing given by Equation (1) satisfies
non-completeness because fa, fb, and fc do not accept xa, xb, and xc, respectively.

(2) Correctness The sharing { fa, fb, fc} is correct if it represents the original function f , i.e.,
X = Xa ⊕ Xb ⊕ Xc = f (x).

(3) Uniformity The sharing { fa, fb, fc} is said to satisfy uniformity if it preserves the uniform
distribution: a uniform sharing generates a uniformly distributed output share given a uniformly
distributed input share. The uniform distribution of the input share is the necessary condition
for the TI’s security. With uniformity, we can feed the output share to the next sharing thereby
enabling cascaded connection between sharings.

3.2.1. Composing a Sharing for a Target Function

Designing a sharing satisfying the above three properties for a given target function (e.g., S-box) is
an important challenge in TI. Besides, we want to minimize the number of shares because the hardware
cost grows quadratically to the number of shares. For a function having an algebraic degree of d,
there is a generic way to construct the correct and non-complete shared function using d + 1 shares [31].
Since d > 1 for a non-linear function such as an S-box, three is the the minimum number of shares.
Target functions with d > 2 are commonly decomposed into sub-functions with d = 2 for realizing a
3-share sharing.

3.2.2. Lack of Uniformity and Refreshing

The availability of uniformity depends on the target function [11]. Consequently, many lightweight
algorithms, including GIFT and SKINNY, choose an S-box with which a 3-share and uniform sharing
is available [21]. In contrast, the AES and Keccak S-boxes did not have a uniform sharing until very
recently. The early AES TI used a non-uniform sharing, and compensated for the lack of uniformity
by refreshing the output share by adding fresh randomness [23–25]. Although the refreshing saves
non-uniform sharing, the need for a lot of fresh randomness raised another implementation problem:
the previous implementations need 2560–10,240 random bits for each encryption, which requires a
considerable cost in terms of circuit area and power consumption [27].

3.3. Changing of the Guards

Daemen successfully realized a 3-share and uniform Keccak S-box by introducing an elegant
technique called the changing of the guards [26]. The idea is to construct a sharing of a layer of S-boxes
instead of each S-box. Figure 2 (left) shows the changing of the guards sharing of the three parallel
application of a target function f . In Figure 2 (left), { fa, fb, fc} are non-uniform sharing, and we refresh
their outputs by adding the shares representing zero, i.e., [xi−1

c + xi−1
b , xi−1

c , xi−1
b ] constructed from the

neighboring input. This makes the final share uniform again in the same way as the conventional
refreshing with a fresh randomness. In other words, the changing of the guards recycles the previous
input shares as a substitute of fresh randomness in a provable way.

This technique is applicable to any bijective mapping including the Keccak S-box, but its
application to the AES S-box was not trivial: field multiplication appears in decomposing the S-box to
reduce the number of shares, which is non-bijective. Wegener and Moradi successfully decomposed



Cryptography 2020, 4, 23 6 of 17

the AES S-box into a series of bijective mapping and applied the changing of the guards, but it required
four shares instead of three [32].

Finally, Sugawara generalized the changing of the guards [27] to support non-bijective mapping,
and realized the first uniform and 3-share sharing of AES. The idea is to consider the unshared
representation of the Daemen’s changing of the guards as shown in Figure 2 (right). The key point is
extending the original function f into a modified function

f ′ : (t, xi) 7→ (t + f (xi), xi) (2)

followed by a null function ⊥ that maps anything to zero, which ensures the availability of a uniform
sharing. By generalizing this extension to a non-bijective mapping by using the generalized Feistel
network, we can construct the changing of the guards sharing of non-bijective functions including field
multiplication. By applying the generalized changing of the guards to each stage of the decomposed
AES S-box, Sugawara proposed the first 3-share TI without using fresh randomness shown in Figure 3.
As a side effect of extending a non-bijective function, the datapath width should be extended from 8 to
14 bits.

x1 x2 x30

X1 X2 X3 0

x1 x1 x1 x2 x2 x2 x3 x3 x3

X1 X1 X1 X2 X2 X2 X3 X3 X3

a b c a b c a b c

a b c a b c a b c

f

f

f

⊥

⊥

⊥

a

b

c

f
f
f

a

b

c

f
f
f

a

b

c

f
f
f

Figure 2. The changing-of-the-guards sharing (left) and its unshared representation (right).



Cryptography 2020, 4, 23 7 of 17

S-box input

Additional input

Additional input 

Li
ne

ar
 M

ap

S-box output

Additional output

Additional output

In
v.

 L
in

ea
r M

ap

8 
bi

ts

16
 b

its

GF(22)
Mult.

GF(24)
Mult.

GF(22)
Inv.

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

42
 b

its

42
 b

its

42
 b

its

42
 b

its

for GF(24)

for GF(22)

for GF(24)

for GF(22)

Figure 3. 3-share and uniform TI of the AES S-box based on the generalized changing of the guards [27].

