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Abstract: Random number generators are of paramount importance in numerous fields. Under
certain well-defined adversarial settings, True Random Number Generators (TRNGs) are more secure
than their computational (pseudo) random number generator counterparts. TRNGs are also known
to be more efficiently implemented on hardware platforms where, for various applications, efficiency
in terms of electronic cost factors is critical. In this manuscript, we first provide an evaluation of
robustness and reliability of efficient time-domain-based TRNG implementation over FPGA platform.
In particular, we demonstrate sensitivities which imply a TRNG construction which is not agnostic
to electronic-design-automation tools and to the level of designers’ know-how. This entails a large
amount of effort and validation to make the designs robust, as well as requires a high degree of
complexity from non-trivial FPGAs flows. This motivates the second part of the manuscript, where
we propose an ASIC-based implementation of the TRNG, along with the optimization steps to
enhance its characteristics. The optimized design improves the randomness-throughput by 42× for
the same entropy level described in previous works, and it can provide maximal entropy level of
0.985 with 7× improvement in randomness throughput over the raw samples (no pre-processing).
The proposed design simultaneously provides a reduced energy of 0.1 (mW/bit) for the same entropy
level as previous works, and 1.06 (mW/bit) for the higher entropy flavor, and a lower area utilization
of 0.000252 (mm2) on a 65 nm technology evaluation, situating it in the top-class of the discuss ratings.
This leads to the quantitative question of the gain in electronic cost factors over ASIC TRNGs, and
the minimum Cost Per Bit/Source possible to date. Finally, we exemplify a TRNG versus PRNG cost-
extrapolation for security architects and designers, targeting an ASIC scenario feeding a lightweight
encryption core.

Keywords: area reduction; application specific integrated circuits; ASIC; energy savings; field
programmable gate array; FPGA; hardware security; true random number generator; TRNG;
time-domain

1. Introduction

Random number generators have various applications in statistics, probabilistic al-
gorithms, simulations, cryptography, and other fields where producing an unpredictable
result is desired. There are two main groups of random number generators: True Ran-
dom Number Generators (TRNGs) which extract randomness from physical noise, and
Pseudo Random Number Generators (PRNGs) which appear statistically random but
are predictable. Two of the most widely used families of PRNG algorithms are Linear
Feedback Shift Registers (LFSR), such as in References [1,2], and encryption in some mode-
of-operation, e.g., the Advanced Encryption Standard in Counter mode (AES-CTR DRBG).
These types of RNGs require an initial vector (seed) as a starting condition. The seed must
be truly random, so that PRNG may include a seeding TRNG module, as well. A TRNG is
a device that relies on a random physical process and extracts random numbers from it.
These devices are often based on properties, such as thermal noise, the photoelectric effect,
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and other quantum phenomena. Theoretically, the physical phenomenon from which the
TRNGs extracts randomness is completely unpredictable. Due to the growing importance
of the generation of random numbers, several standards have been published. These
standards specify the goals, tests, and criteria that the entropy sources must meet. The
two main standards are SP 800-90B/C, the special publication of the National Institute of
Standards and Technology (NIST), and the German BSI standard called AIS-31.

TRNGs are divided into two main classes based on the mechanism from which the
noise is extracted. The first group is composed of metastable-based TRNGs [3–9]. This
group forces an electronic topology to be in a metastable state and then releases it. The
random noise in the system affects the outcome, which stabilizes on a (typically) binary value
according to the noise, eventually producing a random bit stream. The second popular group
of TRNGs extracts randomness from noise in the time domain [10–16]. In this study, we
focus on low electronic-cost implementations of TRNGs. TRNGs can be implemented either
within a software or a hardware platform in cases where hardware randomization is required.
Hardware implementations are generally more efficient owing to the fact that they generally
make use of noisier physical phenomena to extract randomness. Our primary goal is to
advance the efficiency of existing state-of-the-art hardware constructions which have mainly
been evaluated over Field Programmable Gate Arrays (FPGAs) and to evaluate the efficiency
of the improved version on Application Specific Integrated Circuit (ASIC) technology.

The main criteria for TRNG implementations are electronic cost-related, e.g., how
much a random-bit generation costs in energy consumption, area utilization, and what
randomness-throughput can be achieved. Clearly, the underlying assumption is that we
will only compare TRNG flavors which provide a sufficient level of entropy.

The time-domain-based architecture of the ES-TRNG proposed at CHES-2018 by
Yang et al. [17] uses a slow ring oscillator (RO) to sample a fast RO. Due to randomly
distributed noise in the system, jitter is accumulated on the fast RO, which, in turn, causes
a random phase shift. This randomness in the jitter is translated into a randomly sampled
bit value. Two novel techniques were used in the implementation of ES-TRNG, namely
variable-precision phase encoding and repetitive sampling. These two techniques improve
the randomness-throughput and decrease the area utilization and energy consumption
of the circuit, while maintaining high min-entropy. In this study, we implement these
efficient ES-TRNG designs on different platforms (FPGA, ASIC) and demonstrate the
design challenges on FPGAs. We exemplify and discuss the extent to which the design
on an FPGA is sensitive to the implementation location, automatic FPGA routing,the LUT
structure implementation choices, and various other features, making it challenging to
construct it robustly on FPGAs.

This analysis leads to the main thrust of this work, namely improvements to the
baseline ES-TRNG on an ASIC platform. These are expected to improve FPGA due to the
inherent performance gains of ASICs. We show how to significantly improve on all criteria
by exploiting the design flexibility of ASICs, removing the complexity of custom design
steps on FPGAs, using ASICs’ easy design flow, and the controlled and deterministic nature
of flow steps, such as routing. We then discuss optimizing specific circuitry mechanisms
within the ES-TRNG to improve its efficiency. Our goal was to respond to the question
of the minimal (electronic) cost of a truly random bit/source on efficient ASICs. These
quantities can translate directly into higher level, e.g., cryptographic design choices and
the selection of primitives.

Here, we innovate by developing a concrete optimization and guidelines for design on
ASIC relating to various topological, circuit, and architectural features, which together yield
significant improvements. We compare all designs prior to pre-processing on the raw gen-
erated bits for fairness, as shown in Table 1. For example, the optimized design improves
in randomness-throughput by 42× for the same entropy level described in previous works,
and it can even provide a considerably improved entropy level of 0.985 with 7× improve-
ment in randomness throughput. The proposed design simultaneously enables a reduced
energy of 0.1 (mW/bit) for the same entropy level as previous works, and 1.06 (mW/bit)
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for the higher entropy flavor, and a lower area utilization of 0.000252 (mm2) on a 65 nm
technology (widely utilized for low-cost IoTs, RFID devices, etc.). Our optimization ef-
forts and proposed implementation is compared in details to several other ASIC-based
TRNGs [7,18–32], both ring-oscillator- and non-ring oscillator-based, in Section 5. The
proposed TRNG is the smallest known to date, to the best of our knowledge, consider-
ing [26] (see Table 1) and provides the best-in-class (Area/Randomness-Throughput), as
summarized in Section 5.

Table 1. Condensed comparison of the proposed TRNG as compared to the best-in-class.

