
cryptography

Article

The Cryptographic Complexity of Anonymous Coins:
A Systematic Exploration

Niluka Amarasinghe *, Xavier Boyen and Matthew McKague

����������
�������

Citation: Amarasinghe, N.; Boyen,

X.; McKague, M. The Cryptographic

Complexity of Anonymous Coins: A

Systematic Exploration. Cryptography

2021, 5, 10. https://doi.org/

10.3390/cryptography5010010

Received: 31 December 2020

Accepted: 18 February 2021

Published: 4 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science, Queensland University of Technology, Brisbane City, QLD 4000, Australia;
xb@boyen.org (X.B.); matthew.mckague@qut.edu.au (M.M.)
* Correspondence: niluka.amarasinghe@qut.edu.au

Abstract: The modern financial world has seen a significant rise in the use of cryptocurrencies in
recent years, partly due to the convincing lure of anonymity promised by these schemes. Bitcoin,
despite being considered as the most widespread among all, is claimed to have significant lapses in
relation to its anonymity. Unfortunately, studies have shown that many cryptocurrency transactions
can be traced back to their corresponding participants through the analysis of publicly available
data, to which the cryptographic community has responded by proposing new constructions with
improved anonymity claims. Nevertheless, the absence of a common metric for evaluating the level
of anonymity achieved by these schemes has led to numerous disparate ad hoc anonymity definitions,
making comparisons difficult. The multitude of these notions also hints at the surprising complexity
of the overall anonymity landscape. In this study, we introduce such a common framework to
evaluate the nature and extent of anonymity in (crypto) currencies and distributed transaction
systems, thereby enabling one to make meaningful comparisons irrespective of their implementation.
Accordingly, our work lays the foundation for formalizing security models and terminology across a
wide range of anonymity notions referenced in the literature, while showing how “anonymity” itself
is a surprisingly nuanced concept, as opposed to existing claims that are drawn upon at a higher
level, thus missing out on the elemental factors underpinning anonymity.

Keywords: anonymity; security models; cryptocurrencies; anonymous coins; foundations

1. Introduction

Cryptocurrencies are undeniably one of the most attention-grabbing developments
in security research of the last decade. They continue to open up new classes of inquiries
for the crypto and distributed systems communities, while also arguably offering tangible
financial benefits to the common man and woman. Consequently, their emergence as
alternatives to traditional fiat currencies is reaching new heights [1,2].

Thanks to the blockchain technology, trust, the grease of financial transactions, can
now be inferential rather than axiomatic. The decentralized nature, ease of conducting
cross-border transactions, resistance to censure, and promises (or hopes) of privacy and
anonymity are factors that have contributed towards this popularity. Bitcoin is the first and
by far the most widely used true (By which we mean permissionless, fully decentralized,
with democratic governance, and transparently operated—in other words, conducive to
trust from first principles.) cryptocurrency at the time of this writing, and has attracted
much attention with respect to its privacy and anonymity aspects.

Anonymity, from a broad perspective, means that with respect to a given group of enti-
ties, it is not possible to uniquely identify one entity from the rest in that group. This concept
of anonymity has been widely discussed in the context of anonymous communication and
also in anonymous information sharing. Consequently, many theoretical models have been
developed to model anonymity, such as k-Anonymity [3] and approaches based on modal
logic [4]. Some such studies present formalized terminologies to capture different aspects of
anonymity [5], while some propose metrics that could be used to measure a quantitative

Cryptography 2021, 5, 10. https://doi.org/10.3390/cryptography5010010 https://www.mdpi.com/journal/cryptography

https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography5010010
https://doi.org/10.3390/cryptography5010010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryptography5010010
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography5010010?type=check_update&version=2

Cryptography 2021, 5, 10 2 of 47

notion thereof, e.g., as a degree of anonymity [6]. For better or for worse, these available
theoretical frameworks have been borrowed for discussing anonymity in cryptocurrencies.

The absence of an acceptable level of anonymity and privacy could hinder the ef-
fectiveness of any currency scheme. Many traditional currency schemes are centralized
systems where customers depend on another party to preserve the privacy of related infor-
mation. For example, in a banking model, banks are bound by regulation to preserve the
confidentiality of customer information. If the transaction history of a particular individual
or entity was exposed to an outsider, it could result in many undesirable consequences,
from a subjective sense of betrayal, to more concrete abuses such as misuse of that infor-
mation to gain undue advantages in contract bidding. Even worse, if currency units came
attached with transaction histories, it could lead to the blacklisting of specific units based
on their use in unlawful activities in the past, or their involvement in boycotted operations,
even though the units may have had only uncontroversial uses afterwards. As such, it is
paramount to have a tolerable level of anonymity in a currency scheme in order to ensure
its fungibility.

In relation to the anonymity of Bitcoin, it has been argued that the current Bitcoin
framework only provides a level of “pseudonymity”, in place of anonymity, as transactions
are linked to payment addresses in a big graph that is visible to all [7,8]. Detailed analyses of
public bitcoin transaction data have shown that it is possible to uncover behavior patterns
of Bitcoin users and trace their identities in real life [9–11].

As a consequence of this tension between the need for, and the lack of, effective
anonymity in cryptocurrencies, a lot of energy has been expended with the primary focus
of fulfilling that demand. Some solutions are centered around improving the anonymity
of the Bitcoin framework (e.g., Zcash), whereas other approaches have sought to revisit
the blockchain machinery in the design of new cryptocurrency schemes (e.g., Monero). In
spite of many such solutions making claims of “anonymity”, further studies have shown
that a majority of them could still be subject to deanonymization [12,13].

As rationalized in [14], despite a large number of studies around the topic of cryp-
tocurrency anonymity, no standardized means are available to evaluate the actual level
of privacy achieved by different cryptocurrencies. Many studies have been conducted in
isolation using different metrics, with the consequence that it is not feasible to compare and
benchmark the anonymity landscape in a reliable manner across various constructions. To
make matters worse, it turns out that the very notion of anonymity itself, in such complex
multi-party systems as decentralized cryptocurrencies, has been until now very poorly
understood, and is anything but clear-cut. It is replete with nooks and crannies of special
cases and limitations that could turn into so many vulnerabilities.

1.1. Our Contribution

The present study was initially motivated by the works in [7,8,14,15], which lifted the
veil on the multiplicity of anonymity notions for cryptocurrencies, but stopped short of
actually providing a crisp formalism for defining and using those notions.

Over the course of this study, we identified a very fine-grained structure for the intu-
itive notion of payment anonymity, parameterized through qualitative distinct definitions,
which can be shown to be sensible and justifiable in appropriate scenarios. Moreover, our
definitions follow patterns that make them amenable to being brought to order according to
a logical taxonomy.

Our purpose in this work, therefore, is to initiate a comprehensive formal study of
fine-grained notions of anonymity in payment systems. While the multiplicity of notions is
truly a by-product of the diversity and complexity of cryptographic cash systems (both
existing or envisioned), our framework is general enough to capture familiar instances such
as intermediated banking transactions and interpersonal physical payments. Note that
we do not intend to address the anonymity of the underlying implementation of currency
schemes in this work, i.e., consensus or communication mechanisms.

Cryptography 2021, 5, 10 3 of 47

Our main contribution in this context is the formulation of a theoretical framework
that can be used to provide a systematic categorization of terminology related to anonymity
of (crypto) currencies and to model anonymity across different instances of such cur-
rency schemes.

Before we even start discoursing of anonymity, we create a flexible framework to
abstract the generic functionality of nearly arbitrary payment systems, as long as certain
basic consistency, security, and financial soundness properties that we define are satisfied.
We model notions of spendability, balance, and indemnification, among others, considered
either in an absolute universal sense for all inputs, or with respect to adversaries granted
access to helper oracles.

On this foundation, we then analyze the multiple precise ways in which a broad notion
of anonymity can be envisaged, and we provide a common game-based security template
that consolidates a massive group of explicit attacker scenarios. Our framework is based
around the fundamental notion of distinguishability, leading to a security concept of indistin-
guishability, likely familiar to readers from other security definitions, and a weaker notion of
unlinkability. These notions are further particularized to certain subjects such as transaction
value, sender, recipient and metadata, and parameterized across multiple dimensions based on
which information and capabilities are given to the adversary, including (or not) the ability
to see or set the initial state, to access or choose ancillary public/private keys, to query
and/or manipulate the system as it runs, and to access or choose other transaction data.

Throughout this rather expansive exercise, we strive to identify similarities between re-
lated notions, which allows us in certain instances to “compress” or abstract them according
to a common template, cutting size, and tedium while boosting descriptive power. Some
of the resulting definitions are not distinct, others are mere tweaks in a common template,
and yet others will require individual treatment. In order to encapsulate these dispersed
scenarios, we present a set of theorems, underpinning the relationships among them.

The take-away message from our effort is that (financial) anonymity is not an all-or-
nothing binary property; it is far more subtle. We fully intend that our framework be used
to clearly spell out what aspects of privacy a certain coin does or does not satisfy, across
diverse implementations. Of course, one could be content with asking for absolute fungibility
(think: isotopically pure melted gold), but that is likely not to lead us anywhere, as no
cryptocurrency in existence comes close to reaching that goal. This only makes the need for
a (much) more refined model, all the more pressing.

1.2. Other Related Work

As mentioned at the outset, many early studies have focused on quantitative analysis
of publicly available Bitcoin transaction data such as payment addresses and values as the
Bitcoin blockchain records all transaction details publicly.

One of the early studies conducted by Reid et al. [16] on the anonymity of Bitcoin,
presents a passive analysis on publicly available transaction data by constructing two topo-
logical structures based on the connectivity of users and transactions showing how these
data can be analyzed in many different ways compromising the anonymity of users. Some
have attempted to quantify such data as in [11], where behavioral patterns and transaction
flows are studied at the user level. Meiklejohn et al. [17] present a different characterization
of Bitcoin transaction data by clustering user accounts in terms of several heuristics, thereby
highlighting the gap between expected vs. actual level of anonymity in the Bitcoin network.
A similar work done by Spagnuolo et al. [18] proposes a framework (named BitIodine) to ex-
tract Bitcoin user information, mainly aiming for forensic purposes. These studies evidently
place more emphasis on the quantitative analysis while we follow a qualitative approach.

On a different note, some have attempted to formalize the anonymity concepts in a
theoretical manner. In this regard, a majority of the work conducted in the Bitcoin system
evaluates the level of anonymity based on the notion of so-called linkability, yet with different
interpretations. Androulaki et al. [10] conducted an analysis of Bitcoin privacy based on
activity unlinkability and profile indistinguishability. In this work, unlinkability is defined

Cryptography 2021, 5, 10 4 of 47

in relation to addresses and transactions (independently) with respective users, whereas
profile indistinguishability refers to clustering of users based on addresses or transactions.
This interpretation of unlinkability has been applied in several subsequent studies related to
the anonymity of Bitcoin [19–21]. From these studies, it is apparent that Bitcoin anonymity
cannot be defined at the transaction layer as addresses and transactions are linkable by the
construction itself.

As Bitcoin receives much criticism to that effect, new currency schemes have emerged
more promising anonymity expectations, which has led to the need for more concrete
formalization of anonymity concepts. Zcash is one such scheme which supports two
types of transactions: “shielded” and “unshielded”. Shielded transactions are encrypted,
and therefore conceal the addresses and values involved, thereby claiming to acquire
improved levels of anonymity. However, users have the option to choose the transaction
type, and thus they end up creating unshielded transactions at some point, where they work
similar to Bitcoin transactions. Several experimental studies have shown that it is prone to
linkability [22,23]. Linkability in this context is defined as the ability to link transactions and
the corresponding payment addresses, and they claim that shielded transactions eventually
end up in transparent addresses [23].

Cryptonote is one of the protocols based on which several currency systems have been
constructed with improved anonymity claims. Saberhagen [24], in the original Cryptonote
paper, states that a fully anonymous currency scheme should satisfy two properties with
respect to anonymity: unlinkability and untraceability. Unlinkability in this work refers
to the property that given two transactions, it is not possible to identify whether both
transactions were intended to the same party, whereas untraceability is defined as the
inability to identify the corresponding sender among a set of possible senders for a given
transaction. Monero, which originated from the Cryptonote protocol, then claimed to
provide untraceable transactions and untraceable payments. However, these two properties
have fallen to deanonymization attacks in many subsequent studies through the analysis
of Monero transaction data [13,25,26].

Fungibility, which is the property of every currency unit being identical, is regarded by
many as an elementary requirement of any currency scheme, but it is a tall order. It is well
accepted that Bitcoin is not fungible [8,27]. Although it has been claimed in [23] that Zcash
achieves fungibility through its use of zk-SNARK (zero-knowledge Succinct Non-Interactive
Argument of Knowledge) proofs, the survey study in [8] makes the countermanding claim
that Mimblewimble is the only cryptocurrency scheme to do so. Even so, the original
Mimblewimble is insecure, and the fix proposed in [28], by making it preserve a lot more
data, reintroduces the coin history removed in the original fungibility claim [29].

A recent work by Biryukov et al. [30] presents an experimental analysis on deanonymiza-
tion of sample transactions in several cryptocurrencies based on network analysis. The
outcomes are presented in terms of anonymity degree, which provides an information-
theoretic notion of anonymity as a metric external to the scheme being studied. The study,
however, stresses the need for a common mechanism that could be used to measure the
effectiveness of various techniques used by different currency schemes in their search
of anonymity.

Cachin et al. [31] proposed a formal model for blockchain systems by modeling the
transactions in terms of a graphical structure called Transaction Graphs, focusing on three
different blockchain systems: Bitcoin, Ethereum, and Hyperledger Fabric. While this work
focuses on the semantics of a blockchain, our model deviates from this as our emphasis is
on modeling anonymity based on the functionality of a currency scheme, as opposed to
the underlying construction.

With this background, many have attempted to evaluate and compare the level of
anonymity achieved by different cryptocurrencies through diverse means. Among the
academic literature, the survey conducted by Khalilov et al. [7] presents a comprehensive
categorization on a wide range of cryptocurrencies. They attempted to group the underly-
ing constructions of these schemes around three aspects of anonymity: untraceability, hidden

Cryptography 2021, 5, 10 5 of 47

values, and hidden IP addresses. A similar study was carried out by Conti et al. [8], which
discusses the privacy aspects of Bitcoin and other cryptocurrencies as a comparison of ad-
vantages and disadvantages in terms of privacy and anonymity with respect to unlinkability,
untraceability, deniability, and fungibility, yet without providing formal definitions. Further,
the work in [14] presented a survey of several cryptocurrencies with respect to a set of qual-
itative anonymity properties such as fungibility, unlinkability, untraceability, hidden values,
and unlinkability of IP addresses. Without formally defining those properties, they used them
to compare cryptocurrencies over multiple dimensions. In a more recent survey paper,
Alsalami et al. [15] presented a systematic grouping of a chosen set of cryptocurrencies
in terms of four privacy tiers: pseudonymity, set anonymity, full anonymity, and confidential
transactions, based on two characteristics: the ability to break links between transactions
and hiding user identities. However, this categorization also, similar to the work in [7],
provides a very high level picture of the anonymity levels based on the techniques used by
the schemes, which is orthogonal to our work.

Nevertheless, these studies, mostly based on experimental analyses or specific con-
structions, do not necessarily facilitate the assessment and comparison of cryptocurrencies
in terms of a common, fine-grained, formal qualitative model of anonymity. Table 1 compares
the terminology used to model anonymity in above studies with our work.

Table 1. Comparison with similar work.

Paper/Study Basis/Method Type Anonymity Notion/s Applicable Cryptocurrencies

[16] Experimental analysis Quantitative No formal notions Bitcoin

[11] Experimental analysis Quantitative No formal notions Bitcoin

[17] Experimental analysis Quantitative No formal notions Bitcoin

[18] Experimental analysis Quantitative No formal notions BitIodine

[10,19–21] Quantitative analysis Quantitative Activity unlinkability and user profile indistinguishability Bitcoin

[22,23] Experimental analysis Quantitative Linkability Zcash

[13,24–26] Implementation techniques Qualitative Untraceability, unlinkability Cryptonote

[8] Based on distinct properties Qualitative Internal/external unlinkability, untraceability, fungibility,
deniability (no formal definitions)

Bitcoin variants, CoinJoin and
Cryptonote based variants

[30] Network analysis Quantitative Anonymity degree Bitcoin, Zcash

[31] A transaction model based on
blockchain semantics Qualitative No formal notions Bitcoin, Ethereum and

Hyperledger Fabric blockchains

[15] Techniques used for
anonymisation Qualitative Pseudonymity, Set anonymity, full anonymity,

confidential transactions (No formal definitions)
Bitcoin and variants, Ethereum,
Cryptonote based variants

[14] Based on existing literature Qualitative Unlinkability, fungibility, untraceability, hidden values,
unlinkability of IP addresses (No formal definitions)

Bitcoin and variants,
Cryptonote based variants

[7] Anonymity/privacy
improvement methods Qualitative

untraceability of input/output addresses and
transactions, hidden values, hidden IP addresses
(No formal definitions)

Bitcoin and variants,
CryptoNote based,
Mimblewimble

Our work Anonymity framework based on a
comprehensive adversarial model Qualitative Indistinguishability and Unlinkability of senders,

recipients, value and metadata (formal definitions)
Any decentralised
cryptocurrency scheme

1.3. Research Question

As evident from the above, there is no existing means for modeling anonymity uni-
formly across diverse constructions. Further, the presence of a wide range of notions
suggests that anonymity depends on a number of factors. As a result, current claims of
anonymity cannot be apprehended in a qualitative manner. Accordingly, we formulate our
research question as follows.

How can we achieve a fine-grained systematization of anonymity modeling suitable
for massively decentralized systems such as modern cryptocurrencies?

As such, we follow the research methodology below to devise a suitable means to
achieve the above.

Cryptography 2021, 5, 10 6 of 47

1.3.1. Research Methodology

Our research methodology is focused around constructing a common unifying mathe-
matical framework, which is able to capture all the multiple security nuances in all existing
and future schemes, following the accepted approach in cryptography which is to define
security properties in terms of “games” or conceptual experiments. We choose game-based
definitions over the Universal Composability (UC) framework because the former are intu-
itive and can be agreed upon by non-specialists (much less non-cryptographers). This is
essential as a bridge between theory and applications. Further, UC is a very nice theoretical
methodology which is best suited for small primitives whose ideal functionalities may still
have a clean description, which is certainly not the case in the context of cryptocurrencies.

The first step in this process is to define a generic cryptocurrency scheme which depicts
the functionality of a typical decentralized currency scheme, while ensuring its correct and
secure functionality. We do not consider the particulars of the underlying communication
network or the consensus mechanism here as they may be unique to each scheme. Instead,
we focus on the functionality which enables us to define a universal framework irrespective
of the implementation-specific elements.

Based on this currency scheme, we then construct a comprehensive adversarial model,
which encapsulates a wide range of attacker scenarios by investigating different security
aspects. This lays the foundation for our conceptual framework, which is the essence of
this work. Thereafter, we devise a game to model various settings affecting anonymity of
a currency scheme, leading to a set of granular anonymity notions that are unique and
precise, and are able to provide a unified framework for modeling anonymity.

1.3.2. Conceptual Framework

As already stated, this framework is formulated using game-based security model-
ing. It is a commonly accepted method in cryptography, which makes it easy to capture
adversarial goals under well-defined adversarial capabilities. Each capability defines a
unique attacker scenario, which is usually represented by a unique game (or a conceptual
experiment). As in our case there are so many to consider, we came up with a methodology
which involves defining a parametric experiment, which allows us to parameterize in terms
of adversarial capabilities along multiple dimensions, each of which on a rising scale from
no access to informational to manipulative to full control. Further details of this conceptual
framework are discussed in Section 3 under Security.

1.4. Implication of the Research

As summarized in Table 1, the diversity of existing anonymity modeling methods
highlights the inability to compare anonymity achieved by decentralized currency schemes.
Conversely, our work uncovers the granularity of anonymity through a plethora of distinct
definitions, each representing a different aspect of anonymity. While a multitude of separate
definitions may seem absurdly excessive, we emphasize that these definitions arise naturally
from considering the possible interactions between the adversary and the cryptocurrency.
Indeed, our notions generalize many security notions familiar to cryptographers such as
known vs. chosen plaintext, forward security, indistinguishability, active vs. passive adver-
saries, and so on. The fact that we consider all of these security dimensions simultaneously
multiplies the number of definitions, but also allows us to meaningfully understand and
compare the anonymity of systems that differ along multiple dimensions. As a consequence,
this work provides a means for modeling anonymity in a precise and qualitative manner.

2. Proposed Model

We start by constructing a model for a cryptocurrency scheme in terms of a set of
algorithms which depicts the overall functionality of a generic cryptocurrency scheme.

A currency scheme is defined in terms of a security parameter λ ∈ Z+ and the initial
state of the system, is called the genesis state. The scheme consists of a set of payment
addresses, each consisting of a private key and a public address or identity. A transaction

Cryptography 2021, 5, 10 7 of 47

takes place between multiple senders and recipients, and consists of a private and a public
part. A minting operation collects unminted transactions at any given point in time and
generates a new state. New currency units are generated as a result of the minting process,
as per the underlying implementation of the scheme. The adjudicate operation selects
the rightful new state of the system. A system state p is defined by the implementation
and will typically record all payment addresses and transactions that are valid in that
instance. In Bitcoin, for example, the blockchain is the state. Every valid state descends
from a valid checkpoint state, which descends from another checkpoint state or the genesis
state. Accordingly, consecutive states of the scheme form a partial ordering with respect
to the internal system specifications. We use the notation given in Table 2 throughout the
document in order to represent the scheme and its operations mathematically.