4. Design Challenges

Our approach of implementing SAEAES is to extend the previous AES implementation using
the generalized changing of the guards [27]. In this section, we discuss several challenges we face in
the extension.

4.1. Byte Order and Serialization

The byte-serial architecture scans the 16-byte AES state a byte at a clock cycle, which is
commonly used for a compact AES implementation. There are the row-oriented and column-oriented
serializations. Many of the conventional lightweight AES implementations, including the previous
SAEAES implementation [15], follow the rigorously optimized architecture by Moradi et al. [23] that
uses the row-oriented state and key arrays in Figure 4.

S00

S01

S02

S03

S10

S11

S12

S13

S20

S21

S22

S23

S30

S31

S32

S33

R
co

n

State array w/ MixColumns Key array

MixColumns

8

8

8 8

8 8

Sh
ift

R
ow

s

Sh
ift

R
ow

s

Sh
ift

R
ow

s

Sh
ift

R
ow

s

S00

S01

S02

S03

S10

S11

S12

S13

S20

S21

S22

S23

S30

S31

S32

S33

Figure 4. The row-oriented state and key arrays in the conventional compact AES implementation [23].

One drawback of the row-oriented serialization is its incompatibility with the AES’s native byte
order. This incompatibility has no problem as far as considering a single AES call because we can
absorb the difference by redefining the data representation.



Cryptography 2020, 4, 23 8 of 17

However, we cannot change the data representation with a mode of operation because it specifies
the byte order for supporting arbitrary-length (i.e., block-unaligned) messages. Table 1 shows the
timing we feed an 8-byte string m7 ‖ m6 ‖ · · · ‖ m0 in the column- and row-oriented serialization.
With the column-oriented serialization, we can feed the bytes in the original order every cycle. With the
row-oriented serialization, on the other hand, we need to reorder the bytes and feed them in an
interleaved manner. This reordering and synchronization costed an additional 56-bit shift register in
the previous SAEAES implementation [15].

Table 1. The byte order for feeding an 8-byte byte string m7 ‖ m6 ‖ · · · ‖ m0 in the column- and
row-oriented serialization.

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

column-oriented m7 m6 m5 m4 m3 m2 m1 m0 — — — — — — — —
row-oriented m7 m3 — — m6 m2 — — m5 m1 — — m4 m0 — —

4.2. On-The-Fly Key Schedule

On-the-fly key schedule is a common technique for reducing the register cost that updates
the secret key in place for key schedule. Although overwriting an original key is not a problem
for a particular application that uses a single AES call (e.g., challenge–response authentication),
SAEAES needs the same secret key for processing the next block. There are two ways to get the same
key again: (i) storing it in another register or (ii) recovering the original data by implementing the
reverse key schedule. In this paper, we use the first approach—discussed in Section 5.3.

4.3. Scan Flip Flop and Clock Gating

The previous design further optimize the row-oriented arrays (Figure 4) using the netlist-level
(cf. register-transfer level (RTL)) optimization [23]. The design uses scan flip flops (SFFs), a register
with a builtin selector, which is more efficient than an individual register and selector combined.
Moreover, the design uses a gated clocking to control the data flow instead of implementing an enable
signal using a selector with a feedback line. These techniques are very efficient and followed by many
designs [13,14,21,23].

Meanwhile, the SFF’s original purpose is to instrument a design with a scan-path chain and
provides a way for testing after fabrication, and not for optimizing a design. A logic synthesizer does
not infer an SFF unless a designer explicitly instantiate the cell in the code. This type of optimization
binds the design to a specific standard-cell library, and is unavailable to some designers who releases a
synthesizable RTL design (e.g., IP vendors). Also, some conservative coding/design rules prohibit
such an aggressive optimization for a possible incompatibility with an automated scan-path insertion.
Moreover, avoiding glitches on the gated clock signal needs a careful design using a dual-phase or
dual-edge clock that increases the engineering cost. To avoid these disadvantages, we use neither SFF
nor gated clock, as we discuss in Section 5.1.

5. Proposed Design

5.1. Design Policy

We use a conservative design policy based on the discussion in Section 4. We describe the design at
the register-transfer level (RTL); we use no netlist-level optimization, including the direct standard-cell
instantiation of SFFs, so that the design will not bound to a specific library. The design completely
synchronizes to a single-edged clock and uses no gated clock.

The circuit area is the primary performance target. By considering the design choices in
software/hardware codesign, and following the common practice of letting hardware do regular
operations for improving the efficiency, we choose the coprocessor interface aiming at accelerating
the main time-consuming part of AD processing, encryption, and decryption. Meanwhile, the design



Cryptography 2020, 4, 23 9 of 17

relies on an external processor for handling exceptional cases such as padding following the previous
works [10,13–15,28]. Meanwhile, there is another approach of including the padding circuit inside
the design, which is more suitable for a high-speed design with a direct memory access [33].
For implementing one-zero padding for SAEAES, we will need an additional input for indicating the
end of the message, and some selector and AND gates for overwriting the incoming data stream.