Entropy Throughput [Mbit/s] Area [mm2] Av.-Power [mW/Source]

-na-(Smallest known [26] 65 nm) 0.011 0.0012 2

-na-(Max. Throughput [29] 45 nm) 2400 0.004 7

0.86 prior art-FPGA [17] 1.15 * *

(Proposed) 0.86 47.8
0.000252

0.1

(Proposed) 0.985 8.27 1.06

* Not comparable as reported over an FPGA platform.

Contributions

The main contributions of this study are as follows:

1. Providing an evaluation of the robustness and reliability issues of efficient TRNGs
implemented over FPGA platforms. In particular, we demonstrate its sensitivity to
physical properties, such as routing, and device placement, in terms of the amount of
effort required to make a design robust, and the degree of complexity of non-standard
FPGAs flows.

2. Proposing an ASIC-based implementation of the TRNG, along with the optimization
steps, to enhance its characteristics that lead to significant performance-entropy
improvement.

3. Discussing the quantitative question of how much gain in electronic cost factors
can be expected over ASIC TRNGs, and the cost Per Bit/Source. To facilitate easy
extrapolation for security architects and designers, we exemplify a TRNG versus
PRNG ASIC test-case feeding a lightweight encryption core.

Paper Organization and Roadmap

First, in Section 2, we briefly detail min-entropy estimation, and TRNG related criteria,
such as randomness-throughput and area per source. In Section 2.2, we describe the time-
domain efficient TRNG which was used as a baseline gold standard and comparison point.
In Section 3, we provide a detailed discussion of the implementation space over an FPGA
platform and supply measurement results pinpointing platform-dependent sensitivity as
a function of the design parameters of the TRNG. We then present a detailed description
of ASIC construction, while analyzing the design intent, parameter optimization and
limitations to provide a best-in-class ASIC TRNG in Section 4. Next, we make a detailed
comparison through a wide-reaching state-of-the-art survey and analyze examples of gains
utilizing the proposed TRNG as compared to a PRNG in Section 5. We conclude the
manuscript in Section 6.

2. Tools and Theory

In this subsection, we discuss the (standard) tools we used to evaluate min-entropy.
We further detail the evaluation of other criteria, such as randomness-throughput, area, and
energy per bit (source). In addition, we also review the basic properties of the time-domain-
based TRNG we utilized as a baseline gold standard comparison point, i.e., the ES-TRNG.
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2.1. Entropy Evaluation and Efficiency Criteria

Whereas the entropy of a sequence is well-defined when it is possible to exhaust/
enumerate the full distribution space, the entropy of a finite sample (partly observable) is
quite hard to evaluate. Nevertheless, there are advantages to providing a measure of the
quality of the randomness sources. In 1948, Shannon defined the entropy of a sequence i
with n possible options as:

H = −
n

∑
i=0

Pr(i) log2(Pr(i)).

In the binary, single bit case: H = −Pr(0) log2(Pr(0))− Pr(1) log2(Pr(1)). With uniformly
distributed random bits, we reach the maximum entropy of 1.

However, as described above, a TRNG sequence is a random process which provides
infinite length sequences, or exhibits complex stochastic behavior and has a potential
dependency between bits (even if these are claimed to be independent by the model). For
this reason, there has been extensive research on the question of estimating the minimum-
entropy of a sequence which has aimed at bounding the worst case. For this purpose,
several entities, such as the National Institute of Standards and Technology (NIST) and
the Bundesamt für Sicherheit in der Informationstechnik (BSI), have defined a variety of
statistical tests that complement and cross-verify each other to estimate the min-entropy
level. Roughly, two main types of tests are performed: the restart test and the sequential test.

The restart test investigates in/dependencies between sequences when the generator
‘wakes up’ or is restarted, or, alternatively, if it takes time to enable proper operation.
In this test, 1000 sequences of 1000 bits are produced and gathered into a matrix of size
1000 × 1000, which is tested for various properties, such as periodicity, patterns and
repetitions, correlations between rows, etc., and it outputs a minimum-entropy estimation.
The second class is the sequential test which is designed to ignore the non-stable entropy
value at the beginning of the sequence. It is aimed at quantifying the minimum entropy in
steady state. To provoke it, a sequence of 1,000,000 bits is collected and checked for entropy
for subsets of different numbers of bits. The claim is that a combination of the evaluation
of the two tests with a valid stochastic model will give a good indication of the TRNG
min-entropy level. The stochastic model provided by the designer should comply, to some
extent, with the results from the tests, as stipulated in the BSI criteria.

We evaluated the efficiency of a generator by its Randomness-Throughput (RT) and
Area utilization/Energy consumption per bit (or source): The randomness-throughput (RT)
is defined by RT = #bits

s . For the specific case of the ES-TRNG-based construction, it can
be approximated by RT ≈ 10−6/tA (Mbit/s), where tA is the accumulation time required
to wait until enough time-domain jitter noise has accumulated (elaborated below). The
energy (average power) per bit or source is defined as the average energy (average power)
required to produce one random bit.

2.2. Time-Domain Efficient TRNG

As discussed above, our informal goal was to explore the minimum electronic cost to
generate random bits. In previous works, the ES-TRNG demonstrated exquisite properties,
supported by a stochastic model, as shown in a thorough evaluation over FPGAs, etc.
Therefore, it was chosen as the gold standard for implementation. To the best of our
knowledge, however, it does not provide a reference to the maximum known efficiency (as
discussed and illustrated in Table 3).

Similar to the vast literature on time-domain TRNGs, the ES-TRNG architecture is
based on extracting entropy from jittery signals (over time). The source of randomness
is a free-running ring oscillator. The design goals of the ES-TRNG are to achieve an area
compact implementation and to provide a reasonably high randomness throughput, while
also incurring low engineering effort. The architecture is based on high-precision edge
sampling of the jittery signal (i.e., time resolution). Two techniques are used to improve the
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throughput and reduce the resource utilization. The first technique is variable-precision
phase encoding, which utilizes a selective high-precision sampling process. It provides a
compact implementation which only needs a short jitter-noise accumulation time to reach
a sufficient entropy level. The output of the free-running oscillator (RO1) passes through
several delay elements constructed by a tapped delay chain element inside an FPGA slice.
These delays aim to provide a much smaller delay than the period of RO1. The digitization
module, as illustrated in Figure 1, captures the oscillator phase with high precision around
the signal edges. This region is called the high precision region. The samples of this region
are encoded into values of 1 or 0, depending on the phase. The remainder of the time
samples, i.e., time samples that are farther away from the rising/falling edge, are denoted
by low-precision samples, and this region is encoded as Null (N). The sampling of the
delay chain is triggered by a rising edge of another slower ring oscillator, RO2. The second
technique is repetitive sampling, which allows for multiple sampling in one system clock
cycle by utilizing the RO2 oscillator which is faster than the system clock. This technique
enables a high-throughput TRNG.

As shown in Figure 1, the bit-extractor implements the desired logic to decode the
phase status of RO1 relative to RO2’s rising-edge (i.e., high-precision and its 1 or 0 raw
value, or low precision). It does so by capturing the sampled versions of the tapped-delay
chain outputs, Taps(2:0). The sampled signals are denoted by (Taps(2:0)) as the output of
three Flip-Flops (FFs). The bit extractor provides the raw bit, along with a alidity signal,
as outputs.