Table 2. Notation.

Description Notation

Security parameter λ : λ ∈ Z+
A system state/Current state p
A set of states P
p0 is an earlier state in time than p1 or p0 = p1 i.e., p0 is in p1’s history p0 � p1
p0 is not in the history of p1 p0 � p1
p0 � p1 ∧ p0 6= p1 p0 ≺ p1
A payment address a
Public key/Private key of a payment address apk, ask
Ordered tuple of one/more addresses (senders/recipients) of secret keys S̄, R̄
Ordered tuple of one/more addresses containing only public keys S, R
Number of items in a tuple S |S|
Public and private parts of a transaction tp, ts
Ordered tuples of input and output values of a transaction Vold, Vnew
Metadata for a transaction m
Excess value of a transaction (fees + minted value) Vx
A tuple of addresses of miners Rm
Concatenation of tuples A and B, Set minus operation of tuples A, B A‖B, A \ B
Empty set, empty tuple (∅/{}), ()
apk is an element of tuple R apk ∈ R
apk is not an element of tuple R apk /∈ R
Every element in tuple R

′
is in tuple R R

′ ⊆ R
If [condition] is false after < statement >, then return 1 < statement > [condition]
If 〈 condition 〉 is false after < statement >, then return 0 < statement > 〈condition〉
If a = ⊥ then return c, else return b a?b : c
If a = ⊥ then return b, else return a a? : b
Return X if y, otherwise return 1 Xy

Standard operations on Associative Arrays OperationAA
Set of all possible system states P
Set of all possible addresses (both public and secret parts) A
Set of all possible transactions (both public and secret parts) T
Set of all possible transaction values of the form (Vold, Vnew, m) V
Set of all possible mint data values of the form (Rm, VM) M

2.1. A Generic Cryptocurrency Scheme

We define a generic cryptocurrency scheme as follows.

Definition 1. A cryptocurrency scheme Π, is defined in terms of security parameter λ and with
the functionality prescribed by means of a set of algorithms; {Init, CreateAddr, IsValidPubAddr,
IsValidSecAddr, GetBalance, CreateTxn, IsValidPubTxn, IsValidSecTxn, ExtractSenderPubAddr,

Cryptography 2021, 5, 10 8 of 47

ExtractRecipientPubAddr, ExtractInputVal, ExtractOutputVal, IsMintable, Mint, Adjudicate,
IsValidState, IsGenesisState, CreateCheckpointState, RetrieveCheckpointState}.

Functionality

Table 3 summarizes the structure of the algorithms of the scheme. The initial setup of
the scheme is defined by the Init algorithm in terms of a security parameter λ, and this
process generates the genesis state. The payment address creation process, CreateAddr,
takes an identity and some randomness, and generates a public–private key pair (apk, ask)
and a transaction, which can be minted to register the addresses. Public and private keys
can be validated with respect to a given state, p. A transaction (tp, ts) is created with
unspent funds from one or more senders (Vold) and corresponding funds for recipients
(Vnew), together with transaction related metadata m such as corresponding IP addresses or
other system-specific data. The validity of a transaction can be defined with respect to its
public part as well as both public and private parts taken together. The difference between
the total input value and the total output value is considered as transaction fees. Further,
transaction-related data (input–output values and public keys of senders and recipients)
can be extracted from a given transaction, if both public and private parts of the transaction
are known.

Table 3. Functions.

Algorithm Syntax

Init p0 ← Initπ(1λ)

CreateAddress ⊥ ∨ (apk, ask, tp, ts)← CreateAddrπ(p, d; ρ)

IsValidPubAddr {0, 1} ← IsValidPubAddrπ(apk, p)
IsValidSecAddr {0, 1} ← IsValidSecAddrπ(apk, ask, p)
GetBalance ⊥ ∨ Bal ← GetBalanceπ(apk, ask, p)
CreateTxn ⊥ ∨ (ts, tp) ← CreateTxnπ(R, Vnew, S̄, Vold, m, p, ρ)

IsValidPubTxn {0, 1} ← IsValidPubTxnπ(tp, p)
IsValidSecTxn {0, 1} ← IsValidSecTxnπ(tp, ts, p)
ExtractSenderPubAddr ⊥ ∨ S ← ExtractSenderPubAddrπ(tp, ts, p)
ExtractRecipientPubAddr ⊥ ∨ R ← ExtractRecipientPubAddrπ(tp, ts, p)
ExtractInputVal ⊥ ∨ Vold ← ExtractInputVal(tp, ts, p)
ExtractOutputVal ⊥ ∨ Vnew ← ExtractOutputVal(tp, ts, p)
IsMintable {0, 1} ← IsMintableπ({tp}, p)
Mint ⊥ ∨ (p

′
, Vx) ← Mintπ({tp}, Rm, p)

Adjudicate p
′ ∈ P : p ∨ p

′ ← Adjudicateπ(P, p)
IsValidState {0, 1} ← IsValidStateπ(p, λ)

IsGenesisState {0, 1} ← IsGenesisStateπ(p, λ)

RetrieveCheckpointState ⊥ ∨ pc ← RetrieveCheckpointStateπ(p)
CreateCheckpointState ⊥ ∨ pc ← CreateCheckpointStateπ(p)
AdditionalFunctionality (outputs) ← AdditionalFunctionality(inputs)

A minting operation takes place on a set of public parts of transactions {tp} and
new currency units may be generated through this process, whose value is decided by
the implementation specifications, internally. These minted currency units and respective
transaction fees, collectively termed as excess value (Vx), are collected by the miners.
The preferred state out of a set of candidate states is chosen to be the subsequent state
of the system through the Adjudicate operation by preserving the precedence of states.
The IsValidState algorithm checks the validity of a given state with respect to a given
security parameter. A given state can be designated as a checkpoint state through the
CreateCheckpointState function based on the particulars of the state, which can be
retrieved later through the RetrieveCheckpointState operation. The genesis state is
considered as the first checkpoint and the algorithm IsGenesisState can be used to
identify the genesis state corresponding to a given security parameter.

Cryptography 2021, 5, 10 9 of 47

Note that we model only the generic functionality of a cryptocurrency scheme in this
scheme. Therefore, we do not consider the specifics of the underlying consensus mechanism
or the network in this work. However, there may be additional functionality associated with
real world cryptocurrency systems, e.g., Smart contracts with Ethereum. In order to capture
such additional features, we define a supplementary function AdditionalFunctionality.
This enables us to realize the security implications of functionality of a scheme that may be
outside our base model.

3. Correctness

The correctness of our model is established in terms of a set of experiments, which
collectively ensure the expected functionality of the currency scheme.

3.1. Correctness Properties

We define several experiments in order to ensure the correctness of the currency
scheme for all valid parameter values of λ and ρ (Table 4). Experiments corresponding to
these properties are listed in Appendix A. Accordingly, the correctness of the proposed
scheme is defined as follows.

Table 4. List of experiments for correctness.

Correctness Property Experiment

Correctness of state initialisation Expinit
π

Correctness of address creation Expcreate-addr
π

Correctness of transaction creation Expcreate-txn
π

Correctness of minting Expmint
π

Correctness of extracting transaction data Expextract-txn-data
π

Correctness of adjudicate operation Exp
adjudicate
π

Correctness of checkpoint creation Exp
create-checkpoint
π

Correctness of the verification of genesis state Exp
genesis-state
π

Monotonicity of checkpoint states Exp
checkpoint-monotonicity
π

Monotonicity of states with respect to adjudicate operation Exp
adj-monotonicity
π

Correctness of the checkpoint retrieval Exp
retrieve-checkpoint
π

Definition 2 (Correctness of the Cryptocurrency Scheme). A currency scheme Π is correct
if, for all security parameters λ ∈ Z+, for all sufficiently long bit strings ρ ∈ ({0, 1}∗)∗, and for
all X ∈ {init, create-addr, create-txn, extract-txn-data, mint, adjudicate, adj-monotinicty, create-
checkpoint, retrieve-checkpoint, genesis-state, checkpoint-monotinicity}, ExpX

π (λ, ρ) returns 1.

4. Security

We establish the security requirements for the proposed framework through a game-
based approach. For this purpose, we define a comprehensive adversarial model to
accommodate a wide range of capabilities on the part of the adversary. Then, we define
security requirements for the functionality of the proposed currency scheme. Anonymity
aspects, although related to security, are discussed in a separate section as it is the main
focus of this paper.

4.1. Adversarial Model

In game-based security modeling, the first task is to establish the adversarial objective
corresponding to each security property. Then, we identify the factors affecting the adver-
sary’s actions, which we term as adversarial capabilities. Both objectives and capabilities
together form the variables in this model and are independent in their own right. Further,
adversarial capabilities can be grouped in terms of what information the adversary knows
(adversarial knowledge) and what actions the adversary can execute (adversarial power).
Combining the objective and capabilities of the adversary, we formulate a conceptual

Cryptography 2021, 5, 10 10 of 47

game, which mimics an instance of a given system between the adversary and a challenger,
specifying the conditions on which the adversary can win the game. The adversary’s ad-
vantage of winning the game (or its success probability) is the factor that decides whether
the system under study facing an adversary with the specific capabilities and objectives
is secure. In this case, we can consider this advantage as the dependent variable in this
framework. If the advantage is non-negligible, then we say that the system is not secure
against that adversary.

In the context of cryptocurrencies, adversarial capabilities depend on a number of
factors, which collectively results in a series of unique attacker scenarios. The adversary’s
knowledge of public/secret keys of senders and recipients, value and metadata of a given
transaction, and other transaction data correspond to adversarial knowledge. The ability
to setup the initial state, to manipulate the state, and to cause minting to fail are the
variables corresponding to adversarial power. Further, the adversarial objective can also be
manifold, and we consider indistinguishability and unlinkability with respect to anonymity
of senders, recipients, transactions etc. (we discuss these notions in detail in subsequent
sections). Each adversarial goal, when combined with different capabilities, results in a
large number of attacker scenarios. We construct a single parametric experiment to capture
all possible adversarial capabilities, with each parameter combination resulting in a distinct
security definition. This conceptualization is illustrated in Figure 1.

Figure 1. Conceptual diagram of the adversarial model.

We introduce a set of parameters to represent the above-stated variables. Adversary’s
access to knowledge is parameterized by ψ, where access to specific information is repre-
sented by a subscript corresponding to entities, sender (ψs), recipient (ψr), value (ψv), and
metadata (ψm). With regards to the adversarial power, parameter α represents how the
state initialization in the experimental setup is handled. The parameter δ represents the
ability to manipulate the state. In addition, the parameter β denotes whether the adversary

Cryptography 2021, 5, 10 11 of 47

has the ability to cause minting to fail. Further, we introduce additional parameters later to
represent adversarial goals to study anonymity considerations.

The adversary’s access to knowledge ψ is modeled in terms of different levels of
access to information, ranging from no access to informational, manipulative, and full
access, respectively. These parameter values start from 0, and increasing values represent
increasing level of access. When any knowledge parameter has a value of 0, corresponding
entity of that parameter is considered to be hidden from the adversary. We assume that the
adversary has oracle access through opaque handles to those hidden entities using which
desired activities can be initiated through relevant oracles. A value of 1 in these parameters
represents the situation where the adversary learns the corresponding entity at the end of
the game, just before he makes his choice. Beyond that point, the adversary is not allowed to
create or mint any transactions involving those entities. With the parameter ψt on the other
hand, the public part of the transaction tp is revealed to the adversary when ψt = 1. When
ψt = 2, the secret part of the transaction ts is revealed and with ψt = 3, the randomness
of the actual coins is revealed. Further, when ψt = 4, the adversary gets to choose the
randomness for the transaction and finally the adversary gets to create the transactions
when ψt = 5. For other ψ parameters, with a value of 2, relevant information is known to
the adversary throughout the game in real time via appropriate oracle access. However,
for all those cases, the adversary does not have control over the entities. Conversely, for
any value higher than 2, the adversary has some form of control over the relevant entity as
explained in Table 5.

In the case where α = 0, the state initialization is performed honestly with hidden
randomness. A value of 1 represents a scenario where an honest state initialization takes
place with public randomness. For values α > 1, the adversary has some control over the
state initialization as listed in Table 5. With δ = 0, the system state is hidden from the
adversary. Similar to the state initialization, the adversary has control over the state when
δ > 1. The parameter β on the other hand, only takes two values 0 and 1 to say whether
the adversary can cause minting to fail.

With this parameterization, we can capture a wide range of adversaries ranging from
passive (with all parameters equal to zero) to static (with δ, β ≤ 1) and adaptive adversaries
(with parameter values greater than 1).

4.2. Helper Functions

We define a group of oracle functions to provide the adversary with access to honest
functionality during the execution of the game (Figure 2). These include Oaddr for creating
addresses, Ohidaddr for creating hidden addresses, Otxn for creating transactions, and Omint
for minting. Another oracle is defined to generate hidden metadata (OhidMdata). The history
of the activities of the oracles are maintained globally within the games, i.e., AO , TO as
associative arrays and MO as a set to store all addresses, transactions, and minting history,
respectively. In addition, A∗O , T∗O , and D∗O are maintained as sets to store hidden addresses,
transactions, and metadata, whereas T′O stores the randomness of the coins spent in trans-
actions. In order to cater for the addresses created with different adversarial inputs, the
oracle keeps track of different groups of addresses in AOjk with binary values j and k, and a
value of 0 representing adversarial identity and adversarial randomness, respectively. Omint
sets the flag fO = 1 globally, if a minting operation fails, in which case the adversary loses
the game, unless β = 1. The adversary has access to all available oracles, unless specifically
mentioned with a specific subscript in the games. Table 6 summarizes the variables used by
the oracles.

Further, the current state of the system is denoted by pO for these games. It is assumed
that pO is updated as the state evolves within the game (e.g., through oracle calls with
side effects, which is what the subscript O tries to convey), except where a new state is
generated through a mint operation, in which case the new state is denoted with a different
subscript, e.g., p1.

Cryptography 2021, 5, 10 12 of 47

Table 5. Parameters of the adversarial model.

Parameter Value

Adversarial Knowledge Adversarial Power

Sender Public/Secret Keys Recipient Public/Secret Keys Transaction Value Transaction Metadata Transaction State Manipulation State Initialisation Cause Mint to Fail
ψpks

/ψsks ψpkr
/ψskr ψv ψm ψt δ α β

0 Hidden Hidden Hidden Hidden Hidden Hidden Hidden randomness
honest Init (HIDH) Not allowed

1 Hidden but revealed at the end Hidden but revealed at the end Hidden but
revealed at the end

Hidden but revealed at
the end Revealed Can view the state Public randomness

honest Init (PUBH) Allowed

2 Access public keys
through oracle

Access secret keys
through oracle

Chosen by Oracle
and known

Chosen by oracle
and known ts is revealed Can manipulate

the state

Public randomness
adversarial Init

(PUBA)
-

3 Adversary chooses the identity,
the oracle creates addresses

Adversary chooses the
randomness, the oracle

creates addresses

Adversary chooses
the values

Adversary
chooses metadata

Randomness of the
coins revealed, oracle

creates transaction
-

Hidden randomness
adversarial Init

(HIDH)
-

4 Adversary generates the address Adversary generates the address - - Adversary chooses
the randomness - - -

5 - - - - Adversary creates
the transaction - - -

Cryptography 2021, 5, 10 13 of 47

Omint({tp}, Rm)

1. X ← Mintπ({tp}, Rm , pO)
2. if X = ⊥, fO ← 1
3. else
4. (p1, Vx)← X
5. MO ← MO ∪ {(p1, {tp}, Vx , Rm)}
6. pO ← p1

7. return pO

Otxn(R, Vnew, S, Vold, m, ρ′)

1. k← (ρ
′
= ∅); ρ← [k ? $: ρ

′
]

2. R← LookupPubAddr(R, A∗O)
3. S̄← LookupSecAddr(S, A∗O , AO)
4. if ψv ∈ {0, 1, 2} then
5. (Vold, Vnew)← GenerateTxnVals(S, R, A∗O , AO)
6. if ψm ∈ {0, 1, 2} then
7. m← GenerateMetadata(λ)

8. (tp , ts)← CreateTxnπ(R, Vnew, S̄, Vold, m, pO ; ρ)

9. T∗O ← T∗O‖(tp)

10. TO ← AddKeyValAA(tp , ts , TO)
11. T′O ← AddKeyValAA(tp , ρ, T′O)
12. return tp

Ohidaddr()

1. d $←− {0, 1}λ ; ρ
$←− {0, 1}∗

2. (apk , ask , tp , ts)← CreateAddrπ(pO , d; ρ)

3. AO ← AddKeyValAA(apk , ask , AO)
4. TO ← AddKeyValAA(tp , ts , TO)
5. A∗O ← A∗O‖(apk)

6. return (|A∗O |, tp)

Oaddr(d
′
, ρ
′
)

1. j← (d′ = ∅); k← (ρ
′
= ∅)

2. d← [j ? $: d′]; ρ← [k ? $: ρ
′
]

3. (apk , ask , tp , ts)← CreateAddrπ(pO , d; ρ)

4. AO ← AddKeyValAA(apk , ask , AO)
5. AOjk ← AddKeyValAA(apk , ask , AOjk)

6. TO ← AddKeyValAA(tp , ts , TO)
7. if (ψssk

∈ {2, 3}) ∨ (ψrsk
∈ {2, 3})

8. return (ask , tp)

9. else return (apk , tp)

OHidMdata()

1. m $←− poly(λ); D∗O ← D∗O‖m
2. return |D∗O |

Figure 2. Oracle functions.

Table 6. A summary of oracle variables.

Variable Description

AO All addresses created by the oracle, i.e., all (apk, ask)
A∗O All hidden addresses created by the oracle, i.e., all hidden apk
AO11 All addresses created by the oracle with randomly chosen d and ρ

AO10 All addresses created by the oracle with adversarial randomness (ρ)
AO01 All addresses created by the oracle with adversarial identity (d)
AO00 All addresses created by the oracle with adversarial identity (d) and randomness (ρ)
TO All transactions created by the oracle
T∗O All hidden transactions created by the oracle
T′O Randomness of the coins involved in transactions created by the oracle
D∗O All hidden metadata generated by the oracle
MO Minting details of all mint operations performed by the oracle
pO Current state

Additionally, we also define a set of helper functions to be used in the security games
as given in Figure 3 to improve the clarity of the games. The SetupState function performs
the state initialization based on INIT, whereas the RunAdversary function executes an
instance of the adversaryA denoted by different subscripts based on ACT. LookupPubAddr
and LookupSecAddr functions are used to obtain public keys and private keys from hidden
addresses, respectively. In addition, LookupPubTxn outputs the tp corresponding to a
hidden transaction when ψt = 0. GenerateTxnVals function is used when ψv ∈ {0, 1},
to generate required input and output transaction values, based on the the maximum
transaction value given by the adversary. Further, GenerateMetadata function generates
metadata values required for a transaction when ψm = 0 while LookupMdata is used to
obtain hidden metadata when ψm ∈ {0, 1}.

Cryptography 2021, 5, 10 14 of 47

SetupStateπ,O,A(λ, α)

1. if (α = 3)
2. (p, s)← A1(λ)

3. return (p, ∅, s)
4. else if (α = 2)
5. (r, s)← A′1(λ); p← Initπ(λ; r)
6. return (p, r, s)
7. r ← $; p← Initπ(λ; r)
8. if (α = 1), return (p, r, ∅)

9. else return (p, ∅, ∅)

LookupPubAddr(H, A∗O)

1. S← ()

2. for all x ∈ H do
3. if x ∈ Z+ then
4. x ← [A∗O [x]?_ : x]
5. S← S‖x
6. return S

LookupSecAddr(H, A∗O , AO)

1. S̄← ()

2. S← LookupPubAddr(H, A∗O)
3. for all apk ∈ S do
4. ask ← [AA.Lookup(apk , AO)?_ : apk]

5. S̄← S̄‖ask

6. return S̄

GenerateMetadata(λ)

1. m $←− {0, 1}|λ|

2. return m

RunAdversaryπ,O(Ai , p0, inputVal, r, s, δ)

1. if δ = 0
2. (∅, returnVal, s)← Ai(∅, inputVal, r, s)
3. return (pO , returnVal, s)
4. else
5. (p1, returnVal, s)← Ai(p0, inputVal, r, s)
6. if Adjudicateπ({p1}, p0) 6= p1

7. return (⊥,⊥,⊥)
8. return (p1, returnVal, s)

LookupPubTxn(t, T∗O)

1. tp ← [T∗O [t]?_ : t]
2. return tp

GenerateTxnVals(Vmax1, Vmax2, S, R)

1. Vold, Vnew, X, W ← ()

2. v0, w0, `1, `2 ← 0; j, m← 1
3. ns ← |S|; nr ← |R|
4. for i = {1, .., ns − 1} do
5. xi

$←− {0, .., Vmax1[0]}; X ← X‖{xi}
6. while (X 6= ()) do
7. x ← Min(X); Vold [j− 1] ← x− `1

8. `1 ← x; j← j + 1
9. X ← X \ x

10. for k = {1, .., nr} do
11. wk

$←− {0, .., Vmax2[0]}; W ←W‖{wk}
12. while (W 6= ()) do
13. w← Min(W); Vnew [m− 1] ← w− `2

14. `2 ← w; m← m + 1
15. W ←W \ w
16. return (Vold , Vnew)

Figure 3. Helper functions.