The implementation holds several parameters during their lifetime. In particular, it preserves
the secret key over multiple AES calls to eliminate the hidden cost of an external key
register. The design assumes an asynchronous register interface: an external controller needs no
cycle-accurate synchronization.

5.2. Column-Oriented Serialization

We propose the column-oriented arrays in Figure 5 to address the issue of the row-oriented
serialization discussed in Section 4.1.

5.2.1. State Array

Figure 5 (left) shows the column-oriented state array. Figure 5 explicitly shows selectors attached
to registers because we do not use SFFs. The circuit uses the vertical links for shifting the serialized
data, and the horizontal links for MixColumns and ShiftRows. In particular, we realize ShiftRows by
shifting the data using the horizontal links while controlling the number of shifts using enable signals.
This array finishes an AES round using 27 cycles, as shown in Table 2: 16 cycles for S-box, 4-cycles
latency for a pipelined S-box, 3 cycles for ShiftRows, and 4 cycles for MixColumns.

M
ix

C
ol

um
ns

8

Rcon

S20

S10

S00

S30

State array w/ MixColumns Key array

8 8

8 8 8

S21

S11

S01

S31

S22

S12

S02

S32

S23

S13

S03

S33

S20

S10

S00

S30

S21

S11

S01

S31

S22

S12

S02

S32

S23

S13

S03

S33

Figure 5. The column-oriented state and key arrays. The all registers have an enable signal for
controlling their data flow.



Cryptography 2020, 4, 23 10 of 17

Table 2. AES round in 27 cycles: operations of the state and key arrays with a 4-stage pipelined S-box.

.

Cycle State Array Key Array

1 S-box lookup Output
...

...
...

16 S-box lookup Output
17 Pipeline Latency S-box lookup
18 Pipeline Latency S-box lookup
19 Pipeline Latency S-box lookup
20 Pipeline Latency S-box lookup
21 ShiftRows Pipeline Latency
22 ShiftRows Pipeline Latency
23 ShiftRows Pipeline Latency
24 MixColumns Pipeline Latency
25 MixColumns —
26 MixColumns —
27 MixColumns —

5.2.2. Key Array

As shown in Figure 5 (right), the column-oriented key array has a simplified datapath for the
AES’s key schedule being column-oriented. It uses no horizontal link, which significantly reduces the
circuit area without an SFF, i.e., when a selector is not for free. Table 2 summarizes the key array’s
operations in each cycle. The key array works as a shift register for the first 16 cycles. It then feeds the
bytes in the fourth column to S-box for SubWord during the 17–20th cycles. Here, we use S13 (cf. S03,
see Figure 5) as an S-box input to realize RotWord. The XOR gate connected to S30 calculates the XOR
between the neighboring columns while shifting the data in the 1–16th cycles.

5.2.3. Comparing Row-Oriented and Column-Oriented Arrays

Table 3 compares the circuit areas of the row- and column-oriented arrays after logic synthesis
(See Section 6 for the tool, library, and conditions for the performances evaluation). The row-oriented
arrays, (SR) and (KR) in Table 3, implement the ones in Figure 4 using SFFs, while the columns-oriented
arrays (SC) and (KC) implement the ones in Figure 5 using an ordinary register with an enable signal.
The SFF is more efficient than a register with a selector, and (SC) is larger than (SR). Meanwhile, (KC)
is smaller than (KR) because the simplified data flow eliminates most of the selectors on the registers.
Although the row-oriented design is still better by 161 GE in total, it is relatively minor compared to
the entire circuit area. Thus, it is a reasonable cost for unbinding the design from a specific standard
cell library and reducing the engineering cost for handling multiple clocks.

Table 3. Performance comparison of the row- and column-oriented arrays.

Identifier Target Diagram Orientation Primitive Area [GE]

(SR) State Array Figure 4-left Row Scan FF 1219
(SC) State Array Figure 5-left Column FF with enable 1388

(KR) Key Array Figure 4-right Row Scan FF 1075
(KC) Key Array Figure 5-right Column FF with enable 1067

5.3. AES Implementation

Figure 6 shows the proposed SAEAES design, including AES implementation composed of the
key store, S-box implementation, and column-oriented arrays. The 8-bit buses receive the message and
key bytes in the AES’s native order, i.e., the column orientation. A single AES round takes 27 cycles
(see Table 2), and the entire AES operation finishes in 282 cycles.



Cryptography 2020, 4, 23 11 of 17

The key store is the 8-bit and 16-stage shift register with a feedback that stores the original key
(see Section 4.2), and transfers it to the key array at the beginning of an AES encryption. We avoid
a reverse key schedule because it has a significant impact on the key array and the S-box circuit in
addition to doubling the latency. We use the Canright’s AES S-box representation [34] divided into
four pipelined stages, which is necessary for TI, following the previous work [27].