Figure 1. ES-TRNG architecture.

3. On the Variability of FPGA-Based Implementation

Generally, owing to its reconfigurability properties, FPGAs have been adopted widely
and have recently breached the market barrier of high performance servers and artificial
intelligence. They are also being embedded in custom ASIC flows, e.g., eFPGA, and are
driving increasingly more new markets and applications. Clearly, FPGAs have a faster
design cycle for standard digital applications. However, FPGAs are designed to provide
efficiency for a wide variety of benchmarks which are representative of certain application
domains. Hence, to some extent, they are hard to tailor to non-standard use cases, especially
if the performance criteria of the design do not correspond to standard digital criteria.
Examples include the utilization of FPGAs to build analog in-nature primitives, such as
TRNGs. Their objective criteria, e.g., the min-entropy, which depends on characteristics
that are not optimized by-design with FPGA flows, are much harder to control than in the
case of ASIC flows. In turn, for circuits, such as TRNGs, inherent losses in performance
and accuracy/certainty are likely to persist as a result of FPGA-abstraction.

In this section, we describe the implementation of the ES-TRNG module on an FPGA
device. We begin by describing the resources for efficient area-utilization implementation
and then turn to issues of robustness and variability. Our main goal here is to show that
quite complex design steps are required from an FPGA design-flow perspective to make
the design robust. Specifically, the controlled placement and routing on FPGAs are hard
and are specific to the individual FPGA environment/vendor. Often, not all design details
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are available to the designer, which impinges on design certainty. This is a challenge for
highly sensitive TRNG constructions. In the following, we provide a detailed analysis
and explanations of our attempts to control the physical parameters, oscillator periods,
and deterministic nature of the hardware elements or location independence, all of which
translate directly into the hurdles of reduced performance and design margins.

This section provides the underlying rationale governing the enhancement of all these
features within an ASIC implementation flow, as well as the opportunities to achieve
further significant optimizations with respect to the determinism and set of tools available
within an ASIC design-flow. We detail all these issues in the next section.

3.1. Circuit Level Implementation

We implemented the design over a Xilinx Spartan-VI FPGA device (45 nm technology
node), since it is one of the most commonly used FPGAs tested in previous publications on
TRNGs. Therefore, this selection is opportune from a comparative point of view but also
because this technology is more relevant to the type of (rather) low-cost devices which will
require these TRNGs, such as RFIDs, sensors, and IOTs, in general. To communicate with
the underlying TRNG, a standard communication protocol interface was implemented on
the FPGA fabric.

The baseline resources utilized to construct the TRNG are illustrated in Figure 2 .The
osc1 (RO1 signal) was implemented using one 5-input Look-Up-Table (LUT5) of the A
type, ALUT, which functions as an NAND2 element. It was located in an anchor slice
with coordinates Xi, Yj on the FPGA. All the other components were located in slices
relative to it. The tapped delay chain used to provide the delayed replicas of osc1 was
constructed as a dedicated carry propagation chain CARRY4 with three taps, Tap1, Tap2,
and Tap3. These three taps were sampled by three consecutive flip-flops in the same slice.
These flip-flops were asynchronously reset low by the tmr signal and osc2 (RO2 signal)
as the clock input. osc2 was implemented using three LUT5 elements (an NAND2 and
two buffers, BUF), placed in the same FPGA slice and in relative locations Xi+2, Yj−1 to
osc1. The sampled signals were directed to one LUT6_2 instance to generate the valid and
raw signals. The signals were stored in two available flip-flops (all in the relative slice
Xi+3, Yj) and asynchronously reset low by the tmr signal and osc2 as their clock input. The
sampled versions of the valid and raw signals were fed back to the same LUT6_2 to help
compute the next valid and raw. After being sampled, the valid signal passed directly to
an edge-detection and synchronization module. The edge-detection and synchronization
module detected when the valid signal was in logic 1. The valid signal was used as a clock
for the first flip-flop and logic 1 as input. This flip-flop generated the output signal disable1.
In order to synchronize, the output of the first flip-flop was sampled by a second flip-flop
which was triggered by the system clock as its clock input. It generated a synchronized
disable1 signal denoted disable1_sync. This signal and the system reset were ORed to reset
the edge-detection after more than 1 system clock cycles.

The validation/ testing circuitry implemented a jitter accumulation cycle counter
circuitry which was constructed with a 7-bit counter asynchronously reset by the disable1sync

signal to generate the cnt_tA signal. The counter value was continuously monitored. When
it was smaller than a defined value (say, N + 1), the tmr signal was generated; this signal
reset the high-resolution edge sampling mechanism and the raw/valid circuitry. Another
comparator, set to the value of N, was implemented to trigger another signal, tmr2. This
signal was used to reset osc2. Basically, the combination of tmr and tmr2 controlled the tA
time with the resolution of a system clock cycle. The area resources needed to implement
this feedback loop consisted of four LUT6_2 elements and nine flip-flops, which was
considerable, as compared to the rest of the design. This cost can be reduced if a smaller
control resolution is required or a specific tA value is known in advance. However, it is
important to emphasize that this circuitry was only needed for testing and calibration, etc.,
and only a small part of it was actually needed. Typically, a designer knows the tA values
needed in advance and defines a safe margin.
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Figure 2. FPGA implementation, circuitry, and mapping.

3.2. Platform Dependent Sensitivities

In the following, we detail the implementation-independent design sensitivities. In-
herently, owing to unknown IP parameters provided by FPGAs, a (naive) designer may
provoke a non-ideal scenario which impedes the expected design outcomes. Ideally, it
would be nice to produce a design which is not agnostic to designer choices, as long as
the design follows the functional intent. However, in real life, owing to implementation
platform unknowns, each and every design choice can be crucial. They reflect the set of
critical aspects which need to be evaluated when implementing a very noise-sensitive
structure and a topology-sensitive structure, such as a TRNG.

We first describe several design parameters which are hard to set/verify and not well
supported by native FPGA design flows. This is natural since these parameters are an
outcome of a security-in-mind requirement and not a traditional digital design requirement.
They lead to designer choices which are not easy to evaluate or verify. As a result, as shown
below, they affect highly important parameters, such as the min-entropy levels.

3.2.1. Oscillator Ratio (TRO2/TRO1)

One of the most important parameters in an ES-TRNG design is the ratio between
the periods of the two oscillators (RO1, driven by osc1; and RO2, driven by osc2). The
TRO2/TRO1 ratio mainly affects duration, since jitter accumulates within the oscillator RO1
until it is sampled by RO2, denoted tA. If the ratio is well-defined (e.g., see discussion on
the 4/5 ratio in Reference [17]), the probability of sampling within the high-resolution state
(valid bits) is high, and the number of needed repeated samples is low. Both contribute
to shorter tA. Deviations from good ratios can have a significant effect, as we discuss
below. We follow by discussing and exemplifying the high design-variability per FPGA
design-flow step.