4.3. Security Properties

First, we define a set of properties to ensure the functional security of the proposed
scheme. These are defined by means of game-based experiments around several attributes:
Unforgeability, Transaction binding property, Spendability, Balance property, Descendency, and
Anonymity. Each property is demonstrated with respect to attacker’s goals and we construct
appropriate games to model adversarial behavior explained earlier.

The unforgeability property ensures that it is not possible to spend the funds associated
with a payment address without the knowledge of the secret key corresponding to that
payment address. The transaction binding property establishes the requirement that the
secret part of a transaction ts cannot be tampered with and ensures that ts binds with a
unique tp, i.e., a given ts cannot correspond to two different tps. Spendability guarantees that
the funds associated with a payment address (a) cannot decrease unless the corresponding
secret keys are known, i.e., Balanceaft(a) < Balancebef(a) only if secret key of a (ask) is
known ∀a. The property of Indemnification requires that fund balances associated with the
payment addresses that are not involved in a transaction should remain unchanged.

The balance property requires that the fund balances of participants in a transaction are
updated correctly. Further, the balances of miners’ addresses should also be updated cor-
rectly with relevant transaction fees and mint values (Vx). These goals can be summarized
for a set of transactions involved in one minting operation as follows:

∑
a∈S̄

Vold(a)− ∑
a∈R̄

Vnew(a) + Minted units = ∑
a∈R̄m

Vx(a) (1)

Cryptography 2021, 5, 10 15 of 47

Balancebef(a) + Vnew(a)−Vold(a) = Balanceaft(a) ∀a ∈ S̄, R̄ (2)

Balancebef(a) + Excess(a) = Balanceaft(a) ∀a ∈ R̄m (3)

A single experiment is defined to capture all three goals, so that the balances cannot
be manipulated by an adversary.

Positivity ensures that the fund balance corresponding to each payment address in the
system is non-negative at all times. The descendancy property requires that an adversary
should not be able to produce a valid system state, which does not descend from the genesis
state.

We construct individual games (i.e., conceptual experiments) to represent all the above
properties, and relevant details are included in Appendix B. Accordingly, we formally
define the security of a currency scheme constructed as per Definition 1 in terms of those
experiments as follows.

Definition 3 (Security of the currency scheme). For Y ∈ {unforgeability, txn-binding, spend-
ability, balance, indemnification, positivity, descendancy}, a currency scheme Π is said to be
(ψ, δ, α, β)-secure with respect to Y if for every PPT adversary A = (A1,A2,A3) and for all
possible values of ψ, δ, α and β, the advantage of winning the security experiment ExpY

Π,A,O,ψ,δ,α,β(λ)

is negligible in λ ∈ Z+, i.e.,

AdvY
Π,A,O,ψ,δ,α,β =

∣∣∣∣ Pr(ExpY
Π,A,O,ψ,δ,α,β(λ) = 1)

∣∣∣∣ ≤ ε(λ)

where ε is a negligible function (∀ positive polynomials p(λ), ∃ N such that ∀ λ > N, ε(λ) ≤
1/p(λ)) in λ, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm, γ ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈ {0, 1}
and δ ∈ {0, 1, 2}.

5. Anonymity

In this section, we demonstrate how we can model different aspects of anonymity of a
currency scheme, in terms of the proposed framework. First, we formulate a parametric
game to capture different attacker scenarios, each of which represents a different aspect
of anonymity. Then, we provide a group of definitions for several anonymity properties
stemming from the fundamental concept of indistinguishability. The term indistinguishability
means that it is not possible to distinguish between two known entities in a given situation,
e.g., inability to distinguish the sender of a transaction from two possible sender addresses.

We also define a weaker notion of anonymity, unlinkability, which is similar to indis-
tinguishability, except the two entities to choose between are not known to the attacker
explicitly, but rather by their history in previous transactions. For example, value unlink-
ability refers to the inability to decide which of two transactions has the same value as a
transaction of interest.

We define these anonymity notions around a set of entities in a typical currency scheme.
These entities can be categorized as topological and non-topological where topological
entities directly correspond to entities in the transaction graph of the scheme. Senders
and recipients form the topological category whereas value and other relevant metadata
are categorized as non-topological entities, without having a direct relationship to the
transaction graph. We parameterize different scenarios where an attacker can manipulate
these entities at various levels.

5.1. Anonymity Game

In order to facilitate the execution of the Anonymity game in a more transparent
manner, we define a few additional helper functions to check the adversarial conditions of
inputs at the start of the game (CheckAdvConditions) and to reveal data to the adversary
at the end (RevealData) based on the parameter ψ (Figure 4). Note that for a particular
security notion, ψ is constant. Moreover, we also introduce another variable, ω, to represent
test variable/s. We define ω = (ωsωrωvωm) with each ωx ∈ {0, 1} to indicate which entity
(sender/recipient/value/metadata) is being tested in a given instance of the game, based

Cryptography 2021, 5, 10 16 of 47

on which the transaction data are varied. The adversarial inputs to the game are crafted
based on ψ. We now define a common game to capture all possible attacker scenarios in
this setting. Figure 5 illustrates the game.

RevealData(tp , ω, ψ, A∗O , T∗O , TO , p1)

1. (ψspk
, ψssk

, ψrpk
, ψrsk

, ψv , ψm , ψt)← ψ; (ωs , ωr , ωv , ωm) ← ω

2. tp ← LookupPubTxn(tp , T∗O)
3. ts ← AA.Lookup(tp , TO)
4. S← ExtractSenderPubAddrπ(tp , ts , p1)
5. R← ExtractRecipientPubAddrπ(tp , ts , p1)
6. Vold ← ExtractInputValπ(tp , ts , p1)
7. Vnew ← ExtractOutputValπ(tp , ts , p1)
8. m← ExtractMetadataπ(tp , ts , p1)

9. Us ← (S
ψspk , (LookupSecAddr(S, A∗O))

ψssk)

10. Ur ← (R
ψrpk , (LookupSecAddr(R, A∗O))

ψrsk)
11. Uv ← ((Vold, Vnew)ψv); Um ← (m)ψm

12. Ut ← (tψt
p , t(ψt=2)

s , ρ
(ψt=3)
t)

13. return (Us‖Ur‖Uv‖Um‖Ut)

CheckAdvConditions(ω, ψ, S0, S1, R0, R1, Vold0 , Vnew0 , Vold1 , Vnew1 , m0, m1, A∗O , AOjk , D∗O)

1. (ωs , ωr , ωv , ωm) ← Ω; (ψspk
, ψssk

, ψrpk
, ψrsk

, ψv , ψm , ψt)← ψ

2. if (ψspk
∈ {0, 1}) ∧ (ψssk

∈ {0, 1}) ∧ ¬(S0, S1 ⊆ A∗O), return 0

3. if (ψspk
∈ {0, 1, 2}) ∧ (ψssk

∈ {0, 1, 2}) ∧ ¬(S0, S1 ⊆ AA.keys(AO11)), return 0

4. if (ψspk
= 3) ∧ (ψssk

/∈ {3, 4}) ∧ ¬(S0, S1 ⊆ AA.keys(AO01)), return 0

5. if (ψspk
/∈ {3, 4}) ∧ (ψssk

= 3) ∧ ¬(S0, S1 ⊆ AA.keys(AO00)), return 0

6. if (ψspk
= 3) ∧ (ψssk

= 3) ∧ ¬(S0, S1 ⊆ AA.keys(AO10)), return 0

7. if (ψrpk
∈ {0, 1}) ∧ (ψrsk

∈ {0, 1}) ∧ ¬(R0, R1 ⊆ A∗O), return 0

8. if (ψrpk
∈ {0, 1, 2}) ∧ (ψrsk

∈ {0, 1, 2}) ∧ ¬(R0, R1 ⊆ AA.keys(AO11)), return 0

9. if (ψrpk
= 3) ∧ (ψrsk

/∈ {3, 4}) ∧ ¬(R0, R1 ⊆ AA.keys(AO01)), return 0

10. if (ψrpk
/∈ {3, 4}) ∧ (ψrsk

= 3) ∧ ¬(R0, R1 ⊆ AA.keys(AO00)), return 0

11. if (ψrpk
= 3) ∧ (ψrsk

= 3) ∧ ¬(R0, R1 ⊆ AA.keys(AO10)), return 0

12. if (ψm ∈ {0, 1}) ∧ ¬(m ∈ D∗O), return 0
13. return 1

Figure 4. Additional helper functions for the Anonymity game.

Exp
Anonymity
π,A,O,ω,ψ,δ,α,β(λ)

1. AO , AO11 , AO10 , AO01 , AO00 , TO , T′O ← AA.Init(); A∗O , T∗O , D∗O ← ()

2. U ← ∅; MO ← {}; fO ← 0
3. (pO , r, s) ← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉 . State initialisation
4. (pO , (S0, S1, R0, R1, Vold0 , Vnew0 , Vold1 , Vnew1 , T, Rm , m0, m1, t0, t1, ρ0, ρ1, s) ← RunAdversaryπ,O(A2, pO , (∅), r, s, δ) 〈 pO 6= ⊥〉
5. (ωs , ωr , ωv , ωm) ← ω;
6. (ψpks

, ψsks , ψpkr
, ψskr , ψv , ψm , ψt) ← ψ

7. if ¬{CheckAdvConditions(ω, ψ, S0, S1, R0, R1, Vold0 , Vnew0 , Vold1 , Vnew1 , m0, m1, A∗O , AOjk , DO)} then
8. return 0 . Check adversarial conditions on inputs
9. if (ψt = 5) then
10. (tp0 , ts0)← t0 〈IsMintableπ({tp0} ∪ T, pO)β̄ 〉
11. (tp1 , ts1)← t1 〈IsMintableπ({tp1} ∪ T, pO)β̄ 〉
12. else
13. tp0 ← Otxn(R0, Vnew0 , S0, Vold0 , m0, ψ, pO , ρ0) 〈IsMintableπ({tp0} ∪ T, pO)β̄ 〉
14. tp1 ← Otxn(Rωr , Vnewωv , Sωs , Voldωv , mωm , ψ, pO , ρ1)〈IsMintableπ({tp1} ∪ T, pO)β̄〉
15. b $←− {0, 1} . Challenger picks a bit
16. (p1, Vx)← Mintπ({tpb } ∪ T, Rm , pO)
17. U ← RevealData(tpb , ψ, ω, A∗O , T∗O , TO , p1)

18. (·, b′ , ·)← RunAdversaryπ,O(A3, p1, (U), r, s, δ) 〈 β ∨ (fO 6= 1) 〉
19. return b′ ?

= b

Figure 5. Anonymity game.

Cryptography 2021, 5, 10 17 of 47

Execution of the Game

The game is executed as follows. The state initialization takes place at the beginning
of the execution of the game based on α (line 3). The game continues if the returned state
pO is valid. Here, we use ‘〈condition〉’ notation to check this condition. In this notation,
if the condition inside the brackets is false, then the game terminates and the adversary
loses the game. In this case, if the state is valid, the adversary provides a set of data (to
be used in creating transactions, minting, etc.) to the challenger, based on the values of ψ
parameters with respect to senders, recipients, values, and metadata. These data include two
sets of senders S0, S1, recipients R0, R1, input/output values Vold, Vnew, miners’ addresses
Rm, metadata m0, m1, a set of transactions T (to be minted), two additional transactions
t0, t1, two sets of randomness of coins ρ0, ρ1, together with the current state pO (line 4). If
sender/recipient addresses are hidden, respective outputs S/R should be handles to those
hidden addresses created by the oracle, i.e., ψpks

, ψsks , ψpkr
, ψskr ∈ {0, 1}. The adversary can

make corresponding oracle calls to create hidden addresses, and opaque handles to those
addresses are given in return. In addition, if transaction values are hidden (i.e., ψv ∈ {0, 1}),
then the adversary provides maximum values for respective input and output values
(through Vold, Vnew), and the oracle chooses appropriate transaction values accordingly. If
ψm ∈ {0, 1}, then adversary returns a handle for hidden metadata. The transactions t0 and
t1 represent two transactions created by the adversary when ψt = 5. For other values of ψt,
these will remain null. The inputs ρ0 and ρ1 provide the randomness (of coins) required to
create the transactions when ψt = 4, or will be empty, otherwise. According to the values of
ψ, the challenger checks whether the values returned by the adversary meet the expected
criteria (through the CheckAdvConditions function) and terminates the game if any of the
inputs are invalid (line 7). Upon submission of valid inputs, the adversary continues to
evolve the current state through appropriate oracle queries.

Next, the challenger checks whether ψt = 5, in which case the adversary produces the
required transactions (which will be considered as tp0 and tp1). Otherwise, the challenger
creates a transaction tp0 , using the input values through the oracle Otxn as given in step 13.
Based on the entity/entities being tested as defined by ω, a second transaction tp1 is also
created as appropriate (line 14). If the transactions are not mintable and the parameter β = 0
(i.e., failed mint operations are not allowed), then the game is terminated and the adversary
loses the game. We use the notation “〈IsMintableπ({tp1} ∪ T, pO)β̄ 〉” to represent this
condition. In this case, when β= 0, β̄ = 1, and the game continues if IsMintable() = 1.
When β = 1, β̄ = 0, and thus IsMintable()0 = 1 always and hence the game proceeds.

Subsequently, the challenger picks a bit b and chooses to mint tpb together with the
list of transactions T returned by the adversary (line 15). Next, the challenger calls the
RevealData function to prepare the information that needs to be revealed to the adversary
based on ψ, and this information is then passed to the adversary. At this point, the adversary
is not allowed to create any further transactions involving the revealed addresses. Then,
he/she makes a guess (b

′
) for the bit b, based on the revealed data U, minted state p1, and

the adversarial state s. The challenger checks whether the guess is correct, subject to the
condition β ∨ (fO 6= 1). The adversary wins the game if his/her guess is correct.

Unsurprisingly, there are over 600,000 different combinations of ω, ψ, δ, and α alone,
resulting in different attacker scenarios, which reveal the atomicity of anonymity in a
currency system. This game helps one to assess which combinations are satisfied by a given
currency scheme, by proving that the attacker has negligible advantage of winning the
game. In order to simplify this task, in the next section, we come up with a set of anonymity
notions which can be linked to the terminology discussed in the literature.

5.2. Notions of Anonymity

As previously mentioned, different combinations of the parameters in the Anonymity
Game yields a large number of unique scenarios with respect to anonymity. While some
notions may not result in apprehensible real-world scenarios, others may assist in assessing
different levels in achievable anonymity. In this section, we identify a set of some useful

Cryptography 2021, 5, 10 18 of 47

anonymity notions with respect to indistinguishability (IND) and unlinkability (ULK) of
entities, senders (S), recipients (R), value (V), and metadata (M) in a currency scheme.

We define each notion in terms of a unique adversary, based on the adversary’s goal,
knowledge and power as GOAL-KNOWL-POWER, which is also represented as a unique
parameter vector ω-ψ-(δ, α, β). The strongest adversary is modeled with the highest power
(to manipulate the state initialization and the state, and to make minting to fail) and the
maximum knowledge (full knowledge of secret keys of senders/recipients, values, and
metadata), which we name as a FULL-FULL adversary. The weakest adversary has no
power and no knowledge of transaction data, hence we name as a NIL-NIL adversary.
Other intermediate adversaries are named accordingly to emphasize the capabilities in
power and knowledge specific to a given setting. Therefore, the highest level of anonymity
modeled by the game is the notion ALL-IND-FULL-FULL and the weakest is the notion
of NIL-IND-NIL-NIL. Accordingly, Table 7 lists some useful anonymity notions and their
corresponding parameter vectors.

Table 7. Some useful anonymity notions.

Goal Adversarial
Knowledge

Adversarial
Power Parameter Vector

ALL-IND FULL FULL (1s1r1v1m)ω-((4, 4)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ,3α,1β)
S-IND PUBS ACTIVE (1s0r0v0m)ω-((3, 0)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β)

S-ULK NILS ACTIVE (1s0r0v0m)ω-((3, 0)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ,3α,0β)
R-IND PUBR ACTIVE (0s1r0v0m)ω-((4, 4)s, (3, 0)r, 3v, 3m, 5t)ψ-(2δ,3α,0β)
R-ULK NILR ACTIVE (0s1r0v0m)ω-((4, 4)s, (0, 0)r, 3v, 3m, 5t)ψ-(2δ,3α,0β)
V-IND PUBSRV ACTIVE (0s0r1v0m)ω-((3, 0)s, (3, 0)r, 2v, 3m, 5t)ψ-(2δ,3α,0β)
V-ULK PUBSR-NILV FULL (0s0r1v0m)ω-((3, 0)s, (3, 0)r, 0v, 3m, 5t)ψ-(2δ,3α,1β)
M-IND PUBM ACTIVE (0s0r0v1m)ω-((4, 4)s, (4, 4)r, 3v, 2m, 5t)ψ-(2δ,3α,0β)
M-ULK NILM ACTIVE (0s0r0v1m)ω-((4, 4)s, (4, 4)r, 3v, 0m, 5t)ψ-(2δ,3α,0β)
NIL-IND NIL VIEW (0s0r0v0m)ω-((0, 0)s, (0, 0)r, 0v, 0m, 0t)ψ-(1δ,1α,0β)
NIL-IND NIL NIL (0s0r0v0m)ω-((0, 0)s, (0, 0)r, 0v, 0m, 0t)ψ-(0δ,0α,0β)

5.2.1. Topological Entities

As already mentioned, the identification of topological entities such as senders and
recipients participating in a transaction can directly contribute towards constructing the
corresponding relationships among those entities. As a result, one can trace the flow of
transactions of a particular entity, affecting the level of anonymity. Several studies have
been conducted in this regard, especially in the case of Bitcoin, where a transaction graph
could be built using publicly available data related to senders and recipients [20]. As such,
topological entities play a vital role in the achievable level of anonymity of a currency
scheme. Therein, we define a set of useful anonymity properties around these entities in
this section (Figure 6).

S0 S1

R0

tp0 tp1

(a)

S0

R0 R1

tp0 tp1

(b)

S0 S1

R0

tp0 tp1

(c)

S0

R0 R1

tp0 tp1

(d)

Figure 6. Topological anonymity notions. (Dashed outline: addresses with hidden secret keys, double-dashed

outline: addresses with hidden public/private keys, Solid outline: both keys known). (a) Sender Indistinguishability

(S-IND); (b) Recipient Indistinguishability (R-IND); (c) Sender Unlinkability (S-ULK); (d) Recipient Unlinkability

(R-ULK).

Cryptography 2021, 5, 10 19 of 47

Sender Indistinguishability (S-IND)

We define this property to represent a case where given two possible senders and a
transaction, it is not possible to distinguish the correct sender. Figure 6a illustrates this
scenario. In the anonymity game, only the public keys of the senders will be known to the
adversary with ψpks

= 3 and ψsks
= 0 (PUBS knowledge) with same transaction values and

other metadata, and the challenger will create two transactions tp0 and tp1 with same value
and metadata if KNWt 6= 5 (otherwise, the adversary provides the transactions). Based
on the chosen bit b, the challenger mints the transaction tpb and the adversary gets to see
the data related to the minted transaction, based on ψt, and has to guess the challenger’s
choice. The knowledge of recipient addresses can vary based on ψpkr

and ψskr
.

We can see that the game represents the strongest attacker scenario when the recipient
addresses are fully controlled by the adversary in a setting with an adversarial hidden state
initialization and the ability to manipulate the state, as well as with the highest knowledge of
the transaction (i.e., ψt = 5). However, having β = 1 enables the adversary to craft messages
in a manner so that failed mint operations can be used to learn about account balances, etc.,
thus revealing the transaction graph, which will be trivial and thus we consider an adversary
with ACTIVE power (i.e., δ = 2, α = 3, β = 0). Accordingly, the strongest notion of this prop-
erty is S-IND-PUBS-ACTIVE, which is represented by “(1s0r0v0m)ω-((3, 0)s, (4, 4)r, 3v, 3m,
5t)ψ-(2δ, 3α, 0β)” in the Anonymity game with the following formal definition.

Definition 4 (S-IND-PUBS-ACTIVE). A currency scheme Π is said to satisfy the anonymity
notion S-IND-PUBS-ACTIVE with respect to Sender Indistinguishability against an adversary A,
if A’s advantage of winning the Anonymity game defined by the parameter vector (1s0r0v0m)ω-
((3, 0)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β) is negligible, i.e.,

AdvS−IND
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymity

Π,A,O,ω,ψ,δ,α,β(λ) = 1
]
− 1/2

∣∣∣∣ is negligible in λ.