Output

(C6)
State
array

(C5)
Key

array

Input

K
8

(C2)
Key

store

Const

(C4) AES

4

8
8

8

8

8

8

8 (C7)
4-stage
S-box

8

Figure 6. Datapath diagram of our design without threshold implementation (TI). (C1)–(C8) are
identifiers used in Table 6.

5.4. SAEAES Implementation

The mode of operation is a thin wrapper by following the previous SAEB and SAEAES
implementations [13,15], as shown in Figure 6. The wrapper consists of some 8-bit AND, XOR,
and selector gates for changing the datapath depending on the target operation.

The SAEAES implementation supports five commands: ComINIT, ComE, ComN, ComD, and ComT

that involve at most one AES call, as summarized in Table 4. Figure 1 shows how these commands
realize the SAEAES’s HASH, Encryption, and Decryption. Figure 7 illustrates the active path on the
simplified diagrams for each command. The XOR and AND gates control the next input to AES by
combining the previous AES output, the input message/ciphertext byte, and a domain-separation
constant. We use the same XOR for generating the output and tag.

The circuit has an 8-bit FIFO-like interface: a user pushes input bytes into the circuit,
which updates the output bytes simultaneously. The circuit starts an AES encryption after receiving
the sufficient number of bytes.

Table 4. Five commands that SAEAES implementation supports. See Figure 1 for the corresponding
operation in SAEAES, and Figure 7 for the active datapath in the proposed design.

Command Description

ComE Absorbing 64-bit data block in Hash and Encryption
ComINIT A special case of ComE without a feedback
ComN Absorbing a 120-bit nonce at the end of Hash
ComD Absorbing a 64-bit ciphertext block in Decryption
ComT Output the entire 128-bit state as a tag



Cryptography 2020, 4, 23 12 of 17

ComINIT ComEDatapath

ComT

Output

Input

Const

AES

ComD

Output

Input

Const

Output

Input

Const

AESAES

ComN

Output

Input

Const

AES

Output

Input

Const

Output

Input

Const

AESAES

Figure 7. The active datapaths in each of the ComINIT, ComE, ComN, ComD, and ComT command.

5.5. Threshold Implementation

Figure 8 shows our design that implements a 3-share and uniform TI with a protected key schedule
that provides the security up to the first-order attacks.

Output

(C6)
State
array

(C5)
Key

array

Input

K
24

(C2)
Key

store

Const

(C4) AES

4

42
42

42

(C3)
Shift reg.

18x4
(C8)

Shift reg.
18x4

sp
lit

co
nc

at
.

42

24

18
18

24

42

42

24

18

(C7)
4-stage
S-box

24

18

Figure 8. Datapath diagram of our design with TI. (C1)–(C8) are identifiers used in Table 6.

5.5.1. S-box

We use the 3-share and uniform S-box [27] in Figure 3 both for the round operation and key
schedule (see Table 2 for the timing). The S-box circuit has the 42-bit datapath width, and we extend the
entire datapath, including the input and output buses, to 42 bits. A user feeds the shared representation
of a message/key, 42 bits at a time, by taking 16 cycles. The timing is the same as the unprotected
implementation, and an AES call takes 282 cycles in total.

Table 5. Register-size comparison of our unprotected and TI designs.

Component Unprotected [bits] TI [bits]

Total 416 2208
State array 128 672 (= 14× 16× 3)
Key array 128 456 (= 8× 16× 3 + 18× 4)
Key store 128 456 (= 8× 16× 3 + 18× 4)

S-box 32 (= 4× 8) 192 (= 14× 4× 3 + 16 + 8)



Cryptography 2020, 4, 23 13 of 17

5.5.2. State Array

We need to extend the S-box’s input size from 8 to 14 bits for the generalized changing of the guards.
To store these 14-bit data, we extended the column-oriented arrays to store 224 (=14×16) bits. We then
duplicate the extended arrays to store the intermediate data in a shared representation. As a result,
the state uses 672 (=14× 16× 3) bits, as summarized in Table 5.

5.5.3. Key Array and Key Store

We store the secret key in the duplicated key arrays and an independent shift register. The previous
implementation [27] extends the entire key array from 8 to 14 bits, similar to the state array, resulting
in 672 bits of registers. However, since only 4 out of 16 bytes go through the S-box calculation,
the previous design wastes the 216 (= (16− 4)× 6× 3) extended bits. The previous work pointed out
this inefficiency but gave no concrete realization [27].

Instead of extending the bit width of the key array, we add an independent 18-bit and 4-stage
shift register for storing the extended bits ((C8) in Figure 6). As a result, the duplicated key array and
the new shift register combined use 456 bits of registers as summarized in Table 5, reducing 216 bits
from the previous design. We implement the key store in the same way using 456 bits of registers ((C2)
and (C3) in Figure 6).

For each AES call, we need 448 (= (14× 16× 2)) random bits to make a shared representation
of the AES’s input. We use 304 (= (8× 16× 2 + 6× 4× 2)) random bits for making a key share for
rekeying: 256 bits for a shared representation of the 128-bit key, and additional 48 bits for the extended
bits. In addition, we need 24 random bits for initializing the S-box circuit once at the time of boot.