Elaboration and placement: It is challenging to design a ring-oscillator and set its period
with high certainty using standard FPGA design tools. This is because standard timing no-
tations and timing simulators use abstraction (i.e., by default some variability is permitted),
so that the tools can set an upper and lower bound on the timing characteristics of the clock
signals. However, they do not provide a mechanism to set them definitively. Moreover,
FPGAs are composed of small building blocks which are used to construct programmable
logic elements; in turn, there are numerous options to implement an inverter or a buffer
within a LUT, for example. For dedicated tailored blocks, such as TRNGs, we typically
specify the exact way to implement an RO buffer in a LUT by design, i.e., which LUT
input and output to use and how to set the other constant LUT inputs. Each one of the
implementations induces a different noise sensitivity, which is typically poorly simulated
over FPGA platforms (with high variability) and different timing behaviors. As discussed
above, since timing information tends to exhibit variability in FPGAs reporting timing
tools (relatively large margins), small deviations from the required timing exist, though the
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reported design intent is met, i.e., the timing is bounded. This is crucial since we are inter-
ested in maximum performance TRNGs (high throughput). Further, small deviations in the
ratio of oscillators, which is even more sensitive to small absolute errors, can significantly
affect the min-entropy of a generator. This challenge translates into a very complex design
cycle, where it is not only hard to set certain periods with certainty, but these must also be
verified over many instances before we can certify the generator. There are a number of
mechanisms to remedy this situation, all of which induce more uncertainty: because ring
oscillators, such as the ones needed here, work at a very high frequency (the maximum
possible on FPGAs) to increase throughput, they cannot be measured directly, for example,
by an oscilloscope or characterized. Rather, we first need to either divide the frequency in
hardware and only then approximate (bound) the achieved frequency internally, add logic
internally, such as counters, for the same purpose or alternatively, approximate delays by
taking long chains that produce slow and measurable signals, and attempt to extrapolate
the period. None of these methods are straightforward and will, in any case, induce variability
between the desired and implemented periods.

Routing: The aforementioned challenge is more closely related to the designer’s by-
design choices. However, there is a more formidable challenge with (simple) FPGA design
flows. After the logic synthesis, and element mapping to the FPGA’s logic resources and
placement, a routing phase takes place. The routing phase is extremely complex and routing
information, such as delays, is highly elusive from a designer’s perspective since delay
libraries and characterizations are much less easily available than information relating to
logic elements. Moreover, whereas logic elements can be easily set with determinism within
standard design flows and constraints, controlling routing and reasoning the outcome
of some constraints is much harder. There are several design flows known as Hard—
(FPGA)—Macros, which allow for the specific selection of routing and constraining, or
duplicating them if needed. However, such design steps are typically much more complex,
less portable, and require more expertise. Nevertheless, reasoning the impact of a design
change with routing layers is still a significant hurdle, especially when the optimization
criteria (i.e., the period-ratio, noise effect, cross-talk, and the outcome min-entropy) are not
part of the traditional digital-design metric specified for the tools.

To design a robust ES-TRNG, we followed the well-defined guidelines in Reference [17]
for oscillator periods. However, some design parameters, which were probably well set,
were not mentioned by the authors. For example, constraints, such as the exact FPGA-
slice locations, the distance of specific elements within the logic, the specific {LUTs, FFs}
chosen, and how the constants were set to LUTs inputs, can all significantly affect the
outcome. After carefully tailoring all the aforementioned parameters, we initiated a design
stage to evaluate our RO periods. This consisted of (1) a standard post place and route
timing simulation after careful timing constraints were applied on the RO periods; (2)
implementing fast clock-dividers on the hardware and outputting the slow-signals on the
IOs to an oscilloscope; and (3) constructing repetitive delay elements chains with varying
length, measuring the induced delay on these long paths, and extrapolating and averaging
to capture the period of a subset of elements.

All these methods produced different simulated/measured/extrapolated values. The
maximum deviation of a clock period between all methods was 15%; however, the max-
imum deviation of the clocks-ratio was 30%, which is considerable. The design method
we found to be the most robust was to utilize the clock dividers and actually measure the
outcome frequency. This is because, internally, an oscillator sees an output load of a register
very close to it, which is very similar to the type of load it will experience once the actual
design is mapped. Moreover, timing constraints did not allow us to verify whether the
oscillating signal was being correctly sampled and divided. Finally, we actually visualized
the outcome signal. However, the disadvantage is that using this type of divider chain in
our very fast-signal case required 4 clock dividers, as well as accumulated 4 stages of error
on the estimation of the period. The evaluated average measured frequency of one LUT;
one inverter feedback ring oscillator was 603.16 MHz, after multiplying by 16 (4 dividers).
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To verify this result we constructed variable length repeated chains of odd numbers of LUT-
inverters and repeated the experiment. Figure 3a,b illustrates two examples of 11 elements
and 21 elements showing the average computed frequencies of 3.38 MHz and 1.82 MHz,
respectively, corresponding to internal frequencies of ∼54 MHz and 20.1 MHz (multiplied
by 24).

(a) (b)
Figure 3. Measurable manipulated oscillator signals: (a) 11 LUTs ring oscillator, (b) 21 LUTs
ring oscillator.

As discussed in Reference [17], the oscillator ratio was set to 0.79 which is close to
the theoretical 4/5 ratio which was expected to provide nice properties according to the
stochastic model. With this in mind, we tested for the best configuration to achieve a
4/5 ratio. We evaluated 3 different designs of oscillators with {4, 5}-elements for {RO1,
RO2}, respectively. However, to deal with the uncertainty factor, as discussed above, we
also evaluated {3, 4}-elements and {5, 6}-elements tuples for {RO1, RO2}, respectively. In
theory, we expected the 4/5 design to provide the best results. However, as was detailed
above, with an uncertainly of, at most, 30% in the ratio, as derived from experiments, we
predicted we would fall short of our design intent. Indeed, the results of the 4/5 and the
3/4 design failed to pass the NIST min-entropy tests; the 5/6 design was the only one to
pass the tests given the expected entropy level analyzed by the stochastic model. This
outcome alone forced us to reduce the oscillator frequency (more devices), further reducing
the randomness-throughput of the generator.

In yet another attempt to achieve maximum performance, we explored a {1, 3}-
elements tuple for {RO1, RO2}, respectively, by manipulating the topology and structural
characteristics of the ROs to achieve a close enough ratio to 4/5. First, we examined which
LUT to use at a specific FPGA-slice and the selected LUT within a slice. These choices inflict
significant changes, even if routing is deterministic. Moreover, they introduce different
variability factors, making the design less stable in terms of min-entropy. We have situated
RO1 in every possible LUT in a specific slice for a set RO2 oscillator. We exhaustively
executed the same steps for RO2, which is composed of 3 LUTs ((4

3) · 3! options for 3 out of
the possible Spartan-VI {A, B, C, D}-LUTs).