Sender Unlinkability (S-ULK)

The notion of sender unlinkability is defined to be the property that it is not possi-
ble to link a transaction with its corresponding sender in a given setting. As Figure 6c
illustrates, the adversary has to guess the correct transaction as with S-IND scenario, but
without knowing both public/private keys of the senders, i.e., Senders in this case are
hidden with ψpks

, ψsks
= 0. The strongest notion in this sense is given by S-ULK-NILS-

ACTIVE with the parameter vector “(1s0r0v0m)ω-((0, 0)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β)” and
the corresponding formal definition is as follows.

Definition 5 (S-ULK-NILS-ACTIVE). A currency scheme Π is said to satisfy the anonymity no-
tion S-ULK-NILS-ACTIVE with respect to Sender Unlinkability against an adversary A, if A’s ad-
vantage of winning the Anonymity game defined by the parameters (1s0r0v0m)ω-((0, 0)s, (4, 4)r, 3v,
3m, 5t)ψ-(2δ, 3α, 0β) is negligible, i.e.,

AdvS−ULK
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymity

Π,A,O,ω,ψ,δ,α,β(λ) = 1
]
− 1/2

∣∣∣∣ is negligible in λ.

Recipient Indistinguishability (R-IND)

This notion is similar to sender indistinguishability, except with recipient addresses.
Therefore, it is defined to be one’s inability to distinguish the correct recipient out of
two given recipients in a given situation. As shown in the Figure 6b, public keys of the
recipients (ψpkr

= 3, ψskr
= 0) are known and the senders could be hidden or known as per

the parameters ψpks
and ψsks

. The two transactions tp0 and tp1 both carry the same sender,
values, and metadata, yet have two different recipients. The adversary needs to guess which
transaction out of tp0 and tp1 was minted. The strongest adversarial scenario in this case

Cryptography 2021, 5, 10 20 of 47

is R-IND-PUBR-ACTIVE, denoted as “(0s1r0v0m)ω-((4, 4)s, (3, 0)r, 3v, 3m, 5t)ψ-(2δ, 0α, 0β)”.
We define the notion formally as below.

Definition 6 (R-IND-PUBR-ACTIVE). A currency scheme Π is said to satisfy the anonymity
notion R-IND-PUBR-ACTIVE with respect to Recipient Indistinguishability against an adversary
A, if A’s advantage of winning the Anonymity game defined by the parameters (0s1r0v0m)ω-
((4, 4)s, (3, 0)r, 3v, 3m, 5t)ψ-(2δ, 0α, 0β) is negligible, i.e.,

AdvR−IND
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymity

Π,A,O,ω,ψ,δ,α,β(λ) = 1
]
− 1/2

∣∣∣∣ is negligible in λ.

Recipient Unlinkability (R-ULK)

This property is referred to as the inability to link a transaction to the correct recipient.
Figure 6d shows the basic setup for this game where the adversary needs to guess the correct
transaction out of the two options tp0 and tp1 , without any knowledge about the correspond-
ing recipients, i.e., ψpkr

,ψskr
= 0. The strongest notion in this setting is represented as R-

ULK-NILR-ACTIVE given by the vector “(0s1r0v0m)ω-((4, 4)s, (0, 0)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β)”
and the formal definition is given below.

Definition 7 (R-ULK-NILR-ACTIVE). A currency scheme Π is said to satisfy the anonymity
notion R-ULK-NILR-ACTIVE with respect to Recipient Unlinkability against an adversary A, if
A’s advantage of winning the Anonymity game defined by the parameters (0s1r0v0m)ω-((4, 4)s,
(0, 0)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β) is negligible.

AdvR−ULK
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymity

Π,A,O,ω,ψ,δ,α,β(λ) = 1
]
− 1/2

∣∣∣∣ is negligible in λ.

5.2.2. Non-Topological Entities

As opposed to topological entities, non-topological entities such as value and metadata
in a currency scheme do not directly affect the structure of the transaction graph. However,
if made public, these entities could also hinder the privacy of users. Therefore, these
entities can also be regarded as equally important in determining the level of anonymity
in a currency scheme. In this section, we provide formal definitions for major anonymity
notions involving non-topological entities: value and metadata (Figure 7).

S0

R0

tp0 (v0/m0) tp1 (v1/m1)

(a)

S0

R0

tp0 (v0/m0) tp1 (v1/m1)

(b)

Figure 7. Non-topological Anonymity notions. (a) Value/Metadata indistinguishability. (b) Value/Metadata

unlinkability (hidden values/metadata).

Value Indistinguishability (V-IND)

The notion of indistinguishability with respect to transaction values refers to the fact
that it is impossible to distinguish the correct value from two given values for a given
transaction. In the game, the challenger creates two transactions, tp0 and tp1 , with two
different values, v0 and v1, while having other entities the same (Figure 7a). In this case, the
adversary knows what the two values are and other entities can vary according to their ψ
values. The challenger then picks a bit b and mints the transaction tpb and the adversary has
to guess which transaction it is. We represent the strongest adversary as PUBSR-ACTIVE

Cryptography 2021, 5, 10 21 of 47

as the knowledge of secret keys would leak information about the value. Therefore, the
strongest notion in this scenario is given by V-IND-PUBSR-ACTIVE, which is represented by
the vector “(0s0r1v0m)ω-((3, 0)s, (3, 0)r, 3v, 3m , 5t)ψ-(2δ, 3α, 0β)” with the following formal
definition.

Definition 8 (V-IND-PUBSR-ACTIVE). A currency scheme Π is said to satisfy V-IND-PUBSR-
ACTIVE with respect to Value Indistinguishability against an adversary A, if A’s advantage of
winning the Anonymity game defined by the parameters (0s0r1v0m)ω-((3, 0)s, (3, 0)r, 3v, 3m,
5t)ψ-(2δ, 3α, 0β) is negligible, i.e.,

AdvV−IND
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymity

Π,A,O,ω,ψ,δ,α,β(λ) = 1
]
− 1/2

∣∣∣∣ is negligible in λ.

Value Unlinkability (V-ULK)

We define the property of unlinkability related to transaction value as the inability
to correctly identify value of the minted transaction from two possible hidden values. In
order to realize this scenario, failed minting operations have to be allowed in the game
with the parameter β set to 1, as it would be impossible for the adversary to win the game
otherwise. As ψv = 0, the adversary gives maximum values for Vnew and Vold values from
which the challenger generates corresponding values required for the transaction using the
GenerateTxnVals helper function (Figure 3). Further, as in the case of V-IND, we restrict
the knowledge of secret keys of senders/recipients as otherwise the transaction is trivial.
As shown in Figure 7b, in this context the challenger creates two transactions tp0 and tp1

with hidden transaction values v0 and v1, respectively. The challenger then picks a bit
b and mints the transaction tpb and the adversary makes a guess to identify the correct
scenario. Accordingly, we have “(0s0r1v0m)ω-((3, 0)s, (3, 0)r, 0v, 3m, 5t)ψ-(2δ, 3α, 1β)” as the
combination of parameters required to achieve the strongest level of anonymity notion
V-ULK-PUBSR-NILV-FULL in this sense and the corresponding definition is as follows.

Definition 9 (V-ULK-PUBSR-NILV-FULL). A currency scheme Π is said to satisfy the anonymity
notion V-ULK-PUBSR-NILV-FULL with respect to Value Unlinkability against an adversary A
under a hidden adversarial initialisation, if A’s advantage of winning the Anonymity game defined
by the parameters (0s0r1v0m)ω-((3, 0)s, (3, 0)r, 0v, 3m, 5t)ψ-(2δ, 3α, 1β) is negligible, i.e.,

AdvV−ULK
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymity

Π,A,O,ω,ψ,δ,α,β(λ) = 1
]
− 1/2

∣∣∣∣ is negligible in λ.

Metadata Indistinguishability (M-IND)

Other transaction-related data such as scripts, IP addresses, etc. also pose a risk to
anonymity as they can be linked to addresses or transactions in many different ways.
Although such metadata can be specific to a given implementation, it might be useful in
modeling the effects imposed by the other layers of implementations such as the consensus
scheme. Therefore, in this case, we discuss metadata in general without linking to any
specific data, for the completeness of this work.

In this context, we define Metadata Indistinguishability to represent the scenario where
it is not possible to correctly identify the metadata corresponding to a given transaction,
between two given possibilities. Similar to the value indistinguishability scenario, the
challenger creates two transactions with different metadata values (already known to
the adversary) and mints only one transaction leaving the adversary make a guess as
to what it is. The following vector represents the strongest scenario as “(0s0r0v1m)ω-
((4, 4)s, (4, 4)r, 3v, 2m, 5t)ψ-(2δ, 3α, 0β)” as per the notion M-IND-PUBM-ACTIVE and it is
formally defined below.

Cryptography 2021, 5, 10 22 of 47

Definition 10 (M-IND-PUB-ACTIVE). A currency scheme Π is said to satisfy the anonymity
notion M-IND-PUB-ACTIVE with respect to Metadata Indistinguishability against an adversary
A, if A’s advantage of winning the Anonymity game defined by the parameters (0s0r0v1m)ω-
((4, 4)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β) is negligible, i.e.,

AdvM−IND
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymity

Π,A,O,ω,ψ,δ,α,β(λ) = 1
]
− 1/2

∣∣∣∣ is negligible in λ.

Metadata Unlinkability (M-ULK)

We define the property of unlinkability of metadata with a close analogy to value un-
linkability, i.e., given a transaction, it is not possible to correctly identify the metadata from
two given hidden metadata values. Here, we use the GenerateMetadata helper function to
generate the data required for the game (Figure 3). Accordingly, we have the corresponding
notion M-ULK-NILM-ACTIVE parameterized by, “(0s0r0v1m)ω-((4, 4)s, (4, 4)r, 3v, 0m, 5t)ψ-
(2δ, 3α, 0β)” representing the strongest case in this sense. The formal definition follows.

Definition 11 (M-ULK-NILM-ACTIVE). A currency scheme Π is said to satisfy the anonymity
notion M-ULK-NILM-ACTIVE with respect to Metadata Unlinkability against an adversary A, if
A’s advantage of winning the Anonymity game defined by the parameters (0s0r0v1m)ω-((4, 4)s,
(4, 4)r, 3v, 0m, 5t)ψ-(2δ, 3α, 0β) is negligible, i.e.,

AdvM−ULK
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymity

Π,A,O,ω,ψ,δ,α,β(λ) = 1
]
− 1/2

∣∣∣∣ is negligible in λ.

5.2.3. Other Useful Anonymity Notions

Further to above notions, we also formally define the strongest and weakest anonymity
notions modeled in this framework as they are useful in benchmarking the anonymity land-
scape.

Strongest Anonymity (ALL-IND)

In this setting, the game models two senders and two recipients. The challenger
creates two transactions tp0 and tp1 as before, but each transaction is created using distinct
set of data, i.e., different sender, recipient, value, and metadata (Figure 8a). The strongest
adversary in this scenario has the FULL knowledge and FULL power given by ALL-IND-
FULL-FULL notion and parameterized by the vector (1s1r1v1m)ω-((4, 4)s, (4, 4)r, 3v, 3m,
5t)ψ-(2δ, 3α, 1β). This setting models the highest level of anonymity achievable by a currency
scheme and can be considered as “absolute fungibility”. We provide the following formal
definition in this connection.

S0 S1

R0 R1

tp0 (v0/m0) tp1 (v1/m1)

(a)

S0

R0

(v0/m0)tp0 tp1 (v0/m0)

(b)

Figure 8. Strongest and weakest anonymity games. (a) ALL-IND game; (b) NILL-IND game.

Definition 12 (ALL-IND-FULL-FULL). A currency scheme Π is said to satisfy the anonymity
notion ALL-IND-FULL-FULL with respect to indistinguishability against an adversary A, if A’s

Cryptography 2021, 5, 10 23 of 47

advantage of winning the Anonymity game defined by the parameters (1s1r1v1m)ω-((4, 4)s, (4, 4)r,
3v, 3m, 5t)ψ-(2δ, 3α, 1β) is negligible, i.e.,

AdvALL−IND
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymity

Π,A,O,ω,ψ,δ,α,β(λ) = 1
]
− 1/2

∣∣∣∣ is negligible in λ.

Weakest Anonymity (NIL-IND)

Here, we consider the weakest adversary that can be modeled in our game. In this
case, the game produces two identical transactions as opposed to the strongest scenario
above (Figure 8b). These transactions differ only in their randomness and the adversary
has to identify the correct transaction. Therefore, the weakest adversary in this case is
a NIL-NIL adversary with no knowledge nor power, which is a passive adversary. This
means that even δ = 0 , meaning that the scheme has a hidden private state, which however
may not be the case for most cryptocurrency schemes. Yet, we provide the following
formalization for comparison.

Definition 13 (NIL-IND-NIL-NIL). A currency scheme Π is said to satisfy the anonymity notion
NIL-IND-NIL-NIL with respect to indistinguishability against an adversary A, if A’s advantage
of winning the Anonymity game defined by the parameters (0s0r0v0m)ω-((0, 0)s, (0, 0)r, 0v, 0m,
0t)ψ-(0δ, 0α, 0β) is negligible, i.e.,

AdvNIL−IND1
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymity

Π,A,O,ω,ψ,δ,α,β(λ) = 1
]
− 1/2

∣∣∣∣ is negligible in λ.

As many cryptocurrency schemes have public states, we can see that at the very least,
the adversary can view the state, meaning that we can set δ = 1 in our model for most
schemes. This will model an adversary with VIEW power with other parameters being
zero. Therefore, we define a slightly less weaker notion in this sense, which can be useful
to model anonymity in some real world constructions.

Definition 14 (NIL-IND-NIL-VIEW). A currency scheme Π is said to satisfy the anonymity
notion NIL-IND-NIL-VIEW with respect to indistinguishability against an adversary A, if A’s
advantage of winning the Anonymity game defined by the parameters (0s0r0v0m)ω-((0, 0)s, (0, 0)r,
0v, 0m, 0t)ψ-(1δ, 0α, 0β) is negligible, i.e.,

AdvNIL−IND2
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymity

Π,A,O,ω,ψ,δ,α,β(λ) = 1
]
− 1/2

∣∣∣∣ is negligible in λ.

5.2.4. Representation of Anonymity Notions

In order to clearly represent above anonymity notions, we construct graphical illustra-
tions as shown in Figures 9 and 10. These diagrams are useful in comparing anonymity
landscape across different implementations while illustrating the complex multidimen-
sional diversity of adversarial parameters.

Figure 9 represents a comparison between the strongest anonymity notion ALL-IND-
FULL-FULL against the weakest notion NIL-IND-NIL-NIL in our anonymity game. All
other notions lay within the area bounded by these two notions. The larger the area covered
by the graph of a given notion, the stronger is the level of anonymity. This is evident from
the Figure 10, which represents two more anonymity notions related to S-IND and S-ULK
corresponding to Definitions 4 and 5, and shows that S-IND is stronger than S-ULK.

Cryptography 2021, 5, 10 24 of 47

ωs

ωr

ωv

ωmψspk

ψssk

ψrpk

ψrsk

ψv

ψm

ψt δ

α

β

Figure 9. Strongest anonymity notion: ALL-IND-FULL-FULL (red). Weakest notion: NIL-IND-NIL-NIL (cyan).

ωs

ωr

ωv

ωmψspk

ψssk

ψrpk

ψrsk

ψv

ψm

ψt δ

α

β

Figure 10. Anonymity notions S-IND-PUBS-ACTIVE (green) and S-ULK-NILS-ACTIVE (blue).

5.3. Theorems

As is apparent from the definitions presented in the previous section, we can utilize the
Anonymity game to realize a multitude of potential different attacker scenarios. Identifying
the relationships among these is a worthwhile exercise in order to discern the meaningful
aspects of anonymity captured by them.

Note that as we vary different security parameters in our model, their correlations
result in a non-trivial lattice form as depicted in Figures 11 and 12. These relations are
interpreted as implications, equivalences, and separations. The arrow “ 7→” represents
an implication in the direction of the arrow and a separation in the opposite direction,
whereas the double arrow “↔” shows an equivalence relation. In order to formalize these
relationships, we define a set of theorems that will simplify the process of assessing the
anonymity of a currency scheme and we present the same below. Relevant proofs of these
theorems are available in Appendix C.

Cryptography 2021, 5, 10 25 of 47

ω-ψ(4,4)s-(δ,α,β)

ω-ψ(3,3)s-(δ,α,β)

ω-ψ(3,2)s-(δ,α,β)

ω-ψ(2,3)s-(δ,α,β) ω-ψ(1,3)s-(δ,α,β) ω-ψ(0,3)s-(δ,α,β)

ω-ψ(3,1)s-(δ,α,β)

ω-ψ(3,0)s-(δ,α,β)

ω-ψ(2,2)s-(δ,α,β) ω-ψ(1,2)s-(δ,α,β) ω-ψ(0,2)s-(δ,α,β)

ω-ψ(2,1)s-(δ,α,β)

ω-ψ(2,0)s-(δ,α,β)

ω-ψ(1,1)s-(δ,α,β) ω-ψ(0,1)s-(δ,α,β)
ω-ψ(2,1)s-(δ,α,β)

ω-ψ(1,0)s-(δ,α,β)
ω-ψ(0,0)s-(δ,α,β)

Figure 11. Relationship of anonymity notions for different sender addresses (ψpk, ψsk)s.

ω-ψ-(2δ ,α,β)

ω-ψ-(1δ ,α,β)

ω-ψ-(0δ ,α,β)

(a) Varying δ (Theorem 8).

ω-ψ(1t)-(δ,α,β)

ω-ψ(0t)-(δ,α,β)

(b) Varying ψt (Theorem 16.)

ω-ψ-(δ,α,1β)

ω-ψ-(δ,α,0β)

(c) Varying β (Theorem 16).

ω-ψ-(δ,3α ,β)

ω-ψ-(δ,2α ,β)

ω-ψ-(δ,1α ,β)

ω-ψ-(δ,0α ,β)

(d) Varying α (Theorems 6 and 7).

ω-ψ(3v)-(δ,α,β)

ω-ψ(2v)-(δ,α,β)

ω-ψ(1v)-(δ,α,β)

ω-ψ(0v)-(δ,α,β)

(e) Varying ψv (Theorems 12 and 13).

ω-ψ(3m)-(δ,α,β)

ω-ψ(2m)-(δ,α,β)

ω-ψ(1m)-(δ,α,β)

ω-ψ(0m)-(δ,α,β)

(f) Varying ψm (Theorem 14).

Figure 12. Relationships among notions based on α, δ, ψv, ψm, ψt, and β.

Theorem 1. For a currency scheme Π and for a given combination of ω, δ, α, ψsks
, (ψpk, ψsk)r,

ψv, ψm, ψt, and β, the notion resulting from increasing the value of ψpks
while holding others is

strictly stronger than the former for the following scenarios.

i. given that Π is secure in ω-ψ((3, 0)s)-(δ, α, β), Π is also secure in ω- ψ((2, 0)s)-(δ, α, β),
ω-ψ((1, 0)s)-(δ, α, β) and ω-ψ((0, 0)s)-(δ, α, β),
i.e., ω-ψ((3, 0)s)-(δ, α, β) → ω-ψ((2, 0)s)-(δ, α, β) → ω-ψ((1, 0)s)-(δ, α, β) → ω-ψ
((0, 0)s)-(δ, α, β)

ii. given that Π is secure in ω-ψ((3, 1)s)-(δ, α, β), Π is also secure in ω- ψ((2, 1)s)-(δ, α, β)
and ω-ψ((1, 1)s)-(δ, α, β),
i.e., ω-ψ((3, 1)s)-(δ, α, β)→ ω-ψ((2, 1)s)-(δ, α, β)→ ω-ψ((1, 1)s)-(δ, α, β)

iii. given that Π is secure in ω-ψ((3, 2)s)-(δ, α, β), Π is also secure in ω- ψ((2, 2)s)-(δ, α, β),
i.e., ω-ψ((3, 2)s)-(δ, α, β)→ ω-ψ((2, 2)s)-(δ, α, β)

iv. given that Π is secure in ω-ψ((3, 3)s)-(δ, α, β), Π is also secure in ω- ψ((2, 3)s)-(δ, α, β),
i.e., ω-ψ((3, 3)s)-(δ, α, β)→ ω-ψ((2, 3)s)-(δ, α, β)

v. given that Π is secure in ω-ψ((4, 4)s)-(δ, α, β), Π is also secure in ω- ψ((3, 3)s)-(δ, α, β),
i.e., ω-ψ((4, 4)s)-(δ, α, β)→ ω-ψ((3, 3)s)-(δ, α, β)

Cryptography 2021, 5, 10 26 of 47

where ω ∈ {1, 0}4, ψpkr
, ψskr

∈ {0, 1, 2, 3, 4}, ψv, ψm, γ ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {0, 1, 2} (Figure 11).