6. Evaluation

6.1. Performance Evaluation

We synthesized the designs using Synopsys Design Compiler with the NanGate 45-nm standard
cell library [35]. For a component-wise comparison, we preserved the module hierarchy up to the
major components. Table 6 summarizes the post-synthesis performances of each component.

Table 6. Post-synthesis performance of our designs. See the diagrams in Figures 6 and 8 for the
identifiers (C1)–(C8).

Identifier Component Unprotected [GE] TI [GE]

(C1) Total 4690 18,288
(C2) Total/Key Store 961 2877
(C3) Total/Shift Register 18×4 — 545
(C4) Total/AES 3423 14,256
(C5) Total/AES/Key Array 1067 3222
(C6) Total/AES/State Array 1373 6553
(C7) Total/AES/S-box 533 3218
(C8) Total/AES/Shift Register 18×4 — 545

Our unprotected SAEAES implementation uses 4690 GE. Considering that our design has the key
store (961 GE), this size is comparable to that of the previous SAEAES implementation (3502 GE [15])
that needs an external key register. Our design has some disadvantages due to the conservative
design policy and the compatibility with TI: (i) the state and key arrays are larger for not using the
netlist-level optimization (see Table 3) and (ii) the S-box circuit is pipelined. These disadvantages,
however, are canceled out by the elimination of the 56-bit shift register (roughly 400 GE) needed in
the previous design for reordering the bytes [15] (see Section 4.1). Our design has room for further
optimization with a more aggressive design policy.

Our TI design uses 18,288 GE. The underlying AES implementation uses 14,256 GE, which is
smaller than the previous implementation with 17.1 kGE [27]. Reducing the key-related registers from



Cryptography 2020, 4, 23 14 of 17

672 to 456 bits (see Section 5.5 and Table 5) is the main reason for this improvement. The sizes of the
state array and the S-box circuit are similar to the previous design.

The mode of operation uses 610 (=18288− 2877− 545− 14256) gates or 3.3% with TI, i.e., AES
occupies 97% of the total area. The SAEB’s minimum state size and XOR-only properties [15]
contribute to this small footprint. AES-GCM, on the other hand, needs additional 512 bits of registers
corresponding to 3844 GE, which expands to 1280 bits or 9610 GE with TI (with the estimated register
cost of 961

128 GE/bit based on (C2) in Table 6). We note that AES-GCM also needs an independent
protection to its GF(2128) multiplication [36].

The register storing the shared representation of the key occupies 5161 GE or 28% (obtained by
subtracting the key-related size in the unprotected implementation (2028 = 961 + 1067) from that in
the TI implementation (7189 = 2877 + 3222 + 545 + 545)). Some of the previous implementations have
an unprotected key schedule by considering non-profiling attacks only [21,25,37]. If we use such an
unprotected key schedule in our design, the total circuit will be roughly 13 kGE by saving 5161 GE.

6.2. Comparison with SAEB-GIFT and Other AEADs

Table 7 compares our design with the previous implementation of SAEB-GIFT: SAEB instantiated
with the GIFT block cipher [15]. The SAEB-GIFT implementation [13] uses 6229 GE, which is roughly
1/3 of our SAEAES implementation. Since both implementations use the same mode of operation
(SAEB), the difference comes from that of AES and GIFT. The key store, non-linear key schedule,
and S-box are the key factors of the difference.

6.2.1. Key Store

In comparing the unprotected implementations, the key store (961 GE in Table 5) is the major
reason for the SAEB-GIFT implementation (2761 GE) being smaller than ours by 1929 GE. As discussed
in Section 5, the SAEAES implementation uses the key store because the reverse key schedule
is so expensive in AES. Meanwhile, the SAEB-GIFT implementation uses an efficient reverse key
schedule [15] by exploiting the GIFT key schedule defined as a simple nibble permutation [20]. The key
store becomes even larger with TI for storing the shared representation of the key.

6.2.2. Non-Linear Key Schedule

In contrast to the non-linear AES key schedule that needs 3 shares, we can protect the GIFT’s
linear key schedule with only 2 shares. This 2-share representation reduces the memory capacity for
the key array. Indeed, the recent TI-friendly authenticated encryptions [13,14] exploit this linear part
to improve the performance with TI. As a result, the GIFT’s key array is 2410 GE with TI, while AES
needs 7189 GE for storing the key ((C2), (C3), (C5), and (C8)).

6.2.3. S-Box

Even with an unprotected key schedule, our implementation is larger than that of SAEB-GIFT by
8084 GE. The main reason is the increased state size by the generalized changing of the guards: the need
for extending the data width from 8 to 14 bits increase the memory size by ×1.75 (=14/8). In contrast,
GIFT needs no such extension because the designers chose an S-box that has a uniform sharing [21].
We can reduce the memory size by using the previous non-uniform sharing [23–25], but we need to
implement an efficient random numbers as discussed in Section 3.