For example, for one set RO2 configuration, varying the selected LUT-type of RO1
yielded significant min-entropy deviations. Figure 4 shows the the min-entropy estimation
based on the NIST test evaluation (post restart test) versus the accumulation time defined
in the design. That is, we embedded a programmable construct to allow sampling after
a predefined number of clock cycles of the main system clock, controlling tA. In this
specific case, showing a set RO2, only one topology of RO1 (D-LUT) passed the NIST test
with regard to the modeled entropy and the sequential test. However, there was some
consistency: as the accumulation time increased, the entropy level started to stabilize when
enough jitter accumulated. Nevertheless, biases in the topology and period ratios reduce
the asymptotic entropy levels.
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Figure 4. Entropy versus accumulation time per LUT input-RO1.

Drawing on the optimization effort and the sensitivity analysis, we chose the best
{1, 3}-element configuration with a specific LUTs selection. We then examined, within a
specific LUT, which input assignment produced the best results (and, hence, because we
implemented simple functions, constants assignments), as well as the outcome sensitivity.
As we progressed, smaller and smaller ratio differences were expected. However, to what
extent and how significant was the impact on our objective criteria? Generally, LUTs are
constructed from some programmable storage elements and selection-logic (equivalent
to a MUX tree). However, they can be implemented with various devices/logic-topology
and different layout manifestations. Together, these form the required programmable func-
tionality. Given the unknowns mentioned above which are hard to reason and anticipate,
we experimented with all possible input assignment configurations and constants settings.
In Figure 5, we illustrate the min-entropy evaluation results for several examples where
we set RO2 and varied the input through which the RO1 output was fed back to form the
oscillator (for a 4-input LUT). There is, however, yet another degree of freedom, namely
the way we assign constants to other inputs. In this case, we set all of them to be similar for
a fair comparison. As shown, though the entropy variability was smaller than in Figure 4,
it was still considerable, making it hard to claim robustness of the design flow with respect
to design intent without exhaustive evaluation and testing.

Figure 5. Entropy versus accumulation time per LUT type-RO1.

3.2.2. Tapped-Delay Characteristics

The other key parameter that affects the resulting entropy level, and is very hard
to set on an FPGA robustly with respect to the TRNG design, is the tapped delay-chain
delays. We tested for the best tapped delay chain output sequence. For the same IP issues
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mentioned above, we tested all possible outputs of the CARRY4 to find the output order
that provided a progressively increasing delay from the RO1 input to the tapped-delay
outputs, as well as as inputs to the flip-flop data inputs. Though it is tempting to assume
that order of arrival will increase monotonically with the tapped-delay chain output index,
as illustrated at the top of Figure 6, it is, in fact, unknown because all the internal aspects are
unknown to designers. Moreover, since there are differences between the rising and falling
edges and different configurations which are set for each chain bit (e.g., see discussion in
Reference [17]), it is challenging to derive any conclusions from digital simulation timing
models for these differences with respect to a maximum-frequency driving oscillator.
Denote Tapi with i ∈ {1 . . . 4} as the indexing of the schematic tapped delay chain. We
processed the bit-extraction logic on all possible subsets of 3 taps considering the order
((4

3) · 3! options). Under the assumption that the output orders preserve the delay order,
one would expect some monotonically increasing option to provide maximum entropy.
Although the results were generally consistent with this intuition, i.e., {2, 3, 4} (or the
equivalent {4, 3, 2}), provided the best results, for any slight imbalance, e.g., {1, 2, 3} or {1, 3,
4}, the maximal min-entropy changed dramatically. We return to the optimization of the
set of delays of the taps in the ASIC optimization part of this article in the next section.

Figure 6. (a) A partial abstraction of a CARRY4 structure to derive Taps. (b) Tap ordering and
entropy results.

Finally, we evaluated the sensitivity of the module as a hard-macro in the design to
the actual location (i.e., specific slice placed) for the best configuration. As a safeguard,
we chose a long accumulation time of (27 − 1) · Tclk, represented by a counter of 7 bits,
and Tclk set to 10 ns. While scanning all possible locations in a constrained area within
the FPGA, we evaluated the robustness of our hard-macro to determine the variability of
our objective min-entropy metric. That is, for all grid locations in the constrained area,
we extracted bit-streams, collected both sequential-test (106 bits) and restart-test (103 · 103

bits) datasets, and calculated the min-entropy to create an “entropy map” of the device,
as shown in Figure 7. We focused the evaluation on the center of the device spanning
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22 × 22 slices. The experiment was repeated to verify that the map re-occurred and was
stable with certainty. As shown, some patterns were visible in the map. However, there
were significant variations in the min-entropy levels while changing the slices’ instantiated
locations.

Figure 7. Entropy versus FPGA controlled location.

After conducting the specific optimizations, and verifying the parameters which can
only be checked by measurements given uncertainty, we obtained an ES-TRNG that was
carefully tailored to the specific FPGA at hand that passed the entropy tests. The entropy
value of our well-tailored FPGA TRNG was ∼0.815, which was not sufficient to meet the
standards without additional post-processing of the raw values (sample results from the
evaluation tool output are listed in Figure 8).

(a) Sequential test results (b) Restart test results
Figure 8. Example for NIST test results.

3.3. FPGA Unknowns and the Hard TRNG Design Cycle

As discussed above and illustrated with various examples, FPGA unknowns inevitably
induce very complex design cycles for any primitive that is not well adapted to the standard
at which the device is intended to operate. Any, e.g., analog module or security-in-mind
design, which imposes criteria which are not well evaluated and built-in to the design flow
and optimization cycle of Computer Aided Design (CAD) tools, and specifically for FPGAs,
will fall short of reaching the target criteria or achieving high certainty.

In the section above, we discussed the results from >2000 carefully designed TRNGs,
all of which adhered to the same design intent. These designs were examined by post-
extraction simulation, careful investigations of delay models and the tuning timing con-
straints of the oscillators, and, finally, by comparing the evaluated design-parameters to
various methods including measurement and extrapolation. For each of the final designs, a
data-collection campaign was conducted. The run time for the SP 800-90B tests for each
design lasted more than a day (though faster implementations exist, e.g., in Reference [33]).
We also evaluated a set of different parameters. The most time/complexity consuming one
was sweeping the accumulation time, tA. All in all, although utilizing very high parallelism,
these evaluations took ∼1-year to process. Various features emerged when pinpointing
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the high TRNG sensitivities in an FPGA environment, but primarily a lack of design-flow
robustness in the case of non-mainstream (and modeled) design criteria. Although only
one FPGA family was evaluated, to some extent, for all FPGAs, much remains unknown
due to IP issues. At times, in the case of proprietary design-flows with complexities that are
not always deterministic, we may not have sufficient intuitions relating to design tweaks
or their actual effects. Most importantly, many parameters and characterization libraries
are not well documented or accessible to designers.

As an intermediate conclusion for Section 3, with partial (FPGA only) results com-
parison, we refer the reader to Table 2. We note that a more general comparison with
ASIC-based design results is provided in Section 5. Table 2 lists both comparable design
parameters discussed above, such as { fclk, fRO1, fRO2, tA}, which are only relevant to
compare with the prior-art ES-TRNG design. However, we also list general utilization
parameters (#LUTs-, #Regs-, #CARRY4-elements) and efficiency parameters, such as en-
tropy and bit-rates, comparable with all designs reported in the table. Several important
highlights are that: (1) we only compare the raw entropy levels (no post-processing), as
to provide a fair comparison; and (2) we report separately the cost of the controller part
(i.e., counters and tA setting comparators), as these can be reduced in some designs. It
is clear from the table that both the bit-rates and the entropy levels achieved surpassed
the prior-art ES-TRNG design. However, as demonstrated above, this design was shown
to be sensitive to numerous design parameters and was challenging to stabilize on an
FPGA platform, directly motivating the next part of this paper. It can be also captured
from the table that the reported TRNG is indeed the smallest in terms of FPGA resources
as compared to all other designs.

