
����������
�������

Citation: Abushgra, A.A. Variations

of QKD Protocols Based on

Conventional System Measurements:

A Literature Review. Cryptography

2022, 6, 12. https://doi.org/

10.3390/cryptography6010012

Academic Editor: Josef Pieprzyk

Received: 21 January 2022

Accepted: 2 March 2022

Published: 4 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Review

Variations of QKD Protocols Based on Conventional System
Measurements: A Literature Review
Abdulbast A. Abushgra

Cybersecurity Department, Utica University, 1600 Burrstone Road, Utica, NY 13502, USA; aaabushg@utica.edu;
Tel.: +1-315-223-2303

Abstract: Cryptography is an unexpected revolution in information security in the recent decades,
where remarkable improvements have been created to provide confidentiality and integrity. Quantum
cryptography is one such improvement that has grown rapidly since the first announced protocol.
Quantum cryptography contains substantial elements that must be addressed to ensure secure
communication between legitimate parties. Quantum key distribution (QKD), a technique for
creating a secret key, is one of the most interesting areas in quantum cryptography. This paper
reviews some well-known quantum key distribution techniques that have been demonstrated in
the past three decades. Furthermore, this paper discusses the process of creating a secret key using
quantum mechanics and cryptography methods. Moreover, it explains the relationships between
many basic aspects of QKD protocols and suggests some improvements in the cryptosystem. An
accurate quantitative comparison between the QKD protocols is presented, especially the runtime
execution for each QKD protocol. In addition, the paper will demonstrate a general model of each
considered QKD protocol based on security principles.

Keywords: quantum key distribution protocol; district variable; continues variable; superposition
state; quantum bit (qubit); entanglement state

1. Introduction

For several years, cryptographers have experimented with encryption/decryption
techniques to create effective and robust methods to secure communications between two or
more legitimate entities. The first known method is conventional (classical) cryptography,
which involves sharing a message between two legitimate parties through insecure channels
(for example, the Internet). The shared message (plaintext) should be sent from Alice (the
sender) to Bob (the receiver) without the intervention by Eve (an eavesdropper). To prevent
impersonation and listening, both Alice and Bob are supposed to send an X encrypted
plaintext. Alice encrypts the plaintext X to become ciphertext C. On the other hand, Bob
decrypts the ciphertext C to reveal the original plaintext X. The two legitimate participants
use a shared code (secret key) to produce a ciphertext C [1]. For a long time, various
algorithms have been used in the cryptosystem, and Caesar Cipher is one of them. Later,
several cryptographic algorithms were introduced based on the large amount of data
used by the Internet. RSA [2] and Diffie-Hellman [3] are the two most popular classical
algorithms used in today’s cryptographic systems.

Due to the huge amount of data that is shared over the Internet, classical cryptography
may not provide sufficient protection. Hence, scientists are seeking a more reliable system
based on the law of physics. A quantum system is the next solution for cryptography, where
quantum cryptography is empowered by quantum mechanics. The power of quantum
cryptography was initially introduced by Wiesner and Bennett in 1979 [4,5]. Quantum
cryptography applies theories of physics to produce a secret key that can be shared by
communicating parties. Moreover, sharing a secret key usually contains a random string of
qubits (quantum bits) between the two entities. The encryption/decryption of plaintext X

Cryptography 2022, 6, 12. https://doi.org/10.3390/cryptography6010012 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography6010012
https://doi.org/10.3390/cryptography6010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-8139-3031
https://doi.org/10.3390/cryptography6010012
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6010012?type=check_update&version=2

Cryptography 2022, 6, 12 2 of 25

are processed using a quantum system [6]. This quantum system operates based on the
principles of physics and generates a secret key that is shared between communicating
parties. These parties can communicate over insecure (public) channels to confirm the
uncovered qubits (sifting phase). Therefore, Quantum Key Distribution (QKD) provides a
secret key generator that can be guaranteed by the law of physics. Generally, QKD protocol
consists of two approaches to deal with a string of qubits: the first approach is a Discrete
Variable (DV), which is coded in the quantum state of a single photon, and the binary data
should be measured using a single photon detector, while the second approach contains
a Continuous Variable (CV), which is encoded on coherent states of weak pulses of light.
Continuous data values are measured using homodyne detection methods [7], where CV
systems should offer advantages over traditional DV systems. These advantages could be
reflected in a higher secret key exchange rate for short distances, lower cost, or compatibility
with telecommunication technologies.