6.2.4. Other AEADs

Table 7 also shows the performances of the other authenticated encryptions: (i) the Arribas et al.
KETJE-JR implementation based on the changing of the guards sharing [9] and (ii) the Caforio et al.
implementations of several NIST LWC candidates based on GIFT-128 [10], which have the similar circuit
sizes compared to that of SAEAES. These implementations are larger because they traded the circuit area



Cryptography 2020, 4, 23 15 of 17

with speed: they finish a round function each cycle by using multiple S-box circuits (cf. 27 cycles/round
in our implementation). This comparison gives another insight about the cost of using AES.

Table 7. Comparison with SAEB-GIFT.

Target Unprotected [GE] TI [GE] TI † [GE] Ref.

SAEAES 4690 18,288 13,121 This work
SAEB-GIFT 2761 6229 5037 [13]

KETJE-JR 6109 20,032 — [9]
GIFT-COFB (3-share) 4700 — 16,386 [10]

SUNDAE-GIFT (3-share) 3548 — 13,297 [10]
HYENA (3-share) 3850 — 14,796 [10]

† TI with unprotected key scheduling.

7. Conclusions

We presented the first TI of the authenticated encryption algorithm SAEAES. We used the
Sugawara’s 3-share and uniform TI of AES S-box [27], but completely redesigned the internal data
structures (the state and key arrays) because SAEAES prefers the column-oriented serialization.
We show that our design achieves 18,288 GE with TI. Meanwhile, it is roughly three times larger than
the SAEB-GIFT implementation using 6229 GE [13]. Since both implementations use the same mode of
operation (SAEB), AES is responsible for the larger area: the main difference comes from the larger
number of registers needed for the non-linear key schedule and the larger states extended by the
generalized changing of the guards.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.B.; Seurin, Y.; Vikkelsoe, C.
PRESENT: An Ultra-Lightweight Block Cipher. In Cryptographic Hardware and Embedded Systems—CHES 2007,
Proceedings of the 9th International Workshop, Vienna, Austria, 10–13 September 2007; Paillier, P., Verbauwhede,
I., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4727,
pp. 450–466. [CrossRef]

2. National Institute of Standards and Technology (NIST). Submission Requirements and Evaluation Criteria
for the Lightweight Cryptography Standardization Process. 2018. Available online: https://csrc.nist.gov/
Projects/lightweight-cryptography (accessed on 7 August 2020).

3. Kocher, P.C.; Jaffe, J.; Jun, B. Differential Power Analysis. In Advances in Cryptology—CRYPTO ’99,
Proceedings of the 19th Annual International Cryptology Conference, Santa Barbara, CA, USA, 15–19 August
1999; Wiener, M.J., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1999;
Volume 1666, pp. 388–397. [CrossRef]

4. Mangard, S.; Oswald, E.; Popp, T. Power Analysis Attacks—Revealing the Secrets of Smart Cards; Springer:
Berlin/Heidelberg, Germany, 2007.

5. Sönmez, M. On the NIST Lightweight Cryptography Standardization. In Proceedings of the 23rd Workshop
on Elliptic Curve Cryptography (ECC 2019), Bochum, Germany, 2–4 December 2019.

6. Nikova, S.; Rechberger, C.; Rijmen, V. Threshold Implementations Against Side-Channel Attacks and
Glitches. In Information and Communications Security, Proceedings of the 8th International Conference, ICICS 2006,
Raleigh, NC, USA, 4–7 December 2006; Ning, P., Qing, S., Li, N., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2006; Volume 4307, pp. 529–545. [CrossRef]

http://dx.doi.org/10.1007/978-3-540-74735-2_31
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/11935308_38


Cryptography 2020, 4, 23 16 of 17

7. Ishai, Y.; Sahai, A.; Wagner, D.A. Private Circuits: Securing Hardware against Probing Attacks. In Advances in
Cryptology—CRYPTO 2003, Proceedings of the 23rd Annual International Cryptology Conference, Santa Barbara, CA,
USA, 17–21 August 2003; Boneh, D., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2003; Volume 2729, pp. 463–481. [CrossRef]

8. Groß, H.; Wenger, E.; Dobraunig, C.; Ehrenhöfer, C. Suit up!—Made-to-Measure Hardware Implementations
of ASCON. In Proceedings of the 2015 Euromicro Conference on Digital System Design, Funchal, Portugal,
26–28 August 2015; pp. 645–652.

9. Arribas, V.; Nikova, S.; Rijmen, V. Guards in Action: First-Order SCA Secure Implementations of Ketje
Without Additional Randomness. In Proceedings of the 21st Euromicro Conference on Digital System Design
(DSD), Prague, Czech Republic, 29–31 August 2018; pp. 492–499.

10. Caforio, A.; Balli, F.; Banik, S. Energy Analysis of Lightweight AEAD Circuits. Cryptology ePrint Archive,
Report 2020/607, 2020. Available online: https://eprint.iacr.org/2020/607 (accessed on 7 August 2020).