Table 2. FPGA-based (partial) results comparison.

TRNG FPGA Device AREA
(LUT/Reg/CARRY4) Bit Rate [Mbits/s] Entropy/bit Entropy·Bit

Rate tA
fRO1
MHz

fRO2
MHz

fclk
MHz

ES-TRNG
(Implemented) Spartan 6 7/6/1

(controller): 4/9/0 10 0.815
(Raw) 8.15 9 603.1 453.3 100

ES-TRNG
(prior-art)

Spartan 6

Cyclone V

10/5/1
(controller): 6/6/0
10/6/1
(controller): 6/6/0

4
(no post-processing)
4.34
(no post-processing)

0.746
(Raw)
0.746
(Raw)

2.984

3.237

25

23

460.4

572.8

364.9

331.1

100

ERO [34]
Spartan 6
Cyclone V
SmartFusion 2

46/19/X
34/20/X
45/19/X

0.0042
0.0027
0.014

0.999
0.990
0.980

0.004
0.003
0.013

COSO [34]
Spartan 6
Cyclone V
SmartFusion 2

18/3/X
13/3/X
23/3/X

0.54
1.44
0.328

0.999
0.999
0.999

0.539
1.438
0.327

MURO [11,34,35]
Spartan 6
Cyclone V
SmartFusion 2

521/131/X
525/130/X
545/130/X

2.57
2.2
3.62

0.999
0.999
0.999

2.567
2.197
3.616

PLL [34]
Spartan 6
Cyclone V
SmartFusion 2

34/14/X
24/14/X
30/15/X

0.44
0.6
0.37

0.981
0.986
0.921

0.431
0.592
0.340

TERO [34,36]
Spartan 6
Cyclone V
SmartFusion 2

39/12/X
46/12/X
46/12/X

0.625
1
1

0.999
0.987
0.999

0.624
0.985
0.999

STR [15,34]
Spartan 6
Cyclone V
SmartFusion 2

346/256/X
352/256/X
350/256/X

154
245
188

0.998
0.999
0.999

154.121
244.755
188.522

4. ASIC Technology Implementation and Optimization

Many of the aforementioned weaknesses can be significantly improved with mature
and flexible ASIC design flows. ASIC design-flows are more advantageous, given the level
of accuracy and flexibility that can be achieved in planning. The design process is easier
and more structured, which provides more control. Due to the specific nature of ASIC
optimization as compared to the more general abilities of FPGAs, and the overhead caused
by programmability, we can naturally expect significant improvements. In this section,
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we describe the implementation process of an ASIC ES-TRNG module. This is followed
by a design-specific tailored optimization to increase the outcome min-entropy level and
simultaneously reduce the area-utilization and energy per TRNG bit. We aimed to provide
the best quantitative values, which are important ingredients for system and architectural
level decisions, such as RNG selection, distribution of RNGs, etc.

We simulated the ASIC design over a transient noise simulation with a Noise Fmax
parameter of 17 GHz and a Multiple Runs parameter of 32 runs. Each run was set to extract
1,000,000 random bits such that reproducibility and variance could be tested between runs
with the NIST test suite. A similar simulation was done to generate data for the restart
test. The simulated environment did not incorporate noise from other circuits, although
these exist in real life. Therefore, this analysis is much stricter than real life, i.e., pessimistic.
The design was evaluated over multiple process corners, temperatures, and voltage drops
to verify robustness. In total, these high-intensity simulations took ∼7 months on a very
powerful server with 50 machines, where each multi-threaded over 20 processors.

4.1. Throughput and Entropy

The randomness-throughput provided by the ES-TRNG is an outcome of two compo-
nents: the accumulation time, tA, and the number of repeated samples needed to extract
a valid raw bit. We then explore ways to minimize these components to maximize the
randomness-throughput. As explained above, within the ES-TRNG architecture, signals
affected by noise are sampled and encoded. The role of RO1 is to accumulate the random
noise appearing in jittery behavior. The role of RO2 is to provide a clock that samples the
manifestation of the noise. The role of the bit extractor is to decode the resulting view
into a binary raw bit. Ideally, RO1 should produce some frequency with a duty cycle of
50%. Due to the imbalanced nature of standard-cell delays (rising versus falling transition
delays), some deviation from an ideal behavior takes place. This is because the duty-cycle
an oscillator produces is not necessarily 50%, and the rise and fall times can, in fact, differ.
In addition, to achieve acceptable levels of randomness, RO1 needs to capture a significant
amount of noise to provide sufficient entropy. In turn, it induces a long waiting period for
noise accumulation, tA. The duration of tA is inversely proportional to the frequency of
RO1. It can be conjectured that the faster the RO1, the more transitions will occur, thus
increasing the baseline noise in the jitter. These will lead to a shorter accumulation time
for a set target entropy level. However, clearly, there exists an upper bound that limits the
maximum RO1 frequency. As mentioned above, RO2 provides a clock signal to sample the
tapped delay chain outputs. As the RO1 frequency increases, the subsequent tapped-delay
line output-sets, representing a high-resolution region, become closer. If the RO1 frequency
were further increased, the high resolution areas would start to overlap. In other words,
the first delayed signal would start to fall before the last one would rise, as illustrated in
Figure 9. The overlap of high resolution areas reduces the total high resolution areas per
cycle, which increases the accumulation time to reach the same entropy level. The upper
bound on the RO1 frequency to function correctly is:

TRO1 ·min(duty cycle, 1− duty cycle) > delta1 + delta2 + ε, (1)

where TRO1 is the period of the RO1 (fraction), the duty cycle is the duty cycle of RO1,
delta1 and delta2 are the two delays of the first two delay elements’ outputs, and epsilon is
an uncertainty factor which depends on the features of the technology.
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Figure 9. Taps versus RO1 frequency.

One conclusion that can be drawn from this bound is that the smaller delta1 and delta2,
the higher the possible frequency of RO1, implying a minimum required accumulation time.

The second element that has an impact on the throughput is the ratio between the
oscillator frequencies, as discussed above. Once the accumulation time is over, RO2 starts
to sample the taps until the sample is decoded to be within the high resolution region, and
a valid bit is extracted. The ratio enforces the number of RO1 cycles that take place within
TRO2. At this point, it is guaranteed that we sampled in a high resolution area.

The third important parameter that affects the entropy level is the tapped delay chain,
in particular, the delay difference between stages. In order to uphold a uniform distribution
of raw bits, the tap delay chain loads must be balanced. With no restrictions, the first two
buffers in the tap delay chain need to drive both a D-FF and the next buffer stage, whereas
the third buffer only needs to drive a D-FF. However, this situation causes a mismatch in
the output load along the chain, which translates into a bias, as illustrated in Figure 10a.
That is, the bit extractor decodes the tapped delay chain outputs: if delta1 (decodes the
valid raw of ‘1’) is not equal to delta2 (decodes the valid raw of ‘0’ ), a bias is guaranteed.