Although quantum computers are light years away from today’s technology, current
cryptologists are exploring the impacts of this future technology, especially by breaking the
current cryptosystem, which is based on prime factors of large numbers, such as ECC and
RSA. Moreover, these impacts are a threat to cryptography elements such as confidentiality,
data integrity, and authentication (digital signature). Consequently, breaking public-key
cryptography requires a quantum computer that is supposed to be at least (≈ 2000 qubits).
Therefore, this quantum computer would break a prime factor of a great number in mil-
liseconds. Usually, breaking an RSA encryption using an existing classical system (even
power computers) would take hundreds of years [8].

This paper highlights the mechanisms and processes that are used to produce a
secret key in quantum system using QKD protocols such as the BB84 protocol, SARG04
protocol, B92 protocol, Coherent-One-Way (COW) protocol, KMB09 protocol, EPR protocol,
S09 protocol, Differential-Phase-Shift (DPS) protocol, and S13 protocol. Although many
interesting QKD protocols have been announced in the quantum cryptography world,
these QKD protocols determine the most applicable and well-known protocols.

2. Literature Review

In 1984, Bennett and Brassard invented the first quantum key distribution protocol,
which became the first step toward quantum cryptography [9,10]. Many recent QKD
protocols have been designed based on Bennett and Brassard’s algorithms, particularly
the quantum channel. A quantum key distribution protocol has been adopted to generate
a shared key using quantum mechanics. This shared key is supposed to be confirmed
in sifting and correcting error phases, where both phases should be applied during the
classical communication channel. Each QKD protocol has a certain design that makes the
generation of a secret key either secure or weak. These designs will be explained later
based on the original protocols.

Section 2.1 presents the history of classical cryptography, and Section 2.2 explains
quantum cryptography as well as the known QKD protocols. Finally, the paper presents
outcomes of the QKD protocol comparisons and experiments that mainly focus on runtime
execution during secret key exchange.

2.1. Classical Cryptography

Classical (conventional) cryptography relies on the complexity and difficulty of com-
puting mathematical equations. This complexity will help Alice and Bob hamper Eve by
exposing submitted messages or taping some of the contents. However, the reality of classi-
cal cryptography depends on the ability to stop threats caused by two types of cyber-attacks.
One attack is called an active attack, and the other is called a passive attack. Active attacks
can involve changes in the submitted data, unlike passive attacks that tap data without any
changes. Historically, classical cryptography was explored in 1900 B.C., after the discovery
of some messages that had been written in an ancient Egyptian tomb [11]. Subsequently,

Cryptography 2022, 6, 12 3 of 25

several cryptographic algorithms [1] were introduced, and all of these algorithms have the
same goal, which is inferred by creating a secret shared key as follows:

C = E {K, X}, and then X = D {K, C}.

In addition, many encryption/decryption algorithms have been developed in classical
cryptography, such as the RSA algorithm. The RSA algorithm [2] uses a cryptography
method that is based on the complexity of computing prime factors of large integers.
Moreover, there are many cryptographic algorithms [12,13] that possess stability and
applicability in today’s classical system. However, these algorithms will most likely fail
once a quantum computer exists. The main reason behind the failure of the classical system
is due to the power of the quantum system, especially the processing speed of the quantum
machine. Because of the high degree of parallelism in quantum machines introduced
by superposition states, the time required for factoring a large prime number is small
compared to a classical machine.

Generally, classical cryptography is considered secure, as long as the quantum com-
puter is not publicly available. The weakness of classical cryptography is related to the
time needed to encrypt/decrypt algorithms, which can be a cryptanalysis solution for any
cryptographic algorithm. However, the mechanism of encrypting/decrypting any kind
of plaintexts in the classical system is applicable and simple operations, but it contains
difficult mathematical equations that are impenetrable for any attack as shown in Figure 1.
The main purpose of a cryptographic system is to send a message from Alice, who converts
the plaintext X to ciphertext C using one of the available algorithms (e.g., DES, 3DES, AES,
Diffie-Hellman, RSA, etc.), and then the ciphertext is sent through one of the classical
communication channels (e.g., the Internet) to Bob. Hence, Bob converts the ciphertext C to
plaintext X by decrypting the ciphertext using only a shared key (secret key) in symmetric
cryptography methods. In asymmetric cryptography methods, Alice and Bob use the
same previous scenario except that two shared keys (public and private keys) are required
between the communicating parties [14].