11. Beyne, T.; Bilgin, B. Uniform First-Order Threshold Implementations. In Proceedings of the International
Conference on Selected Areas in Cryptography, Ottawa, ON, Canada, 10–12 August 2016; Springer: Cham,
Switzerland, 2016; Volume 10532, pp. 79–98

12. Gao, S.; Roy, A.; Oswald, E. Constructing TI-Friendly Substitution Boxes Using Shift-Invariant Permutations.
In Topics in Cryptology—CT-RSA 2019, Proceedings of the The Cryptographers’ Track at the RSA Conference 2019,
San Francisco, CA, USA, 4–8 March 2019; LNCS: Springer: Berlin/Heidelberg, Germany, 2019; Volume 11405,
pp. 433–452.

13. Naito, Y.; Sugawara, T. Lightweight Authenticated Encryption Mode of Operation for Tweakable Block
Ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 2020, 66–94. [CrossRef]

14. Naito, Y.; Sasaki, Y.; Sugawara, T. Lightweight Authenticated Encryption Mode Suitable for Threshold
Implementation. In Advances in Cryptology—EUROCRYPT 2020, Proceedings of the 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 10–14 May 2020; Part II;
Canteaut, A., Ishai, Y., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2020, Volume 12106, pp. 705–735. [CrossRef]

15. Naito, Y.; Matsui, M.; Sugawara, T.; Suzuki, D. SAEB: A Lightweight Blockcipher-Based AEAD Mode of
Operation. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2018, 192–217.

16. National Institute of Standards and Technology (NIST). Federal Information Processing Standards Publication
197: ADVANCED ENCRYPTION STANDARD (AES); National Institute of Standards and Technology (NIST):
Gaithersburg, MD, USA, 2001.

17. Gueron, S.; Jha, A.; Nandi, M. COMET: COunter Mode Encryption with Authentication Tag. 2019.
Available online: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/
round-2/spec-doc-rnd2/comet-spec-round2.pdf (accessed on 7 August 2020).

18. Chakraborty, B.; Nandi, M. MixFeed. 2019. Available online: https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/mixFeed-spec-round2.pdf (accessed on
7 August 2020).

19. Naito, Y.; Matsui, M.; Sakai, Y.; Suzuki, D.; Sakiyama, K.; Sugawara, T. SAEAES. 2019. Available online:
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-
rnd2/SAEAES-spec-round2.pdf (accessed on 7 August 2020).

20. Banik, S.; Pandey, S.K.; Peyrin, T.; Sasaki, Y.; Sim, S.M.; Todo, Y. GIFT:A Small Present—Towards Reaching
the Limit of Lightweight Encryption. In Proceedings of the Cryptographic Hardware and Embedded
Systems (CHES), LNCS, Taipei, Taiwan, 25–28 September 2017; Springer: Berlin/Heidelberg, Germany, 2017;
Volume 10529, pp. 321–345.

21. Beierle, C.; Jean, J.; Kölbl, S.; Leander, G.; Moradi, A.; Peyrin, T.; Sasaki, Y.; Sasdrich, P.;
Sim, S.M. The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In Advances
in Cryptology—CRYPTO 2016, Proceedings of the 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, 14–18 August 2016; Part II; Robshaw, M., Katz, J., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2016; Volume 9815, pp. 123–153. [CrossRef]

22. National Institute of Standards and Technology (NIST). Announcing the ADVANCED ENCRYPTION
STANDARD (AES). FIPS PUB 197. 2001. Available online: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.197.pdf (accessed on 7 August 2020).

http://dx.doi.org/10.1007/978-3-540-45146-4_27
https://eprint.iacr.org/2020/607
http://dx.doi.org/10.13154/tches.v2020.i1.66-94
http://dx.doi.org/10.1007/978-3-030-45724-2_24
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/comet-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/comet-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/mixFeed-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/mixFeed-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SAEAES-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SAEAES-spec-round2.pdf
http://dx.doi.org/10.1007/978-3-662-53008-5_5
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf


Cryptography 2020, 4, 23 17 of 17

23. Moradi, A.; Poschmann, A.; Ling, S.; Paar, C.; Wang, H. Pushing the Limits: A Very Compact and a
Threshold Implementation of AES. In Advances in Cryptology—EUROCRYPT 2011, Proceedings of the 30th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia,
15–19 May 2011; Paterson, K.G., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2011; Volume 6632, pp. 69–88. [CrossRef]

24. Bilgin, B.; Gierlichs, B.; Nikova, S.; Nikov, V.; Rijmen, V. Trade-Offs for Threshold Implementations Illustrated
on AES. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015, 34, 1188–1200. [CrossRef]

25. Ueno, R.; Homma, N.; Aoki, T. Toward More Efficient DPA-Resistant AES Hardware Architecture Based
on Threshold Implementation. In Constructive Side-Channel Analysis and Secure Design, Proceedings of the
8th International Workshop, COSADE 2017, Paris, France, 13–14 April 2017; Revised Selected Papers; Guilley,
S., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10348,
pp. 50–64. [CrossRef]