(a) (b)

Figure 10. Tapped delay chain optimization: (a) Unequal tapped delay chain example; (b) balanced
versus unbalanced tapped delay chain-entropy.

To balance the tapped delay chain, we completely balanced the output loads of the
entire delay chain, while simultaneously providing ideal, minimal, and symmetric routing
between the stages. The resulting min-entropy outcome is shown in Figure 10b.

Another parameter that should be taken into account is the signals’ slew-rate (i.e.,
sharpness), particularly for the RO2 output signal (the sampler). If RO2’s rise time is
too slow, as illustrated in Figure 11a, the sampler may not always sample a specific high
resolution area (i.e., only a ‘1’ or only a ‘0’). A less than sufficiently fast mechanism may
reduce the randomness throughput. Figure 11b depicts this scenario with an overly slow
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rise time. Although the sampler starts to rise in a high resolution area, the sampling only
takes place when the RO2 output clock exceeds a certain threshold (e.g., VDD/2), capturing
a low resolution area. The general rule recommended to follow is:

trise_RO2 < min(delta1, delta2). (2)

(a) (b)

Figure 11. Slew-rate optimization: (a) slow RO2 rise time example; (b) fast versus slow rise time
entropy impact.

When implementing these optimization steps and a careful layout, a significant im-
provement from the baseline construction was achieved, as shown in Figure 12. The
faster the RO1 (3 options of ∼@3.5, ∼@6.11, and ∼@9.35 GHz) for an RO2 frequency of
∼@2.15 GHz, the higher the entropy per accumulation time. The TRO2/TRO1 ratio set was
slightly above 4/5. The red circles on the horizontal line indicate the best randomness-
throughput FPGA-based ES-TRNG we were able to achieve. The x-axis intersection value
with that curve shows the accumulation time needed for a fair comparison with the FPGA-
based design. The best design required an accumulation time of only two cycles of the
system clock, which, in our case, was set to a 10 ns period, and another two cycles of
RO2 with a period of 0.46 ns. Hence, the throughput of the design was about 47.8 Mbit

s ,
which was about 41.5 times higher than the FPGA-based ES-TRNG. The blue horizontal
line (annotated with squares) indicates the highest entropy level captured without any
pre-processing (raw) of 0.9846. At this entropy level, the required accumulation time was
twelve system clock cycles and two additional RO2 cycles, providing about 8.27 Mbit

s , which
was about 7.2 times higher than the FPGA-based ES-TRNG (with smaller entropy level).

Figure 12. Optimized ASIC-based design as compared to the FPGA counterpart: entropy versus tA.
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4.2. Area and Power

After evaluating and improving the design parameters that affected the min-entropy
and randomness throughput, we minimized the cost factors, namely the area utilization
and energy consumption of the TRNG. The design can be grossly partitioned into two
main parts. The first does not impact the entropy and is negligible in terms of throughput.
It includes the bit extractor and the control circuitry. The second inflicts major damage on
performance in terms of both min-entropy and randomness-throughput. It includes the
oscillators and the tapped delay chain. There are no special restrictions to minimize area
(or, hence, energy) while meeting the timing constraints induced by the RO2 frequency. By
contrast, for energy consumption, where the entropy level needs to be considered, as well,
the optimization point becomes specific for each set RO1 frequency.

In Figure 13, we plot a general log-scale oscillator area versus its frequency. Different
curves are shown to depict the oscillator using INV, BUF, DLY2, and DLY4 (delay cells)
standard cells of different sizes (drive-strengths). Each type of cell has a different curve
color, and each sizing factor for the same cell is depicted with a different marker. Theoreti-
cally, the curves are only bounded on the right side to adhere to the minimum of one unit in
an oscillator. To achieve a specific frequency (vertical line), the intersection point with the
curves indicates a possible structure for the oscillator. The minimum area with a specific
frequency is obviously achieved by the lowest curve. Of interest are the overlap areas,
where, for example, the largest up-sized DLY4 set overlaps with the smallest DLY2-set, etc.
This is followed by the overlap of DLY2s with BUFs and BUFs with INVs. Therefore, to
achieve a defined frequency, the cell library needs to be pre-analyzed. Another inherent
challenge is that the number of cells is discrete; thus, the designer may need to choose larger
devices or different types of cells to reach the target frequency. Within this implementation,
RO1 was constructed with 1 element of size X1 of a DLY2 cell, and the RO2 with 2 cells of
the smallest DLY4 element. In the specific case of a ring oscillator, the average power can
be set as a reliable metric to evaluate energy consumption trends. In Figure 14, we plot the
average log-scale power versus the oscillator frequency with the same set of curves, while
indicating the chosen RO1 and RO2 frequencies. The same general guidelines as discussed
above are used here, thus confirming that the general (rough) intuition of minimizing area
utilization also minimizes energy consumption.

Figure 13. Oscillator area versus frequency.

This device selection, which led to minimal area and power consumption, made it
possible to implement the full TRNG construction with an area of 0.000252 mm2 and an
average power consumption per bit/source of 0.1 mW for a min-entropy level of 0.86 and
1.06 mW for a min-entropy level of 0.985 (while changing the accumulation time, tA).
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Figure 14. Oscillator power versus frequency.

The physical layout of the TRNG is shown in Figure 15. The annotations on the figure
highlight the oscillator regions, RO1 and RO2. The symmetrically routed delay line is
illustrated, as fed from RO1, where the upper standard cell row is the physical delay line,
and the bottom row is the registers, sampled by the oscillating signal coming from RO2.
As discussed above, the output driver of RO2 which enables the small slew-rate is highly
important and is placed within the RO2 region. The bit extractor logic and the rest of the
control circuitry are also shown. It is important to note that (1) some of the control cost
can be amortized when more than one element is placed in a design, and (2), as shown,
there are several small dummy-filled regions, which were not squeezed out of symmetry
considerations, but were accounted for in the total area estimation.

Figure 15. Full 65-nm layout of the proposed TRNG.

5. Discussion and a Test Case Analysis

We demonstrated the implementation of an ES-TRNG on an ASIC 65-nm environment
which is far more robust than previous attempts at implementations and draws solely
on designer-control within the ASIC design-flow. We also discussed issues related to the
sensitivity of the design within an FPGA platform, backed up by measurements. However,
the main contribution of this work is to provide concrete design optimization goals and
design restrictions relating to: (1) the minimum and maximum delay line constraints,
balancing and spacing of elements, (2) frequency targets of oscillators and the constraints
they induce on the rest of the system, the magnitude of their output slew-rate in the specific
context of the ES-TRNG, and (3) ways to set and minimize area/energy utilization, etc.

We began by implementing the novel ES-TRNG on an FPGA platform to test its
ability to reproduce the results presented in Reference [17]. We then used ASIC technology
with the same architecture and optimized the design for the area, power consumption,
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throughput, and entropy metrics. The optimal design achieved about 47.8 times higher
throughput for the same entropy level, and about 8.27 times higher throughput for a higher
entropy level of 0.985, without post-processing.