Cryptography 2022, 6, x FOR PEER REVIEW 3 of 26

the discovery of some messages that had been written in an ancient Egyptian tomb [11].

Subsequently, several cryptographic algorithms [1] were introduced, and all of these al-

gorithms have the same goal, which is inferred by creating a secret shared key as follows:

C = E {K, X}, and then X = D {K, C}.

In addition, many encryption/decryption algorithms have been developed in classi-

cal cryptography, such as the RSA algorithm. The RSA algorithm [2] uses a cryptography

method that is based on the complexity of computing prime factors of large integers.

Moreover, there are many cryptographic algorithms [12,13] that possess stability and ap-

plicability in today’s classical system. However, these algorithms will most likely fail once

a quantum computer exists. The main reason behind the failure of the classical system is

due to the power of the quantum system, especially the processing speed of the quantum

machine. Because of the high degree of parallelism in quantum machines introduced by

superposition states, the time required for factoring a large prime number is small com-

pared to a classical machine.

Generally, classical cryptography is considered secure, as long as the quantum com-

puter is not publicly available. The weakness of classical cryptography is related to the

time needed to encrypt/decrypt algorithms, which can be a cryptanalysis solution for any

cryptographic algorithm. However, the mechanism of encrypting/decrypting any kind of

plaintexts in the classical system is applicable and simple operations, but it contains diffi-

cult mathematical equations that are impenetrable for any attack as shown in Figure 1.

The main purpose of a cryptographic system is to send a message from Alice, who con-

verts the plaintext X to ciphertext C using one of the available algorithms (e.g., DES, 3DES,

AES, Diffie-Hellman, RSA, etc.), and then the ciphertext is sent through one of the classical

communication channels (e.g., the Internet) to Bob. Hence, Bob converts the ciphertext C

to plaintext X by decrypting the ciphertext using only a shared key (secret key) in sym-

metric cryptography methods. In asymmetric cryptography methods, Alice and Bob use

the same previous scenario except that two shared keys (public and private keys) are re-

quired between the communicating parties [14].

Figure 1. A simplified model of a symmetric encryption in the classical system, where X is a

plaintext, S is an algorithm, and Ciphertext is the encoded message.

2.2. Quantum Cryptography

Presently, quantum cryptography is a sparkling topic in the field of communications

and information technology. There is no doubt that the main focus of the cryptosystem is

to prevent any entity from accessing the shared data, except for legal correspondents.

Confidential communications between the sender and the receiver message must be en-

sured, and the principles of quantum communication ensure that data are transmitted

over a secure channel with notification in the event of a data interruption.

Quantum cryptography uses symmetric key encryption, which is very common in

classical cryptography methods. Moreover, symmetric key encryption provides straight-

forwardness between communicating parties in a quantum system, such as the One-Time

Pad (OTP) encryption technique [15]. Furthermore, the Shared Secret Key (SSK) is used in

Figure 1. A simplified model of a symmetric encryption in the classical system, where X is a plaintext,
S is an algorithm, and Ciphertext is the encoded message.

2.2. Quantum Cryptography

Presently, quantum cryptography is a sparkling topic in the field of communications
and information technology. There is no doubt that the main focus of the cryptosystem
is to prevent any entity from accessing the shared data, except for legal correspondents.
Confidential communications between the sender and the receiver message must be en-
sured, and the principles of quantum communication ensure that data are transmitted over
a secure channel with notification in the event of a data interruption.

Quantum cryptography uses symmetric key encryption, which is very common in
classical cryptography methods. Moreover, symmetric key encryption provides straight-
forwardness between communicating parties in a quantum system, such as the One-Time
Pad (OTP) encryption technique [15]. Furthermore, the Shared Secret Key (SSK) is used
in the OTP mechanism by converting the entire plaintext X into a long string of n-bits.

Cryptography 2022, 6, 12 4 of 25

On the other hand, the SSK should be created to match the same length (number of bits)
of the original plaintext X, where the plaintext X and secret key SSK will be XORed (⊗)
to produce a ciphertext C. This process can be used in quantum cryptography when
both legitimate parties obtain an SSK with the known plaintext X. An interesting point in
quantum cryptography is the inability to make a copy of the original plaintext X or even
listen to the message content by an eavesdropper, due to the rules of quantum mechanics
(non-cloning theory) [16]. For instance, if two connected terminals are interrupted during
a quantum communication, then the quantum system will be altered. This alteration is
recognized by destroying the content of the message. Therefore, communicating parties
can detect the information attacks, while the eavesdropper cannot take advantage of a
system interruption.