Theorem 2. For a currency scheme Π and for a given combination of ω, δ, α, ψpks
, (ψpk, ψsk)r,

ψv, ψm, ψt, and β, the notion resulting from increasing the value of ψsks
while holding others is

strictly stronger than the former for the following scenarios:

i. given that Π is secure in ω-ψ((0, 3)s)-(δ, α, β), Π is also secure in ω- ψ((0, 2)s)-(δ, α, β),
ω-ψ((0, 1)s)-(δ, α, β) and ω-ψ((0, 0)s)-(δ, α, β),
i.e., ω-ψ((0, 3)s)-(δ, α, β) → ω-ψ((0, 2)s)-(δ, α, β) → ω-ψ((0, 1)s)-(δ, α, β) → ω-ψ
((0, 0)s)-(δ, α, β)

ii. given that Π is secure in ω-ψ((1, 3)s)-(δ, α, β), Π is also secure in ω- ψ((1, 2)s)-(δ, α, β)
and ω-ψ((1, 0)s)-(δ, α, β),
i.e., ω-ψ((1, 3)s)-(δ, α, β)→ ω-ψ((1, 2)s)-(δ, α, β)→ ω-ψ((1, 0)s)-(δ, α, β)

iii. given that Π is secure in ω-ψ((2, 3)s)-(δ, α, β), Π is also secure in ω- ψ((2, 2)s)-(δ, α, β),
ω-ψ((2, 1)s)-(δ, α, β) and ω-ψ((2, 0)s)-(δ, α, β),
i.e., ω-ψ((2, 3)s)-(δ, α, β) → ω-ψ((2, 2)s)-(δ, α, β) → ω-ψ((2, 1)s)-(δ, α, β) → ω-ψ
((2, 0)s)-(δ, α, β)

iv. given that Π is secure in ω-ψ((3, 3)s)-(δ, α, β), Π is also secure in ω- ψ((3, 2)s)-(δ, α, β),
ω-ψ((3, 1)s)-(δ, α, β) and ω-ψ((3, 0)s)-(δ, α, β),
i.e., ω-ψ((3, 3)s)-(δ, α, β) → ω-ψ((3, 2)s)-(δ, α, β) → ω-ψ((3, 1)s)-(δ, α, β) → ω-ψ
((3, 0)s)-(δ, α, β)

where ω ∈ {1, 0}4, ψpkr
, ψskr

∈ {0, 1, 2, 3, 4}, ψv, ψm, γ ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {0, 1, 2} (Figure 11).

Theorem 3. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)r, ψv,
ψm, ψt, and β, the resulting notion from increasing the value of ψspk

while holding others fixed, is
equivalent to the former when ψpks

≤ ψsks
under the following scenarios:

i. given that Π is secure in ω-ψ((0, 1)s)-(δ, α, β), then Π is also secure in ω- ψ((1, 1)s)-(δ, α, β),
and vice versa.,
i.e., ω-ψ((0, 1)s)-(δ, α, β)↔ ω-ψ((1, 1)s)-(δ, α, β)

ii. given that Π is secure in ω-ψ((0, 2)s)-(δ, α, β), then Π is also secure in ω- ψ((1, 2)s)-(δ, α, β)
and ω-ψ((2, 2)s)-(δ, α, β), and vice versa,
i.e., ω-ψ((0, 2)s)-(δ, α, β)↔ ω-ψ((1, 2)s)-(δ, α, β)↔ ω-ψ((2, 2)s)-(δ, α, β)

iii. given that Π is secure in ω-ψ((0, 3)s)-(δ, α, β), then Π is also secure in ω- ψ((1, 3)s)-(δ, α, β)
and ω-ψ((2, 3)s)-(δ, α, β), and vice versa,
i.e., ω-ψ((0, 3)s)-(δ, α, β)↔ ω-ψ((1, 3)s)-(δ, α, β)↔ ω-ψ((2, 3)s)-(δ, α, β)

where ω ∈ {1, 0}4, ψpkr
, ψskr

∈ {0, 1, 2, 3, 4}, ψv, ψm, γ ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {0, 1, 2} (Figure 11).

Theorem 4. For a currency scheme Π for a given combination of ω, δ, α, (ψpk, ψsk)r, ψv, ψm, ψt,
and β (with ψt = 1), the notion resulting from decreasing the value of ψspk

while holding others is
not necessarily stronger than the former for the following scenarios:

i. ω-ψ((0, 0)s)-(δ, α, β)9 ω-ψ((1, 0)s)-(δ, α, β)9 ω-ψ((2, 0)s)-(δ, α, β)9 ω-ψ((3, 0)s)
-(δ, α, β)

ii. ω-ψ((1, 1)s)-(δ, α, β)9 ω-ψ((2, 1)s)-(δ, α, β)9 ω-ψ((3, 1)s)-(δ, α, β)9
iii. ω-ψ((2, 2)s)-(δ, α, β)9 ω-ψ((3, 2)s)-(δ, α, β)
iv. ω-ψ((2, 3)s)-(δ, α, β)9 ω-ψ((3, 3)s)-(δ, α, β)
v. ω-ψ((3, 3)s)-(δ, α, β)9 ω-ψ((4, 4)s)-(δ, α, β)

where ω ∈ {1, 0}4, ψpkr
, ψskr

∈ {0, 1, 2, 3, 4}, ψv, ψm, γ ∈ {0, 1, 2, 3}, ψt = 1, β ∈ {0, 1}, and
δ ∈ {0, 1, 2} (Figure 11).

Cryptography 2021, 5, 10 27 of 47

Theorem 5. For a currency scheme Π for a given combination of ω, δ, α, (ψpk, ψsk)r, ψv, ψm, ψt,
and β (with ψt 6= 0), the notion resulting from decreasing the value of ψssk

while holding others is
not necessarily stronger than the former for the following scenarios:

i. ω-ψ((2, 0)s)-(δ, α, β)9 ω-ψ((2, 1)s)-(δ, α, β)9 ω-ψ((2, 2)s)-(δ, α, β)9 ω-ψ((2, 3)s)
-(δ, α, β)

ii. ω-ψ((3, 0)s)-(δ, α, β)9 ω-ψ((3, 1)s)-(δ, α, β)9 ω-ψ((3, 2)s)-(δ, α, β)9 ω-ψ((3, 3)s)
-(δ, α, β)

iii. ω-ψ((1, 0)s)-(δ, α, β)9 ω-ψ((1, 1)s)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 11).

Note that the Theorems 1–4 also hold for recipient addresses in the same manner.

Theorem 6. For a currency scheme Π and for a given combination of ω, δ, ψ, and β, if α is
decreased while holding the others, the former notion is strictly stronger than the resulting notion
for the following scenarios:

i. given Π is secure in ω-ψ-(δ, 3α, β), then Π is also secure in ω-ψ-(δ, 2α, β),
i.e., ω-ψ-(δ, 3α, β) → ω-ψ-(δ, 2α, β)

ii. given Π is secure in ω-ψ-(δ, 2α, β), then Π is also secure in ω-ψ-(δ, 1α, β),
i.e., ω-ψ-(δ, 2α, β) → ω-ψ-(δ, 1α, β)

iii. given Π is secure in ω-ψ-(δ, 1α, β), then Π is also secure in ω-ψ-(δ, 0α, β),
i.e., ω-ψ-(δ, 1α, β) → ω-ψ-(δ, 0α, β)

where ω ∈ {1, 0}4, ψpkr
, ψskr

∈ {0, 1, 2, 3, 4}, ψv, ψm, γ ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {0, 1, 2} (Figure 12d).

Theorem 7. For a currency scheme Π and for a given combination of ω, δ, ψ, and β (with δ ∈
{0, 1}), if α is increased while holding the others, the system is necessarily secure in the resulting
notion for the following scenarios:

i. Given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ-(δ, 2α, β)
and Π0 is not secure in ω-ψ-(δ, 2α, β), then there exists a currency scheme Π which is
secure in ω-ψ-(δ, 2α, β) but not secure in ω-ψ-(δ, 3α, β),
i.e., ω-ψ-(δ, 2α, β) 9 ω-ψ-(δ, 3α, β)

ii. Given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ-(δ, 1α, β)
and Π0 is not secure in ω-ψ-(δ, 1α, β), then there exists a currency scheme Π which is
secure in ω-ψ-(δ, 1α, β) but not secure in ω-ψ-(δ, 2α, β),
i.e., ω-ψ-(δ, 1α, β) 9 ω-ψ-(δ, 2α, β)

iii. Given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ-(δ, 0α, β)
and Π0 is not secure in ω-ψ-(δ, 0α, β), then there exists a currency scheme Π which is
secure in ω-ψ-(δ, 0α, β) but not secure in ω-ψ-(δ, 1α, β),
i.e., ω-ψ-(δ, 0α, β) 9 ω-ψ-(δ, 1α, β)

where ω ∈ {1, 0}4, ψpkr
, ψskr

∈ {0, 1, 2, 3, 4}, ψv, ψm, γ ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {0, 1, 2} (Figure 12d).

Theorem 8. For a currency scheme Π and for a given combination of ω, α, ψ, and β, if δ is
decreased while holding the others, the former notion is strictly stronger than the resulting notion
for the following scenarios:

i. given Π is secure in ω-ψ-(2δ, α, β) then Π is also secure in ω-ψ-(1δ, α, β),
i.e., ω-ψ-(2δ, α, β) → ω-ψ-(1δ, α, β)

ii. given Π is secure in ω-ψ-(1δ, α, β) then Π is also secure in ω-ψ-(0δ, α, β),
i.e., ω-ψ-(1δ, α, β) → ω-ψ-(0δ, α, β)

where ω ∈ {1, 0}4, ψpkr
, ψskr

∈ {0, 1, 2, 3, 4}, ψv, ψm, γ ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {0, 1, 2} (Figure 12a).

Cryptography 2021, 5, 10 28 of 47

Theorem 9. For a currency scheme Π and for a given combination of ω, α, ψ, and β (with α 6= 0),
if δ is increased while holding the others, the resulting notion is not necessarily stronger than the
former notion for the following scenarios:

i. given that two currency schemes Π0 and Π1 exists such that Π1 is secure in ω-ψ-(1δ, α, β)
and Π0 is not secure in ω-ψ-(1δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ-(1δ, α, β) but not secure in ω-ψ-(2δ, α, β),
i.e., ω-ψ-(1δ, α, β)-β 9 ω-ψ-(2δ, α, β)

ii. given that two currency schemes Π0 and Π1 exists such that Π1 is secure in ω-ψ-(0δ, α, β)
and Π0 is not secure in ω-ψ-(0δ, α, β), there exists a currency scheme Π which is secure in
ω-ψ-(0δ, α, β) but not secure in ω-ψ-(1δ, α, β),
i.e., ω-ψ-(0δ, α, β) 9 ω-ψ-(1δ, α, β)

where ω ∈ {1, 0}4, ψpkr
, ψskr

∈ {0, 1, 2, 3, 4}, ψv, ψm, γ ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {0, 1, 2} (Figure 12a).

Theorem 10. For a currency scheme Π and for a given combination of ω, α, and ψ, if β is decreased
while holding the others, the former notion is strictly stronger than the resulting notion for the
following scenarios:

i. given Π is secure in ω-ψ-(δ, α, 1β) then Π is also secure in ω-ψ-(δ, α, 0β),
i.e., ω-ψ-(δ, α, 1β) → ω-ψ-(δ, α, 0β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 12a).

Theorem 11. For a currency scheme Π and for a given combination of ω, α, and ψ, if β is decreased
while holding the others, the former notion is strictly stronger than the resulting notion for the
following scenarios:

i. given that Π is secure in ω-ψ-(δ, α, 0β) then Π is not necessarily secure in ω-ψ-(δ, α, 1β),
i.e., ω-ψ-(δ, α, 0β) 9 ω-ψ-(δ, α, 1β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 12a).

Theorem 12. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)s, ψm,
ψt, and β, when the value of ψv is decreased while holding others fixed, the former notion is strictly
stronger than the resulting notion under the following scenarios:

i. given Π is secure in ω-ψ(3v)-(δ, α, β), then Π is also secure in ω-ψ(2v)- (δ, α, β),
i.e., ω-ψ(3v)-(δ, α, β)→ ω-ψ(2v)-(δ, α, β)

ii. given Π is secure in ω-ψ(2v)-(δ, α, β), then Π is also secure in ω-ψ(1v)- (δ, α, β),
i.e., ω-ψ(2v)-(δ, α, β)→ ω-ψ(1v)-(δ, α, β)

iii. given Π is secure in ω-ψ(1v)-(δ, α, β), then Π is also secure in ω-ψ(0v)- (δ, α, β),
i.e., ω-ψ(1v)-(δ, α, β)→ ω-ψ(0v)-(δ, α, β)

where ω ∈ {1, 0}4, ψpkr
, ψskr

∈ {0, 1, 2, 3, 4}, ψv, ψm, γ ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {0, 1, 2} (Figure 12e).

Theorem 13. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)s, ψm,
ψt, and β (with ψt = 1), the resulting notion from increasing the value of ψv while holding others
fixed, the scheme is not necessarily secure in the resulting notion under the following scenarios:

i. given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ(0v)-(δ, α, β)
and Π0 is not secure in ω-ψ(0v)-(δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ(0v)-(δ, α, β) but not secure in ω-ψ(1v)-(δ, α, β),
i.e., ω-ψ(0v)-(δ, α, β) 9 ω-ψ(1v)-(δ, α, β)

ii. given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ(1v)-(δ, α, β)
and Π0 is not secure in ω-ψ(1v)-(δ, α, β), then there exists a currency scheme Π which is

Cryptography 2021, 5, 10 29 of 47

secure in ω-ψ(1v)-(δ, α, β) but not secure in ω-ψ(2v)-(δ, α, β),
i.e., ω-ψ(1v)-(δ, α, β) 9 ω-ψ(2v)-(δ, α, β)

iii. given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ(2v)-(δ, α, β)
and Π0 is not secure in ω-ψ(2v)-(δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ(2v)-(δ, α, β) but not secure in ω-ψ(3v)-(δ, α, β),
i.e., ω-ψ(2v)-(δ, α, β) 9 ω-ψ(3v)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 12e).

Theorem 14. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)s, ψv, ψt,
and β, when the value of ψm is decreased while holding others fixed, the former notion is strictly
stronger than the resulting notion under the following scenarios:

i. given Π is secure in ω-ψ(3m)-(δ, α, β), then Π is also secure in ω-ψ(2m)- (δ, α, β),
i.e., ω-ψ(3m)-(δ, α, β)→ ω-ψ(2m)-(δ, α, β)

ii. given Π is secure in ω-ψ(2m)-(δ, α, β), then Π is also secure in ω-ψ(1m)- (δ, α, β),
i.e., ω-ψ(2m)-(δ, α, β)→ ω-ψ(1m)-(δ, α, β)

iii. given Π is secure in ω-ψ(1m)-(δ, α, β), then Π is also secure in ω-ψ(0m)- (δ, α, β),
i.e., ω-ψ(1m)-(δ, α, β)→ ω-ψ(0m)-(δ, α, β)

where ω ∈ {1, 0}4, ψpkr
, ψskr

∈ {0, 1, 2, 3, 4}, ψv, ψm, γ ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {0, 1, 2} (Figure 12f).

Theorem 15. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)s, ψm,
ψt, and β (with ψt = 1), the resulting notion from increasing the value of ψm while holding others
fixed, the scheme is not necessarily secure in the resulting notion under the following scenarios:

i. given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ(2m)-(δ, α, β)
and Π0 is not secure in ω-ψ(2m)-(δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ(2m)-(δ, α, β) but not secure in ω-ψ(3m)-(δ, α, β),
i.e., ω-ψ(2m)-(δ, α, β) 9 ω-ψ(3m)-(δ, α, β)

ii. given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ(1m)-(δ, α, β)
and Π0 is not secure in ω-ψ(1m)-(δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ(1m)-(δ, α, β) but not secure in ω-ψ(2m)-(δ, α, β),
i.e., ω-ψ(1m)-(δ, α, β) 9 ω-ψ(2m)-(δ, α, β)

iii. given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ(0m)-(δ, α, β)
and Π0 is not secure in ω-ψ(1m)-(δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ(0m)-(δ, α, β) but not secure in ω-ψ(1m)-(δ, α, β),
i.e., ω-ψ(0m)-(δ, α, β) 9 ω-ψ(1m)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 12f).

Theorem 16. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)s,
(ψpk, ψsk)r ψv, ψm, and β, when the value of ψt is decreased while holding others fixed, the former
notion is strictly stronger than the resulting notion under the following scenarios:

i. given Π is secure in ω-ψ(5t)-(δ, α, β), then Π is also secure in ω-ψ(4t)- (δ, α, β),
i.e., ω-ψ(5t)-(δ, α, β)→ ω-ψ(4t)-(δ, α, β)

ii. given Π is secure in ω-ψ(4t)-(δ, α, β), then Π is also secure in ω-ψ(3t)- (δ, α, β),
i.e., ω-ψ(4t)-(δ, α, β)→ ω-ψ(3t)-(δ, α, β)

iii. given Π is secure in ω-ψ(3t)-(δ, α, β), then Π is also secure in ω-ψ(2t)- (δ, α, β),
i.e., ω-ψ(3t)-(δ, α, β)→ ω-ψ(2t)-(δ, α, β)

iv. given Π is secure in ω-ψ(2t)-(δ, α, β), then Π is also secure in ω-ψ(1t)- (δ, α, β),
i.e., ω-ψ(2t)-(δ, α, β)→ ω-ψ(1t)-(δ, α, β)

v. given Π is secure in ω-ψ(1t)-(δ, α, β), then Π is also secure in ω-ψ(0t)- (δ, α, β),
i.e., ω-ψ(1t)-(δ, α, β)→ ω-ψ(0t)-(δ, α, β)

Cryptography 2021, 5, 10 30 of 47

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 12b).

Theorem 17. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)s, ψv,
ψm, and β the resulting notion from increasing the value of ψt while holding others fixed, the scheme
is not necessarily secure in the resulting notion under the following scenarios:

i. Given that there exists a currency scheme Π1 which is secure in ω-ψ(0t)- (δ, α, β), it does
not necessarily imply that Π1 is secure in ω-(ψ(1t)-(δ, α, β),
i.e., ω-(ψ(0t)-(δ, α, β)9 Π1 is secure in ω-(ψ(1t)-(δ, α, β).

ii. Given that there exists a currency scheme Π1 which is secure in ω-ψ(1t)- (δ, α, β), it does
not necessarily imply that Π1 is secure in ω-(ψ(2t)-(δ, α, β),
i.e., ω-(ψ(1t)-(δ, α, β)9 Π1 is secure in ω-(ψ(2t)-(δ, α, β).

iii. Given that there exists a currency scheme Π1 which is secure in ω-ψ(2t)- (δ, α, β), it does
not necessarily imply that Π1 is secure in ω-(ψ(3t)-(δ, α, β),
i.e., ω-(ψ(2t)-(δ, α, β)9 Π1 is secure in ω-(ψ(3t)-(δ, α, β).

iv. Given that there exists a currency scheme Π1 which is secure in ω-ψ(3t)- (δ, α, β), it does
not necessarily imply that Π1 is secure in ω-(ψ(4t)-(δ, α, β),
i.e., ω-(ψ(3t)-(δ, α, β)9 Π1 is secure in ω-(ψ(4t)-(δ, α, β)

v. Given that there exists a currency scheme Π1 which is secure in ω-ψ(4t)- (δ, α, β), it does
not necessarily imply that Π1 is secure in ω-(ψ(5t)-(δ, α, β),
i.e., ω-(ψ(4t)-(δ, α, β)9 Π1 is secure in ω-(ψ(5t)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, β ∈ {0, 1}], and δ ∈ {1, 2}
(Figure 12c).

Note that in some cases, the separations are not known to hold for all values of the
unspecified parameters. Based on the above theorems, we also define the following corol-
laries.

Corollary 1 (Absolute Fungibility (ALL-IND-FULL-FULL)). Given that a currency scheme
Π is secure in the strongest anonymity notion (i.e., secure against the strongest possible adversary),
then Π is also secure in any other notion (any other adversary),
i.e., (1111)ω-((4, 4), (4, 4), 3, 3, 5)ψ-(2δ, 3α, 1β)→ω-((ψpk, ψsk)s, (ψpk, ψsk)r, ψv, ψm, ψt)- δ-α-β
where ω ∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm, α ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {0, 1, 2} (Figure 11).

Proof. (sketch) This follows from the above theorems as illustrated in Figures 11 and 12 as
this notion is the strongest among all.
Corollary 2 (IND→ ULK). For a currency scheme Π,

i. given Π is secure in S-IND-KNW-PWR for a given adversarial knowledge KNW of re-
cipients, value and metadata, and given adversarial power PWR, then Π is also secure in
S-ULK-KNW-PWR,
i.e., S-IND-KNW-PWR→ S-ULK-KNW-PWR;

ii. given Π is secure in R-IND-KNW-PWR for a given adversarial knowledge KNW of senders,
value and metadata, and given adversarial power PWR, then Π is also secure in R-ULK-
KNW-PWR,
i.e., R-IND-KNW-PWR→ R-ULK-KNW-PWR;

iii. given Π is secure in V-IND-KNW-PWR for a given adversarial knowledge KNW of senders,
recipients and metadata, and given adversarial power PWR, then Π is also secure in V-
ULK-KNW-PWR,
i.e., V-IND-KNW-PWR→ V-ULK-KNW-PWR; and

iv. given Π is secure in M-IND-KNW-PWR for a given adversarial knowledge KNW of senders,
recipients and value, and given adversarial power PWR, then Π is also secure in M-ULK-

Cryptography 2021, 5, 10 31 of 47

KNW-PWR,
i.e., M-IND-KNW-PWR→M-ULK-KNW-PWR

Proof. (sketch) (Part i) From the definitions of S-IND (Definition 4) and S-ULK (Definition 5),
the difference between the two notions is that (ψspk

, ψssk
) = (2, 0) in S-IND and it is (0, 0)

in S-ULK. Then, from Theorem 1, it follows that (2, 0)s → (0, 0)s and hence the implication
follows (Figure 13).