These findings were then compared to reported results from other ASIC technology-
based TRNGs, as shown in Table 3, which indicates that, for each evaluation metric, a
different design is preferable. We attempted to create a metric that would authorize a
comparison between the different designs, as shown in Figure 16. Our objective criteria is
Area/RT, equally weighing both. In the figure, equal contour lines appear, and the dots
represent the different prior-art (from the table). In this figure, the higher a design appears
on the left, the better the overall performance. In particular, one publication [29] appears to
compete with the current work, but, as can be seen, it was designed with more advanced
technology (45 nm), tested to a less stringent standard, and operates on a completely
different mechanism (metastable-based).

Analysis: Example of a TRNG vs. a PRNG Feeding a Lightweight Encryption Core

PRNG was considered according to DRBG NIST recommendations, i.e., AES in the
counter mode of 128 bit per 11 cycles. We assumed a conventional clock-cycle of 100 MHz.
We further excluded the cost of seeding the PRNG and the counter. TRNG units were
modeled to feed randomness requiring elements in the system, while utilizing area and
providing randomness throughput (RT), as discussed above.

Table 3. Detailed prior-art comparison with amplitude noise-based, time-domain, and metastable-based generators.

Entropy Source Reference Tech. Area Power Throughput Post-Proc. Evaluation

Amplitude Noise

[18] 2 µm * 1.5 mm2 3.9 mW 1.4 Mbps - FIPS140-1,
DIEHARD

[19] 0.18 µm 0.025 mm2 2.3 mW 5 Mbps XOR decorr. FIPS140-1,
Knuth 2nd ed.

[20] 0.12 µm 0.009 mm2 0.05 mW 200 Kbps V.Neumann Entropy dist

[21] 0.25 µm 0.0012 mm2 1.9 mW 2 Mbps - FIPS140-2

[22] 0.35 µm 0.52 mm2 30 mW 40 Mbps - SP800-22

Time-domain

[23] 0.18 µm 0.0016 mm2 2.3 mW 10 Mbps - FIPS140-1,
Knuth 2nd ed.

[24] 90 nm 0.006 mm2 0.24 mW 1.74 Mbps LFSR AIS31,
Entropy dist

[25] 130 nm 0.2465 mm2 0.00065 mW 25 bps 6 bit LFSR SP800-22 Basic

[26] 65 nm 0.0012 mm2 2 mW 11 Kbps - SP800-22

[27] 65 nm 0.00667 mm2 - 7.5 Mbps - SP800-22 Basic,
DIEHARD

This work (1) 0.1 mW 47.8 Mbps

This work (2) 65 nm 0.00025 mm2
1.06 mW 8.27 Mbps - SP800-90B

Metastable

[7] 0.13 µm 0.145 mm2 1 mW 40 Kbps 5:1 decimation SP800-22 Basic

[28] 0.35 µm 0.031 mm2 0.0094 mW 5 Kbps NFSR SP800-22 Basic

[29] 45 nm 0.004 mm2 7 mW 2.4 Gbps - SP800-22

[30,31] 0.18 µm ** 0.0018 mm2 0.27 mW 2.5 Mbps - SP800-90B & -22,
AIS20/31

[32] 40 nm 0.0188 mW 2.5 Mbps - SP800-90B,
AIS20/31

* Total die area. ** According to an estimate of the average gate size in 65 nm technology.
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Figure 16. Comparison of randomness-throughput versus area utilization per source.

We considered several encryption blocks: a 65-nm, synthesized, unprotected, lightweight
PRESENT encryption core (corresponding to current lightweight device needs) and a
hpc-masked PRESENT fully parallel rolled implementation core with d = {2, 3}, which is
implemented in three clock-cycles per round [37]. Area utilization for these blocks reported
from Cadence Genus 65 nm technology synthesis are denoted to the right of the figure.
Clearly, randomness may be required for, e.g., SCA security of the unprotected block, using,
for example, shuffling [38], amplitude-randomization [39–41], or it will be needed for the
masked blocks which, in this case, demand (8 · 18)/3 or (20 · 18)/3 random bits per clock
cycle for d = 2, 3, respectively (on average for a fully-parallel rolled hpc implementation).

In Figure 17, we plot the total area of the PRNG (DRBG) and the TRNG versus the
number of random bits they need to supply in a clock cycle (on a scale of ·24). We took
multiple elements into consideration when parallelism was required to provide large #bits.
We present two sets of curves, assuming two scenarios: when the encryption core operates
continuously, 100% of the time, and when it operates only 50% of the time. This implies
that random bits can be accumulated by either the PRNG or by the TRNG in the 50% case,
or, alternatively, we require less parallelism (fewer RNG units, reducing the total area for
the RNG).

This analysis suggests that, while utilizing the TRNG, the area cost of randomness
generation is proportional to the area needed for encryption logic (when masked or al-
ternatively randomized). However, a solution utilizing a PRNG will turn randomness
generation into total-area bottleneck unless a limitation is imposed on the communication
bandwidth. In low communication bandwidth applications, randomness can be accumu-
lated or the encryption logic itself can be utilized as the PRNG building block. Therefore,
in these cases, this cost factor can be amortized. However, (1) assuring low-communication
bandwidth is not always possible, and it may considerably limit the application, and (2)
randomness is still computational (PRNG) and more sensitive to attacks as compared to a
TRNG-based solution.
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Figure 17. Total area of the proposed TRNG and an AES CNT-mode DRBG-based PRNG versus the number of needed bits
per clock cycle. The values are compared to the area required to implement a PRESENT lightweight encryption without and
with d = 2, 3 hpc masking.

6. Conclusions

Modern security systems require on-chip TRNGs. Applications demand high ran-
domness throughput, a low area, and low energy per bit (source). Here, we evaluated the
robustness and reliability of an efficient time-domain-based TRNG implementation over
an FPGA platform. We demonstrated sensitivities which result in a TRNG construction
that is not agnostic to electronic-design-automation tools and to designers’ know-how. We
show that a considerable effort and validation are required to make designs robust, and a
high degree of complexity is required from non-trivial FPGAs flows. In the second part
of the manuscript, we proposed an ASIC-based implementation of the TRNG, along with
the optimization steps, to enhance its characteristics. The results show that the optimized
design improves randomness-throughput by 42× for the same entropy level described in
previous works over the raw samples (no pre-possessing). The design simultaneously ex-
hibits reduced energy consumption of 0.1 (mW/bit) for the same entropy level as previous
works (and 1.06 (mW/bit) for a maximum entropy flavor), and the lowest area utilization
of 0.000252 (mm2) for a 65-nm technology evaluation. This enables the ASIC TRNGs to
outperform FPGA in terms of electronic cost factors and results in the minimum Cost Per
Bit/Source to date. Finally, we present a TRNG versus PRNG cost-extrapolation for security
architects embedding a lightweight side-channel protected encryption core.

The simplicity of the proposed circuit, the clear optimization guidelines, large design
flexibility, and control over ASIC technologies offer a high integration potential with
inherent low area and power consumption, while meeting the needs for high entropy and
randomness throughput.
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