Furthermore, several requirements are available to achieve secure communication
using quantum systems. The first condition is a quantum channel, where the submitted
data (set of quantum bits) is transmitted. The quantum channel should be either free space
or fiber optics [17]. The data submitted in the quantum channel includes information
about the shared secret key (SSK), which is carried by elementary particles. The second
condition consists of a classical channel that should be established to recognize whether
the shared key was detected by an eavesdropper or altered by the environment [18]. The
classical channel uses a sifting process to correct errors that occur during the transmission of
quantum channel. In addition, it is used to terminate the communication initiated between
the parties if the detected error rate is high.

Public key cryptography provides only a certain amount of protection. Therefore,
quantum mechanics will provide a complete solution for the next generation of secure
communication networks. Quantum cryptography is based on quantum mechanics, in
which some of theories of physics are applied. Moreover, there are many physical quantities
or observables, such as photon polarization, momentum, and mass that can be used in
the field of cryptography [19]. Based on the law of physics, the process of exchanging
information within a quantum system is naturally protected from passive attacks, but it is
still a challenge for active attacks. Here, the information used is initiated as a string of bits
that are converted by quantum devices into quantum bits (qubits). The qubits are directed
by light filters to different polarized states |ϕi〉. Therefore, a single photon can be initiated
and measured based on multiple states. The explanations for used symbols are shown
in Table 1.

Table 1. Units for quantum cryptography.

Symbol Description

Φ Quantum superposition of n states.
Ψ Quantum superposition of n states.
⊗ Exclusive OR (digital logical gate).
A Alice, and usually is the sender.
B Bob, and usually is the receiver.
↑ A state with a definite value of spin operator.
X The original message that should be shared between Alice and Bob.
|v〉 Ket-notation, where it is a vector v.
〈v| Bra-notation, where it is a linear form.
+ Non-orthogonal States.
× Orthogonal States.

OTP One-Time Pad.
Qubit Quantum Bit.
QBER Quantum Bit Error Rate.

Then, this paper introduces some well-known QKD protocols and explains each
QKD protocol based on the mechanism of the adopted algorithm. In addition, the QKD
protocols were tested and analyzed to demonstrate the differences between all selected
QKD protocols.

Cryptography 2022, 6, 12 5 of 25

2.2.1. The BBB84 Protocol

In 1984, the BB84 protocol was introduced by Bennett and Brassard [20]. The concept
of the BB84 protocol depends on the exchange of a secret key between Alice and Bob
through a secure quantum channel. The process is described as a tossing-coin, whereby
two communication channels (quantum and classical channels) are initiated between Alice
and Bob. The quantum channel is technically the emission of a photon in either a free space
or fiber-optic cable. The classical channel is an ordinary, traditional bit-shift channel, in
which communications during the classical channel do not need to be secure. Both the
sender and receiver should have a random number generator and four polarizing filters
to generate qubits. These requirements should be available to fulfill the quality of photon
submissions [21,22].

Moreover, generating a secret key using the BB84 protocol requires each of the commu-
nicating parties (the sender and receiver) to have a random number generator that should
be placed in an appropriate position. The generator can be set in the middle between
the legitimate parties. Primarily, the sender (Alice) starts preparing plaintext X, which
is converted to a string of bits. Simultaneously, Alice initiates a random set of bases (re-
cliner or diagonal) that matches the length of plaintext X. These bases include four states
(|+〉, |−〉, |0〉, and |1〉). Each state on a different basis reflects the probability of (0 or 1).
Furthermore, the entire prepared states |ϕi〉 will be submitted to a quantum channel with
the same polarization of the prepared state as long as there is no interruption [23].

The probability of X encoded during Alice’s setup represents the randomness of an
encryption algorithm, where encoding the same information of X many times produces
various ciphertexts [24]. Although many schemes have been published illustrating the
inefficiency of the BB84 protocol as well as the weaknesses in the encryption mechanism,
the BB84 protocol remains a solid background for many modern QKD protocols. The
BB84 protocol is also considered to demonstrate the relationship between simplicity and
durability, as shown in Figure 2.