(Part ii) Similarly, it follows from Theorem 1 with respect to recipients.
(Part iii) Follows from Theorem 12.
(Part iv) Follows from Theorem 14.

S-IND-KNW-PWR R-IND-KNW-PWR V-IND-KNW-PWR M-IND-KNW-PWR

S-ULK-KNW-PWR R-ULK-KNW-PWR V-ULK-KNW-PWR M-ULK-KNW-PWR

Figure 13. Relations between indistinguishability and unlinkability (Corollary 2).

Conversely, the weakest adversary is represented by the notion NIL-IND-NIL-NIL
represented by the vector (0000)ω-((0, 0)s, (0, 0)r, 0v, 0m, 0t)ψ-(0δ, 0α, 0β) with all entities
hidden (Definition 13). Note that this notion is trivial in that no adversary can ever win the
corresponding game as the transactions t0 and t1 are, aside from randomness, identical.

6. Discussion

Our objective in this work was to find a solution to our research question, i.e., to
formulate a method to achieve a fine-grained systematization of anonymity modeling
suitable for decentralized systems such as modern cryptocurrencies. To this effect, we
have developed a comprehensive framework which depicts the generic functionality
of a cryptocurrency scheme, irrespective of the underlying implementation. We have
established the soundness of our model while ensuring the functional correctness and
security against a wide range of adversaries. Through this model, we have constructed a
unified means of analyzing the true level of anonymity achieved by any fully decentralized
cryptocurrency system in a qualitative manner.

Our proposed anonymity model is centered around the idea of indistinguishability
and it is elaborated around a group of entities related to cryptocurrency transactions, e.g.,
senders, recipients, values, and metadata. To this effect, we defined a comprehensive
adversarial model encompassing a wide range of capabilities including knowledge and
power. Adversarial knowledge is determined based on a range of access levels to the
knowledge of secret/public keys of senders/recipients, transaction values, metadata, and
transaction records. Power is defined based on different combinations of state initialization
methods, ability to manipulate the state, and to cause minting to fail. These capabilities
collectively represent an exhaustive adversarial model, which is capable of modeling
anonymity at a much granular level, resulting in a vast number of different notions per
each test case (defined by ω). While some notions may not carry a meaningful realization
in a real currency scheme, a majority leads to a multitude of attacker scenarios, which may
not have been thought possible otherwise. One may wonder why we need such granularity
in modeling anonymity in the context of cryptocurrencies, yet our model shows how a
minute change such as varying one value in a single variable in the Anonymity game,
could drastically affect the level of anonymity of a cryptocurrency. Thus, we have been
able to achieve a fine-grained model as expected.

Building upon this model, we have provided formal definitions for a subset of anonymity
notions that demonstrate baseline anonymity notions in indistinguishability, which is the
fundamental property of anonymity. Inability to distinguish between two probable (known)
entities related to a minted transaction under various adversarial settings was considered

Cryptography 2021, 5, 10 32 of 47

as the basis for these notions. Moreover, we also defined unlinkability, a weaker notion of
indistinguishability, in order to define an intermediary level of anonymity. In this case, we
considered the indistinguishability between two entities that are unknown to the adversary
in a given scenario. However, even without formal definitions, other notions also play a
significant role in performing a rigorous analysis of anonymity aspects of cryptocurren-
cies. As such, the anonymity notions resulting from this framework provide a universal
systematization of anonymity across different implementations.

Taking a step further, we have attempted to understand the relationships and in-
terdependencies among these myriad notions. Consequently, we have identified several
implications, equivalences, and separations which provide useful comparisons in the mul-
tidimensional adversarial parameter model. While some correlations are trivial, there are
others that may depend on the underlying constructions, all of which demonstrate the
sophistication of anonymity in the context of cryptocurrencies. To this effect, we have
formulated a set of theorems which is useful in investigating anonymity in decentralized
cryptocurrency schemes and thus this formalization adds value to our framework. We have
demonstrated how such complexity is evident in real-world cryptocurrency schemes in
a separate work, which focuses on specific case studies based on a subset of the general
framework described here [32].

In our attempt to grasp the anonymity landscape modeled by these notions, we saw
that some familiar anonymity notions referenced in existing literature present similar
interpretations to some notions in our model. As mentioned at the outset, the most widely
referenced notion with respect to the anonymity of cryptocurrencies is the concept of
unlinkability. In the context of Bitcoin, unlinkability is interpreted as linking addresses to
transactions and to real world user identities [19–22]. Although this interpretation does not
differentiate between senders and recipients, it closely relates to the sender and recipient
unlinkability notions defined in our model. Conversely, ours present a more detailed
conceptualization, where we model the level of knowledge of the payment addresses by
varying different parameters in our notions, thereby representing many different variants of
unlinkability in our notions. This clearly shows how our model is capable of covering more
ground compared to very high-level notions discussed in the existing literature such as [22].

In the case of Monero, the unlinkability property has been discussed as the inability of
deducing whether two transactions were intended to the same recipient addresses, which
is closely analogous to the recipient unlinkability notion in our model [25,33]. On the other
hand, the notion of traceability, which is widely discussed in the context of Monero, closely
correlates to the sender unlinkability notion in our work [25,33]. In contrast, however, our no-
tions are defined with respect to several dimensions addressing a wider scope of adversarial
capabilities, and therefore capture even minor deviations in anonymity in this respect.

Further, the notion of k-anonymity has been utilized in some studies to visualize
the anonymity landscape in terms of a quantitative measure where the parameter k de-
notes the size of the anonymity set (i.e., number of entities in a group) [7,25]. Our work
here is orthogonal to this in the sense that ours provide a means for qualitative analysis
of anonymity.

In essence, the notions we propose herein are in relation to the entities within a
currency scheme, with a much wider span of attacker scenarios which helps to analyze
anonymity in minute detail. As noted earlier, this study does not investigate the privacy
aspects of the underlying consensus mechanism or the network of a cryptocurrency scheme.
Yet, these layers may leak information independently from the currency scheme in which
case it may affect the achievable level of anonymity, and this may be a future direction of
study in this context.

Therein, our work shows the very complex nature of the level of anonymity demon-
strated by any decentralized currency scheme through a fine-grained systematization. It is
thus evident that existing claims for anonymity of different cryptocurrency schemes might
only be anonymous in some aspects, e.g., a currency scheme which is claimed to possess

Cryptography 2021, 5, 10 33 of 47

unlinkability, might not demonstrate unlinkability with respect to all entities. Therefore,
claims for anonymity cannot be made lightly in the presence of such granularity.

7. Conclusions

In this paper, we have presented a common framework that can be used to evaluate
the level of anonymity associated with different cryptocurrency schemes, regardless of the
implementation method. We provide a single formal experiment to capture a plethora of
distinct security and privacy properties that we identify, and attempt to draw connections
to existing terminology.

Our model defines a rigorous set of anonymity properties based on the fundamental
property of indistinguishability, further particularized to varying security subjects and
adversarial models. Together, these represent a precise and exhaustive recount of true
anonymity achieved by a currency scheme.

Author Contributions: Conceptualization, N.A., X.B. and M.M.; methodology, N.A, X.B. and M.M.;
implementation, N.A.; writing—original draft preparation, N.A.; writing—review and editing, N.A.,
X.B. and M.M.; supervision, X.B. and M.M. All authors have read and agreed to the published version
of the manuscript.

Funding: Xavier Boyen is the recipient of an Australian Research Council Future Fellowship and
acknowledges generous support from the grant, number FT140101145.

Data Availability Statement: Data sharing not applicable. No new data were created or analysed in
this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IND Indistinguishability
ULK Unlinkability
KNW/KNOWL Knowledge
PWR Power
S Sender/s
R Recipient/s
V Value
M Metadata

Appendix A. Experiments for Correctness of the Scheme

This section provides an extension to the correctness of the proposed currency scheme
as briefly discussed in Section 3. Presented below is the background information related to
correctness experiments listed in Table 4.

Generating Input Data

We define several functions to generate input data for the correctness experiments
in terms of λ and a tuple of bit strings ρ ∈ ({0, 1}∗)∗. Bit strings are mapped to required
datasets through separate and arbitrary subjective functions with following mappings:

DeserialiseW : {0, 1}∗ ×N→ {⊥} ∪W where W ∈ {P,A,T,V,M}

Here, we list the functions that generate input data for the correctness experiments
from a given ρ, which can be thought of as random coins (Figure A1). ρ is represented
as ρ = (ρ1, ρ2, . . .) within experiments where ρ1, ρ2, etc. are bit strings of arbitrary finite
length of which the combined length is equal to the length of ρ, i.e., ∑i|ρi| = |ρ|. Each ρi
is used to generate required inputs for the experiments through respective Deserialise

functions. In addition, ρi strings are also used to introduce randomness to the opera-
tions performed within experiments with the notation, Function(parameters ; ρi). In the

Cryptography 2021, 5, 10 34 of 47

case where the length of ρ is not sufficient to produce required number of ρi bit strings,
corresponding experiment is terminated by returning 1 (i.e., experiment terminates with
success). In addition, we also introduce several helper functions that help improve the
readability of the correctness experiments (Figure A2).

Figure A1 lists the functions used to generate input data for the correctness experi-
ments based on bit strings ρk ∈ ρ. In addition, other helper functions used in correctness
experiments are given in Figure A2.

GenerateState(λ, ρk)

1. p← DeserialiseP(λ, ρk)

2. if ¬(IsValidStateπ(p, λ))

3. return ⊥
4. return p

GenerateTxns(p, λ, ρk)

1. {(tp , ts)} ← DeserialiseT(λ, ρk)

2. for all (tp , ts) ∈ {(tp , ts)} do
3. if ¬(IsValidSecTxnπ(tp , ts , p))
4. return ⊥
5. return {(tp , ts)}

GenerateTxnValues(R, S̄, λ, ρk)

1. (Vold, Vnew, m)← DeserialiseV(λ, ρk)

2. if (|Vold| 6= |S̄|) ∨ (|Vnew| 6= |R|)
3. return ⊥
4. return (Vold, Vnew, m)

GenerateAddr(p, λ, ρk)

1. ((apk , ask))← DeserialiseA(λ, ρk+1)

2. for all (apk , ask) ∈ ((apk , ask)) do
3. if ¬(IsValidPubAddrπ(apk , p))
4. return ⊥
5. if ¬(IsValidSecAddrπ(apk , ask , p))
6. return ⊥
7. return ((apk , ask))

GenerateMintAddr(p, λ, ρk)

1. Rm ← DeserialiseM(λ, ρk+1)

2. for all apk ∈ Rm do
3. if ¬(IsValidPubAddrπ(apk , p))
4. return ⊥
5. return Rm

Figure A1. Functions used to generate input data from bitstring ρ.

SelectSubsetofStates(Pset, k, ˘, æ)

1. n← ({1, .., |Pset |}; ρk+1)

2. for i ∈ {1, .., n} do
3. pi ← (Pset; ρk+1+i)

4. Pset ← Pset \ {pi}
5. return (Pset, k + 1 + i)

EvolveState(p, k, ˘, æ)

1. W ← GenerateTxns(p, λ, ρk+1)

2. if W = ⊥, return ⊥
3. {(tp , ts)} ←W
4. if ¬(IsMintableπ({tp}, p)), return ⊥
5. Y ← GenerateMintData(p, λ, ρk+2)

6. if Y = ⊥, return ⊥
7. Rm ← Y
8. (p1, Vx)← Mintπ({tp}, Rm , p; ρk+3)

9. return (p1, k + 3)

GenerateSetofStates(k, ˘, æ)

1. Pset ← {}
2. m← |ρ| − k
3. if m < 1, return ⊥
4. n← ({1, .., m− 1}; ρk+1)

5. i← k + 2
6. for j ∈ {1, .., n} do
7. pj ← GenerateState(λ, ρi)

8. if IsValidStateπ(pj , λ), Pset ← Pset ∪ {pj}
9. i← i + 1

10. return (Pset, i)

Figure A2. Helper functions for correctness.

Figures A3 and A4 list all experiments that establish the correctness of the pro-
posed scheme.

Cryptography 2021, 5, 10 35 of 47

Expinit
Π (λ, ρ)

1. p0 ← Initπ(1λ ; ρ1)

2. b← IsGenesisStateπ(p0, λ)

3. b′ ← IsValidStateπ(p0, λ)

4. return (b ∧ b′)

Expcreate-addr
Π (λ, d, ρ)

1. p0 ← GenerateStateπ(λ, ρ1) [p0 6= ⊥]

2. (apk , ask , tp , ts)← CreateAddrπ(p0, d; ρ2)

3. b← (IsValidPubAddrπ(apk , p0)

4. b′ ← IsValidSecAddrπ(apk , ask , p0))

5. b′′ ← (IsMintableπ({tp}, p0)

6. return (b ∧ b′ ∧ b′′)

Expmint
Π (λ, ρ) :

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. X ← GenerateTxns(p0, λ, ρ2) [X 6= ⊥]
3. {(tp , ts)} ← XF
4. b← IsMintableπ({tp}, p0)

5. Y ← GenerateMintData(p0, λ, ρ3) [Y 6= ⊥]
6. (Vm , Rm)← Y
7. (p1, Vx)← Mintπ({tp}, Rm , p0; ρ4)

8. b′ ← IsValidState(p1, λ) ∧ (p0 ≺ p1)

9. return (b ?
= b′)

Expadjudicate
Π (λ, ρ) :

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]

2. X ← GenerateSetofStates(1, λ, ρ) [X 6= ⊥]
3. (Pset, k)← X
4. p′ ← Adjudicateπ(Pset, p0)

5. if p′ = p0

6. for all pi ∈ Pset do
7. if IsValidStateπ(pi , λ) ∧ (p0 ≺ pi)

8. return 0
9. else

10. if ¬(IsValidStateπ(p′ , λ)) ∨ (p′ /∈ Pset)

11. return 0
12. if p0 � p′ , return 0
13. for all pi ∈ Pset do
14. if (p′ ≺ pi), return 0
15. return 1

Expcreate-checkpoint
Π (λ, ρ) :

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. pc

0 ← CreateCheckpointπ(p0, ρ2) [pc
0 6= ⊥]

3. X ← EvolveState(p1, 2, λ, ρ) [X 6= ⊥]

4. (p1, k)← X
5. return (pc

0 � RetrieveCheckpointStateπ(p1))

Expcreate-txn
Π (λ, ρ)

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]

2. R̄← GenerateAddr(p0, λ, ρ2) [R̄ 6= ⊥]

3. S̄← GenerateAddr(p0, λ, ρ3) [S̄ 6= ⊥]

4. Z ← GenerateTxnValues(λ, ρ4) [Z 6= ⊥]

5. (Vold, Vnew, m)← Z
6. for i ∈ {0, .., |S̄| − 1} do
7. (apki , aski)← S̄[i]
8. if GetBalanceπ(apki , aski , p0) < Vold[i]
9. return 1

10. (tp , ts)← CreateTxnπ(R, Vnew, S̄, Vold, m, p0; ρ5)

11. b← IsValidPubTxn(tp , p0)

12. b′ ← IsValidSecTxn(tp , ts , p0)

13. return (b ∧ b′)

Expextract-txn-data
Π (λ, ρ)

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]

2. R̄← GenerateAddr(p0, λ, ρ2) [R̄ 6= ⊥]

3. S̄← GenerateAddr(p0, λ, ρ3) [S̄ 6= ⊥]

4. Z ← GenerateTxnValues(λ, ρ4) [Z 6= ⊥]

5. (Vold, Vnew, m)← Z
6. for i ∈ {0, .., |S̄| − 1} do
7. (apki , aski)← S̄[i]
8. if GetBalanceπ(apki , aski , p0) < Vold[i]
9. return 1

10. (tp , ts)← CreateTxnπ(R, Vnew, S̄, Vold, m, p0; ρ5)

11. W ← GenerateMintData(p0, λ, ρ6) [W 6= ⊥]
12. (Vm , Rm)←W
13. if ¬(IsMintableπ({tp}, p0)), return 0
14. (p1, Vx)← Mintπ({tp}, Rm , p0; ρ7)

15. S′ ← ExtractSenderPubAddrπ(tp , ts , p1)

16. R′ ← ExtractSenderPubAddrπ(tp , ts , p1)

17. V ′old ← ExtractInputValπ(tp , ts , p1)

18. V ′new ← ExtractOutputValπ(tp , ts , p1)

19. b← (R′ ?
= R) ∧ (S′ ?

= S)

20. b′ ← (V ′old
?
= Vold) ∧ (V ′new

?
= Vnew)

21. return (b ∧ b′)

Expgenesis-state
Π (λ, ρ) :

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]

2. if RetrieveCheckpointStateπ(p0) = p0

3. return (IsGenesisStateπ(p0, λ))

4. X ← EvolveState(p1, 1, λ, ρ) [X 6= ⊥]

5. (p1, k)← X
6. b← IsValidStateπ(p1, λ)

7. b′ ← ¬ IsGenesisStateπ(p1, λ)

8. return (b ∧ b′)

Figure A3. Correctness experiments 1.

Cryptography 2021, 5, 10 36 of 47

Expcheckpoint-monotonicity
Π (λ, ρ) :

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. pc

0 ← CreateCheckpointπ(p0, λ)[pc
0 6= ⊥]

3. p1 ← pc
0

4. i, nc ← 1
5. while (i < |ρ|) do
6. X ← EvolveState(p1, i, λ, ρ) [X 6= ⊥]
7. (p2, k)← X

8. b $←− {0, 1}
9. if b = 1

10. H ← CreateCheckpointπ(p2, λ; ρk+1)

11. if H 6=⊥, pc ← H; nc ← nc + 1
12. i← k + 1
13. else
14. i← k
15. p1 ← p2

16. for j ∈ {1, .., nc − 1} do
17. pc

1 ← RetrieveCheckpointState(pc)

18. if pc
1 = ⊥, return 0

19. pc ← pc
1

20. return (pc ?
= pc

0)

Expadj-monotonicity
Π (λ, ρ) :

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. X ← GenerateSetofStates(2, λ, ρ) [X 6= ⊥]
3. (Pset, k)← X
4. (Ptest, j)← SelectSubsetofStates(Pset, k, λ, ρ)

5. p1 ← Adjudicateπ(Pset, p0)

6. X ← EvolveState(p1, j, λ, ρ) [X 6= ⊥]
7. (p2, j)← X
8. p3 ← Adjudicateπ(Ptest ∪ {p2}, p1)

9. return P3
?
= P2

Expretireve-checkpoint
Π (λ, ρ) :

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]

2. p1 ← p0

3. while RetrieveCheckpointStateπ(p1) 6= p1 do
4. X ← RetrieveCheckpointStateπ(p1)

5. if X = ⊥, return 0
6. p′ ← X
7. if ¬(IsValidStateπ(p′ , λ)), return 0
8. if p′ � p1, return 0
9. p1 ← p′

10. return IsGenesisStateπ(p1, λ)

Figure A4. Correctness experiments 2.

Appendix B. Security Properties

In this section, we provide comprehensive details of the security properties discussed
in Section 4.3, describing how individual games are executed in terms of experiments
representing each scenario. For each property, we provide a description of the game,
winning condition, and the relevant experiment.

Appendix B.1. Unforgeability

Appendix B.1.1. Game

In this game, the initial state is set up according to the input parameters, and the
adversaryA = (A1,A2) outputs a transaction (tp, ts) and the current state pO based on the
capabilities defined by the parameters δ and α. The challenger verifies whether the given
state is valid. Subsequently, the challenger extracts the public addresses of the senders
from the given transaction and performs a check to see if those addresses were created by
the oracle (i.e., to ensure that the adversary does not have the knowledge of any of the
secret keys). Further, the challenger also checks whether the transaction was created by the
oracle and also whether the transaction is valid. This experiment is listed in Figure A5.

Exp
unforgeability
Π,A,O,ψ,δ,α,β(λ)

1. AO , TO ← AA.Init() ; MO ← {}; fO ← 0
2. (pO , r, s) ← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
3. (pO , (tp , ts), s)← RunAdversaryπ,O(A2, pO , ∅, r, s, δ) 〈 pO 6= ⊥ 〉
4. S← ExtractSenderPubAddrπ(tp , ts , pO)

5. return IsValidPubTxnπ(tp , pO) ∧ (AA.Lookup(tp , TO)
?
= ⊥) ∧ (S ∩AA.Keys(AO) 6= ∅)

Figure A5. Experiment for unforgeability.

Appendix B.1.2. Winning Condition

The adversary wins this game if he/she is able to produce a valid spending transaction
(which is not a transaction created by the Oracle) with at least one sender address in S
which was created by the oracle, for which he/she does not know the corresponding secret
key ask.

Cryptography 2021, 5, 10 37 of 47

Appendix B.2. Transaction Binding Property

Appendix B.2.1. Game

The game starts with the initial state generated as per the parameters. Then, the
adversary A = (A1,A2) outputs a secret part of a transaction ts and the current state pO
according to his capabilities. The challenger checks whether the current state is valid. Then,
the challenger checks whether ts corresponds to a transaction created by the oracle with tp
and the validity of transaction ts with respect to tp. The corresponding game is listed in
Figure A6.