26. Daemen, J. Changing of the Guards: A Simple and Efficient Method for Achieving Uniformity in Threshold
Sharing. In Cryptographic Hardware and Embedded Systems—CHES 2017, Proceedings of the 19th International
Conference, Taipei, Taiwan, 25–28 September 2017; Fischer, W., Homma, N., Eds.; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10529, pp. 137–153. [CrossRef]

27. Sugawara, T. 3-Share Threshold Implementation of AES S-box without Fresh Randomness. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019, 2019, 123–145. [CrossRef]

28. Balli, F.; Caforio, A.; Banik, S. Low-latency Meets Low-Area: An Improved Bit-Sliding Technique for
AES, SKINNY and GIFT. Cryptology ePrint Archive, Report 2020/608, 2020. Available online: https:
//eprint.iacr.org/2020/608 (accessed on 7 August 2020).

29. Dworkin, M. Special Publication 800-38D: Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC; National Institute of Standards & Technology: Boulder, CO, USA, 2017.

30. Salowey, J.; Choudhury, A.; McGrew, D. RFC5288: AES Galois Counter Mode (GCM) Cipher Suites for TLS;
Internet Engineering Task Force: Fremont, CA, USA, 2008.

31. Nikova, S.; Rijmen, V.; Schläffer, M. Secure Hardware Implementation of Nonlinear Functions in the Presence
of Glitches. J. Cryptol. 2011, 24, 292–321. [CrossRef]

32. Wegener, F.; Moradi, A. A First-Order SCA Resistant AES Without Fresh Randomness. In Constructive
Side-Channel Analysis and Secure Design, Proceedings of the 9th International Workshop, COSADE 2018, Singapore,
23–24 April 2018; Springer: Cham, Seitzerland, 2018; pp. 245–262. [CrossRef]

33. Rezvani, B.; Diehl, W. Hardware Implementations of NIST Lightweight Cryptographic Candidates: A First
Look. IACR Cryptol. ePrint Arch. 2019, 2019, 824.

34. Canright, D. A Very Compact S-Box for AES. In Cryptographic Hardware and Embedded Systems—CHES
2005, Proceedings of the 7th International Workshop, Edinburgh, UK, 29 August–1 September 2005; Rao, J.R.,
Sunar, B., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005;
Volume 3659, pp. 441–455. [CrossRef]

35. NanGate. NanGate FreePDK45 Open Cell Library. Available online: https://si2.org/open-cell-library
(accessed on 7 August 2020).

36. Oshida, H.; Ueno, R.; Homma, N.; Aoki, T. On Masked Galois-Field Multiplication for Authenticated
Encryption Resistant to Side Channel Analysis. In Constructive Side-Channel Analysis and Secure
Design, Proceedings of the 9th International Workshop, COSADE 2018, Singapore, 23–24 April 2018; Springer:
Cham, Seitzerland, 2018; pp. 44–57. [CrossRef]

37. Poschmann, A.; Moradi, A.; Khoo, K.; Lim, C.; Wang, H.; Ling, S. Side-Channel Resistant Crypto for Less
than 2300 GE. J. Cryptol. 2011, 24, 322–345. [CrossRef]

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1109/TCAD.2015.2419623
http://dx.doi.org/10.1007/978-3-319-64647-3_4
http://dx.doi.org/10.1007/978-3-319-66787-4_7
http://dx.doi.org/10.13154/tches.v2019.i1.123-145
https://eprint.iacr.org/2020/608
https://eprint.iacr.org/2020/608
http://dx.doi.org/10.1007/s00145-010-9085-7
http://dx.doi.org/10.1007/978-3-319-89641-0_14
http://dx.doi.org/10.1007/11545262_32
https://si2.org/open-cell-library
http://dx.doi.org/10.1007/978-3-319-89641-0_3
http://dx.doi.org/10.1007/s00145-010-9086-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Purpose and Approach
	Contributions
	Organization

	SAEAES
	Authenticated Encryption
	SAEAES and its Algorithm
	Hardware Implementations of SAEAES

	Threshold Implementation of AES
	Side-Channel Attack and Countermeasure
	Threshold Implementation
	Composing a Sharing for a Target Function
	Lack of Uniformity and Refreshing

	Changing of the Guards

	Design Challenges
	Byte Order and Serialization
	On-The-Fly Key Schedule
	Scan Flip Flop and Clock Gating

	Proposed Design
	Design Policy
	Column-Oriented Serialization
	State Array
	Key Array
	Comparing Row-Oriented and Column-Oriented Arrays

	AES Implementation
	SAEAES Implementation
	Threshold Implementation
	S-box
	State Array
	Key Array and Key Store


	Evaluation
	Performance Evaluation
	Comparison with SAEB-GIFT and Other AEADs
	Key Store
	Non-Linear Key Schedule
	S-Box
	Other AEADs


	Conclusions
	References