Exp
txn-binding
π,A,O,ψ,δ,α,β(λ)

1. AO , TO ← AA.Init() ; MO ← {}
2. (pO , r, s)← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
3. (pO , ts , s)← RunAdversaryπ,O(A2, pO , ∅, r, s, δ) 〈pO 6= ⊥〉
4. tp ← AA.Lookup(ts , TO)
5. return (tp 6= ⊥) ∧ (IsValidSecTxnπ(tp , ts , pO))

Figure A6. Experiment for transaction binding property.

Appendix B.2.2. Winning Condition

If ts is present in the list of transactions created by the oracle with corresponding public
part tp and ts is a valid binding with tp in the given state, then adversary wins the game.

Appendix B.3. Spendability

Appendix B.3.1. Game

After the initial setup, the adversary A = (A1, A2, A3) outputs the current state pO
to start the game. The challenger then records the fund balances of all addresses created
by the oracle (all addresses in AO). In addition, the challenger obtains a list of unminted
transactions created by the oracle and takes away all Vnew values from corresponding
payment addresses in the stored balances, in order to ensure that the adversary cannot
mint those transactions later (Figure A7). Then, the adversary evolves the state from that
point onward, and the oracle does not create any new addresses or transactions during that
period. The adversary has access to the minting oracle only. Subsequently, the adversary
outputs the evolved state pO and the challenger then checks the balances of each address
in AO again in that state and compares with the corresponding initial balances stored
(Figure A8).

Appendix B.3.2. Winning Condition

The adversary wins if there is at least one address in AO for which the closing balance
is less than the starting balance.

Appendix B.4. Balance Property

Appendix B.4.1. Game

In this game, the adversary A = (A1, A2, A3) outputs a tuple of sender addresses
S̄, a tuple of recipient addresses R̄, and a tuple of miner addresses R̄m, together with the
current state pO . The challenger records the balances of all addresses in the three groups
of addresses and the minting history of the oracle MO . Then, the state evolves and the
adversary outputs a set of transactions {(tp, ts)} and the updated state pO . The challenger
then records the new minting history M2 and checks whether only one mint operation
has taken place between M1 and M2, and also checks whether the minted transactions
corresponds to the transactions returned by the adversary. In addition, another check is
performed to see if the sender and recipient addresses involved in all transactions are
the same as the sender and recipient addresses returned by the adversary. If any of these
checks fail, the adversary loses the game. For each transaction returned by the adversary,
Vold and Vnew values are recorded separately with the corresponding addresses. In addition,

Cryptography 2021, 5, 10 38 of 47

Vx values are also recorded with the miners’ address details. Finally, the challenger records
respective balances of all involved addresses and checks whether above conditions are
satisfied for all the addresses.

ExtractUnmintedTxns(TO , MO)

1. TM ←
⋃

m∈MO m[1]
2. T ← AA.Keys(TO)
3. T′ ← T \ TM

4. return T′

Figure A7. Function ExtractUnmintedTxns.

Exp
spendability
π,A,O,ψ,δ,α,β(λ)

1. AO , TO , B ← AA.Init() ; MO ← {}; fO ← 0
2. (pO , r, s)← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
3. (pO , ∅, s)← RunAdversaryπ,O(A2, pO , ∅, r, s, δ) 〈 pO 6= ⊥ 〉
4. for all apk ∈ AO do
5. ask ← AA.Lookup(apk , AO); bal← GetBalanceπ(apk , ask , pO)
6. B← AA.Insert(apk , bal, B)
7. T′ ← ExtractUnmintedTxns(TO , MO)
8. for all tp ∈ T′ do
9. ts ← AA.Lookup(tp , TO)

10. R← ExtractRecipientPubAddrπ(tp , ts , pO)
11. Vnew ← ExtractOutputValπ(tp , ts , pO)
12. for i ∈ {0, .., |R|} do
13. apk ← R[i]; bal ← AA.Lookup(apk , B)
14. B← AA.Update(apk , bal −Vnew[i], B)
15. (pO , ∅, s)← RunAdversaryπ,Omint

(A3, pO , ∅, r, s, δ) 〈 pO 6= ⊥ 〉
16. for all apk ∈ AO do

17. ask ← AA.Lookup(apk , AO); bal′ ← GetBalanceπ(apk , ask , pO)
18. if bal′ < AA.Lookup(apk , B), return 1
19. return 0

Figure A8. Experiment for spendability.

Appendix B.4.2. Winning Condition

The adversary wins the game if there is at least one address in which the individual
balances do not satisfy the above three conditions, based on the formula below:

Balancebe f (a) + Vnew(a)−Vold(a) + Vexcess(a) = Balancea f t(a) ∀a ∈ S̄, R̄, R̄m

Figure A9 lists the corresponding game (Expbalance
π,A,O,ψ,δ,α,β) which demonstrates this prop-

erty.

Appendix B.5. Indemnification

Appendix B.5.1. Game

In this game, the adversary A = (A1, A2, A3) outputs the current state first. The
challenger records the balances of all addresses in AO in Bbef and also records the mint
history M1. Then, the adversary evolves the state and outputs a set of transactions {(tp, ts)}
together with the current state pO , and the challenger ensures that there has been only
one mint operation since the previous state, and also whether the set of transactions
corresponding to that mint operation matches the transactions returned by the adversary.
Then, the challenger records the sender and recipient addresses corresponding to the given
transactions S and R. Subsequently, he/she checks the closing balances of all addresses in
AO and ensures none of these addresses are in S or R (Figure A10).

Cryptography 2021, 5, 10 39 of 47

Expbalance
π,A,O,ψ,δ,α,β(λ)

1. AO , TO ← AA.Init() ; MO ← {}
2. Bbef, Bold, Bnew, Bmint, Badj ← AA.Init()

3. vin , vout , va ← 0; S′′ , R′′ ← ()
4. (pO , r, s)← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
5. (pO , (R̄, S̄, R̄m), s)← RunAdversaryπ,O(A2, pO , ∅, r, s, δ) 〈pO 6= ⊥〉
6. M1 ← MO
7. for all (apk , ask) ∈ R̄ ‖ S̄ ‖ R̄m do
8. bal ← GetBalanceπ(apk , ask , pO)
9. Bbef ← AA.Insert(apk , bal, Bbef)

10. (pO , ({(tp , ts)}), s)← RunAdversaryπ,O(A3, pO , ∅, r, s, δ) 〈 pO 6= ⊥ 〉
11. M′ ← MO \M1 〈 |M′ | = 1 〉
12. (p′ , {tp}

′
, V ′x , R̄′m)← M′ 〈 (p′ = pO) ∧ ({tp}

′
= {tp} ∧ (R̄′m = R̄m) 〉

13. for all (tp , ts) ∈ {(tp , ts)} do
14. V ′old ← ExtractInputVal(tp , ts , pO); V ′new ← ExtractOutputVal(tp , ts , pO)
15. S′ ← ExtractSenderPubAddr(tp , ts , pO); R′ ← ExtractRecipientPubAddr(tp , ts , pO)
16. for i ∈ {0, .., |S′ | − 1} do
17. v1 ← AA.Lookup(S′ [i], Bold)

18. if v1 = ⊥, Bold ← AA.Insert(S′ [i], V ′old[i], Bold)

19. else Bold ← AA.Update(S′ [i], V ′old[i] + v1, Bold)

20. vold ← vold + V ′old[i]
21. for j ∈ {0, .., |R′ | − 1} do
22. v2 ← AA.Lookup(R′ [j], Bnew)

23. if v2 = ⊥, Bnew ← AA.Insert(R′ [j], Vnew[j], Bnew)

24. else Bnew ← AA.Update(R′ [j], V ′new[j] + v2, Bnew)

25. vnew ← vnew + V ′new[j]
26. S′′ ← S′′ ‖ S′ ; R′′ ← R′′ ‖ R′

27. if (S′′ 6= S) ∨ (R′′ 6= R), return 0
28. for k ∈ {0, .., |R′m | − 1} do
29. Bexcess ← AA.Insert(R′m [k], V ′x [k], Bexcess)

30. vx ← vx + V ′x [k]
31. for all (apk , ask) ∈ R̄ ‖ S̄ ‖ R̄m do
32. waft ← GetBalanceπ(apk , ask , pO)
33. wbef ← AA.Lookup(apk , Bbef)
34. wold ← (AA.Lookup(apk , Bold) ? : 0)
35. wnew ← (AA.Lookup(apk , Bnew) ? : 0)
36. wexcess ← (AA.Lookup(apk , Bexcess) ? : 0)
37. if waft 6= wbef + wnew + wexcess − wold, return 1
38. return 0

Figure A9. Experiment for the Balance property.

Exp
indemnification
π,A,O,ψ,δ,α,β (λ)

1. AO , TO , Bbe f ← AA.Init(); MO ← {}; S, R← (); fO ← 0
2. (pO , r, s)← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
3. (pO , ∅, s)← RunAdversaryπ,O(A2, pO , ∅, r, s, δ) 〈 (pO 6= ⊥) 〉
4. M1 ← MO
5. for all apk ∈ AA.Keys(AO) do
6. ask ← AA.Lookup(apk , AO)
7. bal← GetBalanceπ(apk , ask , pO)
8. Bbef ← AA.Insert(apk , bal, Bbef)

9. (pO , ({(tp , ts)}), s)← RunAdversaryπ,O(A3, pO , ∅, r, s, 0) 〈 pO 6= ⊥ 〉
10. M′ ← MO \M1 〈 |M′ | = 1 〉
11. (p′ , {tp}

′
, V ′a , V ′m , R̄′m)← M′ 〈 (p′ = pO) ∧ ({tp}

′
= {tp}) 〉

12. for all (tp , ts) ∈ ({tp , ts}) do
13. S← S ‖ ExtractSenderPubAddrπ(tp , ts , pO)
14. R← R ‖ ExtractRecipientPubAddrπ(tp , ts , pO)
15. for all apk ∈ AA.Keys(AO) do 〈 apk /∈ S ‖ R 〉
16. ask ← AA.Lookup(apk , AO)
17. if GetBalanceπ(apk , ask , pO) 6= AA.Lookup(apk , Bbef), return 1
18. return 0

Figure A10. Experiment for indemnification.

Appendix B.5.2. Winning Condition

Adversary wins if the balance of at least one address in AO has changed.

Cryptography 2021, 5, 10 40 of 47

Appendix B.6. Positivity

Appendix B.6.1. Game

In this game, the adversary A = (A1, A2) outputs an address (apk, ask) and the state
pO . The challenger checks whether the given address is valid and checks the corresponding
balance of that address (Figure A11).

Exp
positivity
π,A,O,ψ,δ,α,β(λ)

1. AO , TO ← AA.Init(); MO ← {}; fO ← 0
2. (pO , r, s)← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
3. (pO , (apk , ask), s)← RunAdversaryπ,O(A2, pO , ∅, r, s, δ) 〈 pO 6= ⊥ 〉
4. return (IsValidSecAddrπ(apk , ask , pO)) ∧ (GetBalanceπ(apk , ask , pO) < 0)

Figure A11. Experiment for positivity.

Appendix B.6.2. Winning Condition

The adversary wins if the given address is valid and has a negative balance.

Appendix B.7. Descendancy

Appendix B.7.1. Game

In this game, the adversary A = (A1, A2) gives a state to the challenger. The challenger
retrieves the checkpoint state of the given state and attempts to loop back to the genesis
state by retrieving the checkpoint state iteratively (Figure A12).

Exp
descendancy
π,A,O,ψ,δ,α,β(λ)

1. AO , TO ← AA.Init() ; MO ← {}; fO ← 0
2. (pO , r, s) ← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
3. (pO , ∅, s) ← RunAdversaryπ,O(A2, pO , ∅, r, s, δ) 〈 pO 6= ⊥ 〉
4. p′ ← pO
5. while IsValidStateπ(p′ , λ) 6= 0 do
6. pc ← RetrieveCheckpoint(p′)
7. if IsGenesisStateπ(pc , λ), return 0
8. p′ ← pc

9. return 1

Figure A12. Experiment for descendancy.

Appendix B.7.2. Winning Condition

Adversary wins if the loop ends up in an invalid state. Experiment for descendancy.

Appendix C. Proofs of Theorems

This section provides the proofs for the theorems defined in Section 5.3. In the cases
where proofs are similar, only a proof sketch is provided, pointing out differences if any.

Appendix C.1. Proof of Theorem 1

Proof. (Part i) Assume a currency scheme Π which is secure against the anonymity game
defined by a given combination of ψpkr

, ψskr
, ψv, ψm, ψt, α, β and with (ψpks

, ψsks
) =

(3, 0). This means that senders’ addresses are created with respect to identity informa-
tion controlled by the adversary and senders’ public keys are known throughout, yet
secret keys are not known. Now consider a scenario with (ψpks

, ψsks
) = (2, 0), while having

other parameters fixed. This means that the adversary has access to the public keys of
senders through the oracles and the addresses are honestly generated. When compared
to the former case, the adversary has less control in the latter scenario. Therefore, we
can conclude that if Π is secure against a more powerful adversary, then it is also secure
against a less powerful adversary, i.e., ω-ψ((3, 0)s)-(δ, α, β) → ω-ψ((2, 0)s)-(δ, α, β). Sim-
ilarly, if we consider the case where (ψpks

, ψsks
) = (1, 0) by only changing ψpks

, then the
adversary gets to know the public keys in the end with secret keys unknown throughout.
In comparison with the case (2, 0), the adversary has less knowledge about the keys in
the case (1, 0). Therefore, it is clear that if Π is secure in (2, 0), it is also secure in (1, 0),

Cryptography 2021, 5, 10 41 of 47

i.e., ω-ψ((2, 0)s)-(δ, α, β) → ω-ψ((1, 0)s)-(δ, α, β). Similarly, (0, 0) case provides even less
knowledge to the adversary compared to (1, 0). Therefore, if Π is secure in (1, 0), it is also
secure in (0, 0), i.e., ω-ψ((1, 0)s)-(δ, α, β)→ ω-ψ((0, 0)s)-(δ, α, β).

(Part ii) Similar to part i, we can see that in this case ψsks
= 1 is fixed. Therefore,

ψsks
= 3 represents the strongest case, followed by ψpks

= 2 and ψpks
= 1. Following the

same argument as above, we can see that (3, 1) is more powerful than (2, 1), followed by
(1, 1). Therefore, the implication relations follow from that.

(Part iii) In this case, ψsks
= 2 is fixed and it follows from above that (3, 2) is more pow-

erful than (2, 2) as the adversary has the control over identity. Therefore, the equivalence
relation follows.

(Part iv) This scenario represents the case where ψsks
= 3. As before, we see that (3, 3)

is stronger than (2, 3) as, with the former case, the adversary has control over both the
identity and the randomness over the latter case. Therefore, it follows that (3, 3)→ (2, 3).

(Part v) Consider the case where (ψpks
, ψsks

) = (4, 4), in which the adversary has full
control over the senders. In comparison, in the (3, 3) case, although the adversary gets to
choose the identity and randomness, he/she does not have full control over the senders as
the address creation is performed honestly. Therefore, (4, 4) is more powerful than (3, 3)
and along the same line of argument as before, we can say that (4, 4)→ (3, 3).

Appendix C.2. Proof of Theorem 2

Proof. This proof is similar to the proof of Theorem 1 based on the fact that the knowledge
of secret keys implies the knowledge of the public keys.

Appendix C.3. Proof of Theorem 3

Proof. (Part i) Assume a currency scheme Π which is secure against the anonymity game
defined by a given combination of ω, δ, α, (ψpk, ψsk)r, ψv, ψm, ψt, β, and with (ψpks

, ψsks
) =

(0, 1). This means that senders’ public keys are hidden and the secret keys are also hidden,
but will be revealed in the end (because ψpks

= 1) in the game. According to our construction,
the knowledge of the secret keys implies the knowledge of the public keys. Therefore, this
scenario can be simplified to a case in which both secret keys and public keys are revealed in
the end. Now, consider the case where (ψpks

, ψsks
) = (1, 1) while having all other parameters

fixed. In this case, both secret keys and public keys are revealed in the end. As such, we can
conclude that both cases represent the same amount of knowledge for the adversary (as all
other parameters are constant) and hence both notions are equivalent. Thus, Π is also secure
in the case where (ψpks

, ψsks
) = (1, 1), i.e., ωs̄-ψ((0, 1)s)-(δ, α, β)↔ ωs̄-ψ((1, 1)s)-(δ, α, β).

(Part ii) Similar to part i, ψsks
= 2 in this case corresponds to the case where the

addresses are honestly generated and secret keys are accessible by the adversary through
the oracles during the game. This means that this case is the same irrespective of ψsks

in
(0, 2), (1, 2) and (2, 2) through the same line of argument as before. Hence the equivalence
relation follows.

(Part iii) As before, ψsks
= 3 models the case where the addresses are generated based

on the randomness chosen by the adversary and the secret keys are already known to the
adversary. Following the same argument, we can say that (1, 3), (1, 3) and (2, 3) scenarios
are equivalent and, thus, the above equivalence relation.

Appendix C.4. Proof of Theorem 4

Proof. Consider a currency scheme where there is some special value associated with the
public key of the addresses which could provide a hint about the secret key. For example,
the hash of a value V that is related to the corresponding senders is associated with the
public keys of the recipient addresses as a special value. Therefore, being able to view the
public keys of recipients will give an adversary additional information about the transaction,
as opposed to having hidden addresses.

Assume that there exists a currency scheme Π which is secure in (ψpk, ψsk)s = (0, 0).
This means that the scheme is secure against an adversary who is unable to view the public

Cryptography 2021, 5, 10 42 of 47

keys, i.e., These are hidden addresses created by the oracle. Consider a modified currency
scheme Π

′
derived from Π such that the transaction creation process is modified as follows:

CreateTxn
Π′ (args, R, V) {

(tp , ts)← CreateTxnΠ(args)
if SpecialValue(R) = Hash(V) then

return ((tp , args), ts)
return ((tp , ∅), ts)

}

All other operations in Π
′

are of the form fΠ′ = fΠ. In this case, with the modified
CreateTxn operation, if the adversary knows the transaction, then the public keys can be
known and details about senders could be obtained. When a bit b is chosen, the adversary
simulates Π

′
and if ψt = 1, the adversary is able to obtain additional information about the

senders and therefore it is not secure. Accordingly, this scheme is secure in (0, 0), but not
necessarily secure in (1, 0), i.e., ωs̄-ψ((0, 0)s)-(δ, α, β)9 ωs̄-ψ((1, 0)s)-(δ, α, β).

Following the same line of argument, we can construct counter examples to prove the
same for other relations.

Appendix C.5. Proof of Theorem 5

Proof. (Sketch) This proof is similar to the above proof of Theorem 4.

Appendix C.6. Proof of Theorem 6

Proof. (Part i) We start with a currency scheme Π that is secure against a ω-ψ-(δ, 3α, β)
adversary. In this case, the adversary has the full control over the state initialization for
the anonymity game. Now, consider an adversary for α = 2 with all other parameters the
same. In this scenario, the adversary only has control to choose the randomness, but with
an honest state initialization. Therefore, the adversary in the latter case is less powerful
than the former. Thus, it follows that Π is also secure against ω-ψ-(δ, 2α, β) given that Π is
secure against a more powerful adversary in ω-ψ-(δ, 3α, β).

(Part ii) Similar to part i, α = 2 adversary is more powerful than a α = 1 adversary as
the adversary has no control over state initialisation in the latter case. Therefore, given that
a scheme Π is secure in ω-ψ-(δ, 2α, β), it is clear that Π is also secure in ω-ψ-(δ, 1α, β).

(Part iii) Applying the same argument as before, the adversary has less information
when α = 0 compared to α = 1. Hence, given that a currency scheme Π is secure against
ω-ψ-(δ, 1α, β), then Π is also secure against a less powerful adversary, ω-ψ-(δ, 0α, β).

Appendix C.7. Proof of Theorem 7

Proof. (Part i) Assume that there exist two currency schemes Π1 and Π0 such that Π1 is
secure in ω-ψ-(δ, 2α, β) and Π0 is not secure in ω-ψ-(δ, 2α, β). In the case of γ = 2, the
state is initialized through an honest initialization based on the randomness chosen by the
adversary whereas when γ = 3, the adversary generates the initial state on his/her own
with randomness of his/her choice. Consider a new currency scheme Π, where the state
initialization process takes place based on the selection of a bit b. If b = 1, then the initial
state is decided by the honest behavior as follows:

InitΠ(λ; r) = (InitΠ1(λ, r1), 1)

Otherwise, the adversary chooses to construct the initial state p0 through p0 =
(InitΠ0(λ; r1), 0) simulating the insecure Π0 protocol. Other functions in Π will be of
the following form depending on the value of b:

fΠ((p, b), . . .) = fΠb(p, . . .)

In the case of b = 1, this construction returns InitΠ1 which makes Π secure in
ω-ψ-(δ, 2α, β). When b = 0, the adversary chooses to output InitΠ0 simulating the insecure
protocol Π0. Π is not secure in ω-ψ-(δ, 3α, β) in this case. This shows that ω-ψ-(δ, 2α, β)→
ω-ψ-(δ, 3α, β) is false. Therefore, we conclude that ω-ψ-(δ, 2α, β)9 ω-ψ-(δ, 3α, β).

Cryptography 2021, 5, 10 43 of 47

(Part ii) Assume there exist two currency schemes Π1 and Π0 such that Π1 is secure
in ω-ψ-(δ, 1α, β) and Π0 is not secure in ω-ψ-(δ, 1α, β). γ = 1 represents an honest state
initialization with randomness over which the adversary does not have control, whereas
when γ = 2, the adversary chooses the randomness with an honest state initialization.
Therefore the difference between the two cases is whether the randomness is chosen by
the adversary as per the algorithm SetupState. We now define a new currency scheme
Π where the initialization takes place upon a selection of a random string r2 as follows
depending on a bit b:

InitΠ(λ, (r1, r2)) =

{
(InitΠ1(λ, r1), 1), if r2 6= 0 . . . 0
(InitΠ0(λ, r1), 0), if r2 = 0 . . . 0

Similarly, all functions in Π need to be dependent on r, similar to part i above, i.e.,

fΠ(p, . . .) =

{
fΠ1(p, . . .), if p = (., 1)
fΠ0(p, . . .), if p = (., 0)

According to this construction, in the honest scenario (b = 1), Π is secure in ω-ψ-(δ, 1α, β)
with as it returns state initialization (InitΠ1(r), 1) which is ω-ψ-(δ, 1α, β) secure. However,
note that r2 can be 00 . . . 0 in the honest scenario also with a small probability of 1/2λ

which is negligible, and therefore we can assume that Π is secure in ω-ψ-(δ, 1α, β) in the
honest case. When b = 0, the adversary can choose r2 to be 0..0 to simulate the insecure
protocol Π0 which makes Π insecure in ω-ψ-(δ, 2α, β). This means that ω-ψ-(δ, 1α, β)→
ω-ψ-(δ, 2α, β) is false as Π can be secure in ω-ψ-(δ, 1α, β) but not secure in ω-ψ-(δ, 2α, β).
Thus we conclude that ω-ψ-(δ, 1α, β)9 ω-ψ-(δ, 2α, β).

(Part iii) Assume there exist two currency schemes Π1 and Π0 such that Π1 is secure
in ω-ψ-(δ, 0α, β) and Π0 is not secure in ω-ψ-(δ, 0α, β). In this scenario, an honest state
initialization takes place and the adversary does not see the randomness involved whereas
with γ = 1 state initialization, the adversary is able to see the randomness.

Construct a new currency scheme Π as explained previously.

InitΠ(λ, (r1, r2)) = (InitΠ0(λ, r1), InitΠ1(λ, r1), r2, 1)

In the honest case, this will output (p0, p1, 1). Consider the γ = 0 game where,
immediately after the RunAdversary process is run for the first time, a transaction is run by
the adversary which would reveal the randomness and the bit b, i.e., (tp, r, b). This would
simulate a γ = 1 scenario and if the bit b = 0, then fΠ0 will be chosen. However, Π0 is
not secure when γ = 0, and thus it makes this situation insecure. Therefore, we claim that
Π is not secure with γ = 1 in this case since Π0 is not secure when γ = 0. This shows
that Π can be secure in ω-ψ-(δ, 0α, β) but not secure in ω-ψ-(δ, 1α, β), i.e., ω-ψ-(δ, 0α, β)9
ω-ψ-(δ, 1α, β).

Appendix C.8. Proof of Theorem 8

Proof. δ = 2 represents the strongest adversary with the capability to manipulate the
state whereas the adversary is only able to view the state when δ = 1, thus representing a
weaker adversary. Similarly with δ = 0, the state is private and hence the adversary is the
weakest in this respect, being unable to view the state. Using the same proof technique as
in Theorem 6, we can see that ω-ψ-(2δ, α, β) represents a more powerful attacker than ω-ψ-
(1δ, α, β) and also ω-ψ-(1δ, α, β) is more powerful than ω-ψ-(0δ, α, β), thus it is clear that
both implications are true.

Appendix C.9. Proof of Theorem 9

Proof. (Part i) The difference between the two scenarios where δ = 1 and δ = 2 is that
with δ = 2, the adversary is able to modify the state whereas with δ = 1, he/she can only

Cryptography 2021, 5, 10 44 of 47

view the state. Suppose that two currency schemes Π0 and Π1 exist such that Π1 is secure
in ω-ψ-(1δ, α, β) and Π0 is not secure in ω-ψ-(1δ, α, β). Assume that a currency scheme
Π is constructed as before in the proof of part (ii) of the Theorem 7. The initialization of
the scheme Π results in (p0, p1, r, b) with functions fΠb . In the honest construction, we
have b = 1, with fΠ1 and the adversary is only able to view the state which simulates
a ω-ψ-(1δ, α, β) scenario. Π1 is already secure in ω-ψ-(1δ, α, β) and thus Π is also secure
in ω-ψ-(1δ, α, β). Now assume that the adversary gets to choose the bit b = 0. In this
case, functions fΠ0 will be executed and therefore the adversary is now able to change
the state through the functions fΠ0 that return the state as (p

′
0, p1, r, 0) which represent

a ω-ψ-(2δ, α, β) adversary. However, from the definition, Π0 is not secure against this
adversary as Π0 is not secure in ω-ψ-(1δ, α, β) and thus is not secure in ω-ψ-(2δ, α, β) as
well. Therefore, Π is also not secure in ω-ψ-(2δ, α, β) in this case.

(Part ii) Suppose that a currency scheme Π1 is secure in ω-ψ-(0δ, α, β) and another
currency scheme Π0 is not secure in ω-ψ-(0δ, α, β). Define a new honest construction for a
currency scheme Π as described in the proof of part (ii) of the Theorem 7 with the same
initialization and a modification to the Mint function, i.e.,

InitΠ(λ, (r1, r2)) = (InitΠ0 (λ, r1), (InitΠ1 (λ, r1), r2, 1))
MintΠ((p0, p1, r, b), T, args) = {

if p0 and p1are inital states and b = 1 and T = {r},
then return ((p0, p1, r, 0), outputs)

}

In the honest case, InitΠ will output (p0, p1, 1) and all functions fΠ1 will be executed.
As the adversary cannot view the state now, this simulates ω-ψ-(0δ, α, β). We claim that Π
is ω-ψ-(0δ, α, β) secure in this case as the adversary has the same amount of information as
for Π1 and Π1 is secure in ω-ψ-(0δ, α, β). Then, immediately after the state initialization,
the adversary mints {r} which will return (p0, p1, r, 0), setting bit b = 0. In this instance,
the protocol simulates Π0 which is not secure. Therefore, we can conclude that Π is secure
in ω-ψ-(0δ, α, β) but not secure in ω-ψ-(1δ, α, β).

Appendix C.10. Proof of Theorem 10

Proof. Consider a currency scheme Π which is secure in ω-ψ-(δ, α, 1β). In this case, the
adversary is able to cause minting to fail so that failed mint operations may leak information
about the corresponding transaction. On the other hand, β = 0 represents a weaker adver-
sary as no additional information is leaked in this case. As the scheme Π is secure against
a more powerful adversary with β = 1, we can conclude that Π is also secure against any
weaker adversary, and an adversary with β = 0, i.e., ω-ψ-(δ, α, 1β) → ω-ψ-(δ, α, 0β).

Appendix C.11. Proof of Theorem 11

Proof. Assume that a currency scheme Π is secure in ω-ψ-(δ,α,0β). Consider a construction
Π
′

similar to Π except that the Mint operation is modified with an input bit b and a special
value V which reveals additional information about the transaction when b = 1 and when
a mint operation fails, i.e.,

Mint
Π′ (args, b, V) {

if (MintΠ(args) =⊥) ∧ (b = 1) then
return V

else return MintΠ(args)
}

When the bit b = 0, Π
′

functions similar to Π, and thus is secure in ω-ψ-(δ,α,0β).
However, when b = 1, with the modified Mint function models a scenario for β= 1 for
Π
′
, yet Π

′
is not secure here as the Mint operation leaks special information about the

transaction in this case. Therefore, we conclude that ω-ψ-(δ, α, 0β) 9 ω-ψ-(δ, α, 1β).

Cryptography 2021, 5, 10 45 of 47

Appendix C.12. Proof of Theorem 12

Proof. As before, we can say that ψv = 3 represents a stronger adversary compared to
ψv = 2 and ψv = 2 adversary is stronger than ψv = 1 by our construction and ψv = 1
adversary is stronger than ψv = 0. Therefore, given that a currency scheme Π is secure
against a ψv = 3 adversary, then Π is also secure against ψv = 2. Similarly, Π is also secure
in ψv = 1 then in ψv = 0.

Appendix C.13. Proof of Theorem 13

Proof. (Sketch) The proof follows the same line of argument as the proof in Theorem 4,
with the exception that the special value gives a hint about the transaction value instead of
the senders.

Appendix C.14. Proof of Theorem 14

Proof. Adhering to the same proofing methodology, we argue that ψm = 3 adversary is
more powerful than ψm = 2 adversary, as the adversary has full control over metadata in
the former case. Therefore, it follows that given a currency scheme which is secure against
a ψm = 3 adversary, the scheme is also secure against a less powerful ψm = 2 adversary.
Moreover, through the same line of argument, it follows that (ψm = 2) → (ψm = 1) and
(ψm = 1)→ (ψm = 0).

Appendix C.15. Proof of Theorem 15

Proof. (Sketch)
The proof follows the same line of argument as the proof in Theorem 4, with the exception
that the special value gives a hint about the transaction metadata instead of the senders.

Appendix C.16. Proof of Theorem 16

Proof. (Part i) Consider a currency scheme Π which is secure in ω-ψ(5t)-(δ, α, β). With
ψt = 5, the adversary has the highest possible knowledge of the transaction as the adver-
sary creates the transaction and thus is more powerful than any other adversary having
the knowledge of ψt < 5 (while having other parameters fixed). This means that if a
currency scheme Π is secure against a stronger adversary with ψt = 5, then Π is secure
against less powerful adversaries, e.g., an adversary with ψt = 4, i.e., ω-ψ(5t)-(δ, α, β)→
ω-ψ(4t)-(δ, α, β).

(Part ii) Similarly, ω-ψ(4t)-(δ, α, β) → ω-ψ(3t)-(δ, α, β) also holds as being able to
choose the randomness for the transaction (ψt = 4) leaks additional information about the
transaction to the adversary earlier in the game compared to knowing that at the end of
the game (ψt = 3), which models a weaker adversary.

(Part iii) With ψt = 3, the knowledge of the randomness of the transaction (i.e., actual
coins involved) provides more information to the adversary than just the secret part of the
transaction ts (i.e., ψt = 2). Therefore, ω-ψ(3t)-(δ, α, β)→ ω-ψ(2t)-(δ, α, β) holds.

(Part iv) With the same argument, ψt = 2 represents a more powerful adversary than
ψ1 with the knowledge of just the public part of the transaction, i.e., ω-ψ(2t)-(δ, α, β) →
ω-ψ(1t)-(δ, α, β).

(Part v) In this case of ψt = 1, the adversary is able to view the transaction whereas
when ψt = 0, the transaction is hidden. Therefore, the former case shows a more powerful
adversary than the latter case. Accordingly, ω-ψ(1t)-(δ, α, β)→ ω-ψ(0t)-(δ, α, β).

Appendix C.17. Proof of Theorem 17

Proof. (Sketch)
This can be proven in a manner similar to Theorem 4, except that the special value leaks
information about the transaction tp or ts in each scenario instead of sender addresses.

Cryptography 2021, 5, 10 46 of 47

References
1. Herskind, L.; Katsikouli, P.; Dragoni, N. Privacy and Cryptocurrencies—A Systematic Literature Review. IEEE Access 2020, 8,

54044–54059. [CrossRef]
2. Sabry, F.; Labda, W.; Erbad, A.; Malluhi, Q. Cryptocurrencies and Artificial Intelligence: Challenges and Opportunities. IEEE

Access 2020, 8, 175840–175858. [CrossRef]
3. Sweeney, L. K-Anonymity: A Model for Protecting Privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2002, 10, 557–570.

[CrossRef]
4. Tsukada, Y.; Mano, K.; Sakurada, H.; Kawabe, Y. Anonymity, Privacy, Onymity, and Identity: A Modal Logic Approach.

In Proceedings of the 2009 International Conference on Computational Science and Engineering, Vancouver, BC, Canada, 29–31
August 2009; Volume 3, pp. 42–51.

5. Pfitzmann, A.; Hansen, M. A Terminology for Talking about Privacy by Data Minimization: Anonymity, Unlinkability, Unde-
tectability, Unobservability, Pseudonymity, and Identity Management. Available online: http://dud.inf.tu-dresden.de/literatur/
Anon_Terminology_v0.34.pdf,2010 (accessed on 3 August 2020).

6. Díaz, C.; Seys, S.; Claessens, J.; Preneel, B. Towards Measuring Anonymity. In Privacy Enhancing Technologies; Dingledine, R.,
Syverson, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 54–68.

7. Khalilov, M.C.K.; Levi, A. A Survey on Anonymity and Privacy in Bitcoin-like Digital Cash Systems. IEEE Commun. Surv. Tutor.
2018, 20, 2543–2585. [CrossRef]

8. Conti, M.; Kumar, S.; Lal, C.; Ruj, S. A survey on security and privacy issues of bitcoin. IEEE Commun. Surv. Tutor. 2018, 20,
3416–3452. [CrossRef]

9. Morris, L. Anonymity Analysis of Cryptocurrencies. Ph.D. Thesis, Rochester Institute of Techology, Rochester, NY, USA, 2015.
10. Androulaki, E.; Karame, G.O.; Roeschlin, M.; Scherer, T.; Capkun, S. Evaluating user privacy in bitcoin. In Proceedings of the

International Conference on Financial Cryptography and Data Security, Okinawa, Japan, 1–5 April 2013; pp. 34–51.
11. Ron, D.; Shamir, A. Quantitative Analysis of the Full Bitcoin Transaction Graph. In Financial Cryptography and Data Security;

Sadeghi, A.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 6–24.
12. Miller, A.; Moeser, M.; Lee, K.; Narayanan, A. An Empirical Analysis of Linkability in the Monero Blockchain. arXiv 2017,

arXiv:1704.04299.
13. Möser, M.; Soska, K.; Heilman, E.; Lee, K.; Heffan, H.; Srivastava, S.; Hogan, K.; Hennessey, J.; Miller, A.; Narayanan, A. An

empirical analysis of traceability in the monero blockchain. Proc. Priv. Enhanc. Technol. 2018, 2018, 143–163. [CrossRef]
14. Amarasinghe, N.; Boyen, X.; McKague, M. A Survey of Anonymity of Cryptocurrencies. In Proceedings of the Australasian

Computer Science Week Multiconference, ACSW 2019, Sydney, Australia, 29–31 January 2019; pp. 2:1–2:10.
15. Alsalami, N.; Zhang, B. SoK: A Systematic Study of Anonymity in Cryptocurrencies. In Proceedings of the 2019 IEEE Conference

on Dependable and Secure Computing (DSC), Hangzhou, China, 18–20 November 2019; pp. 1–9.
16. Reid, F.; Harrigan, M. An analysis of anonymity in the bitcoin system. In Security and Privacy in Social Networks; Springer:

Berlin/Heidelberg, Germany, 2013; pp. 197–223.
17. Meiklejohn, S.; Pomarole, M.; Jordan, G.; Levchenko, K.; McCoy, D.; Voelker, G.M.; Savage, S. A Fistful of Bitcoins: Characterizing

Payments Among Men with No Names. In Proceedings of the 2013 Conference on Internet Measurement Conference, IMC ’13,
Barcelona, Spain, 23–25 October 2013; pp. 127–140.

18. Spagnuolo, M.; Maggi, F.; Zanero, S. Bitiodine: Extracting intelligence from the bitcoin network. In Proceedings of the International
Conference on Financial Cryptography and Data Security, Christ Church, Barbados, 3–7 March 2014; pp. 457–468.

19. Möser, M.; Böhme, R. Anonymous Alone? Measuring Bitcoin’s Second-Generation Anonymization Techniques. In Proceedings of
the 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), Paris, France, 26–28 April 2017; pp. 32–41.

20. Ober, M.; Katzenbeisser, S.; Hamacher, K. Structure and Anonymity of the Bitcoin Transaction Graph. Future Internet 2013, 5,
237–250. [CrossRef]

21. Wijaya, D.A.; Liu, J.K.; Steinfeld, R.; Sun, S.F.; Huang, X. Anonymizing Bitcoin Transaction. In Information Security Practice and
Experience; Bao, F., Chen, L., Deng, R.H., Wang, G., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 271–283.

22. Kappos, G.; Yousaf, H.; Maller, M.; Meiklejohn, S. An Empirical Analysis of Anonymity in Zcash. CoRR 2018, abs/1805.03180.
Available online: http://xxx.lanl.gov/abs/1805.03180 (accessed on 16 November 2020).

23. Quesnelle, J. An Analysis of Anonymity in the Zcash Cryptocurrency. Master’s Thesis, University of Michigan-Dearborn, Dearborn,
MI, USA, 2018.

24. Van Saberhagen, N. 2013. Available online: https://cryptonote.org/whitepaper.pdf (accessed on 10 December 2020)
25. Wijaya, D.A.; Liu, J.; Steinfeld, R.; Liu, D.; Yuen, T.H. Anonymity Reduction Attacks to Monero. In Information Security and

Cryptology; Guo, F., Huang, X., Yung, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 86–100.
26. Wijaya, D.A.; Liu, J.; Steinfeld, R.; Liu, D. Monero Ring Attack: Recreating Zero Mixin Transaction Effect. In Proceedings of the 2018

17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International
Conference on Big Data Science and Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; pp. 1196–1201.

27. Ruffing, T.; Moreno-Sanchez, P. ValueShuffle: Mixing Confidential Transactions for Comprehensive Transaction Privacy in Bitcoin.
In Financial Cryptography and Data Security; Springer International Publishing: Cham, Switzerland, 2017; pp. 133–154.

28. Fuchsbauer, G.; Orrù, M.; Seurin, Y. Aggregate cash systems: A cryptographic investigation of mimblewimble. In Advances in
Cryptology—EUROCRYPT 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 657–689.

http://doi.org/10.1109/ACCESS.2020.2980950
http://dx.doi.org/10.1109/ACCESS.2020.3025211
http://dx.doi.org/10.1142/S0218488502001648
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf, 2010
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf, 2010
http://dx.doi.org/10.1109/COMST.2018.2818623
http://dx.doi.org/10.1109/COMST.2018.2842460
http://dx.doi.org/10.1515/popets-2018-0025
http://dx.doi.org/10.3390/fi5020237
http://xxx.lanl.gov/abs/1805.03180
https://cryptonote.org/whitepaper.pdf

Cryptography 2021, 5, 10 47 of 47

29. Poelstra, A. 2016. Available online: https://scalingbitcoin.org/he/papers/mimblewimble.pdf (accessed on 14 August 2020)
30. Biryukov, A.; Tikhomirov, S. Deanonymization and Linkability of Cryptocurrency Transactions Based on Network Analysis.

In Proceedings of the 2019 IEEE European Symposium on Security and Privacy (EuroS P), Stockholm, Sweden, 17–19 June 2019;
pp. 172–184.

31. Cachin, C.; De Caro, A.; Moreno-Sanchez, P.; Tackmann, B.; Vukolic, M. The Transaction Graph for Modeling Blockchain Semantics.
IACR Cryptol. ePrint Arch. 2017, 2017, 1070.

32. Amarasinghe, N.; Boyen, X.; McKague, M. The Complex Shape of Anonymity in Cryptocurrencies: Case Studies from a
Systematic Approach. In Proceedings of the International Conference on Financial Cryptography and Data Security, Tokyo,
Japan, 22–23 April 2021.

33. Kumar, A.; Fischer, C.; Tople, S.; Saxena, P. A Traceability Analysis of Monero’s Blockchain. In Computer Security—ESORICS 2017;
Foley, S.N., Gollmann, D., Snekkenes, E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 153–173.

https://scalingbitcoin.org/he/papers/mimblewimble.pdf

	Introduction
	Our Contribution
	Other Related Work
	Research Question
	Research Methodology
	Conceptual Framework

	Implication of the Research

	Proposed Model
	A Generic Cryptocurrency Scheme

	Correctness
	Correctness Properties

	Security
	Adversarial Model
	Helper Functions
	Security Properties

	Anonymity
	Anonymity Game
	Notions of Anonymity
	Topological Entities
	Non-Topological Entities
	Other Useful Anonymity Notions
	Representation of Anonymity Notions

	Theorems

	Discussion
	Conclusions
	Experiments for Correctness of the Scheme
	Security Properties
	Unforgeability
	Game
	Winning Condition

	Transaction Binding Property
	Game
	Winning Condition

	Spendability
	Game
	Winning Condition

	Balance Property
	Game
	Winning Condition

	Indemnification
	Game
	Winning Condition

	Positivity
	Game
	Winning Condition

	Descendancy
	Game
	Winning Condition

	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11
	Proof of Theorem 12
	Proof of Theorem 13
	Proof of Theorem 14
	Proof of Theorem 15
	Proof of Theorem 16
	Proof of Theorem 17

	References