Cryptography 2022, 6, x FOR PEER REVIEW 5 of 26

Then, this paper introduces some well-known QKD protocols and explains each

QKD protocol based on the mechanism of the adopted algorithm. In addition, the QKD

protocols were tested and analyzed to demonstrate the differences between all selected

QKD protocols.

2.2.1. The BBB84 Protocol

In 1984, the BB84 protocol was introduced by Bennett and Brassard [20]. The concept

of the BB84 protocol depends on the exchange of a secret key between Alice and Bob

through a secure quantum channel. The process is described as a tossing-coin, whereby

two communication channels (quantum and classical channels) are initiated between Al-

ice and Bob. The quantum channel is technically the emission of a photon in either a free

space or fiber-optic cable. The classical channel is an ordinary, traditional bit-shift channel,

in which communications during the classical channel do not need to be secure. Both the

sender and receiver should have a random number generator and four polarizing filters

to generate qubits. These requirements should be available to fulfill the quality of photon

submissions [21,22].

Moreover, generating a secret key using the BB84 protocol requires each of the com-

municating parties (the sender and receiver) to have a random number generator that

should be placed in an appropriate position. The generator can be set in the middle be-

tween the legitimate parties. Primarily, the sender (Alice) starts preparing plaintext X,

which is converted to a string of bits. Simultaneously, Alice initiates a random set of bases

(recliner or diagonal) that matches the length of plaintext X. These bases include four

states (|+⟩, |−⟩, |0⟩, and |1⟩). Each state on a different basis reflects the probability of (0 or

1). Furthermore, the entire prepared states |φi⟩ will be submitted to a quantum channel

with the same polarization of the prepared state as long as there is no interruption [23].

The probability of X encoded during Alice’s setup represents the randomness of an en-

cryption algorithm, where encoding the same information of X many times produces var-

ious ciphertexts [24]. Although many schemes have been published illustrating the ineffi-

ciency of the BB84 protocol as well as the weaknesses in the encryption mechanism, the

BB84 protocol remains a solid background for many modern QKD protocols. The BB84

protocol is also considered to demonstrate the relationship between simplicity and dura-

bility, as shown in Figure 2.

Figure 2. The main outline of secret key’s process in quantum key distribution protocols, where the

sender initiates the communication from up with converting the bits to quantum bit. Then pro-

cessing the submissions between the sender and receiver through quantum channels, and finally

the confirmation and error-correction will be using a classical system.

In addition, the BB84 protocol relies on the non-cloning theorem and the Heisenberg

uncertainty principle to secure the submitted qubits. The non-cloning theorem is derived

from the superposition principles of quantum mechanics [25]. Moreover, the non-cloning

feature makes the BB84 protocol more stable by detecting any attack, although attackers

never stop attempting to crack any cryptographic protocol. The Heisenberg uncertainty

Figure 2. The main outline of secret key’s process in quantum key distribution protocols, where
the sender initiates the communication from up with converting the bits to quantum bit. Then
processing the submissions between the sender and receiver through quantum channels, and finally
the confirmation and error-correction will be using a classical system.

In addition, the BB84 protocol relies on the non-cloning theorem and the Heisenberg
uncertainty principle to secure the submitted qubits. The non-cloning theorem is derived
from the superposition principles of quantum mechanics [25]. Moreover, the non-cloning
feature makes the BB84 protocol more stable by detecting any attack, although attackers
never stop attempting to crack any cryptographic protocol. The Heisenberg uncertainty
principle is described as the impossibility to prepare or measure states simultaneously in a
specific environment based on position and momentum with quantum conditions.

In general, quantum key distribution protocols can be categorized by two disciplines
of the photon behavior: the first one is based on superposition states (orthogonal/non-
orthogonal) and the second one is based on the entangled states, where the BB84 protocol
uses polarized orthogonal states [26]. In superposition states, Alice sends a state that should

Cryptography 2022, 6, 12 6 of 25

be generated on bases of (×) or (+) as above, where in this case, Bob should work on one
of these bases randomly. Furthermore, if Alice uses the (×) basis to submit a |1〉 state,
she will send a | ↖〉 state. Following the same, if she wants to send a | ↑〉 state, and Bob
already measured the | ↑〉 state in the (+) basis, he will record a |1〉 state. Additionally, if
Alice sends a photon as | ↗〉 or | ↖〉 state and Bob just measures the photon in the basis
(+), the measurement will be in the polarized states in Equation (1) as follows:

| ↗〉 = 1√
2
(| ↑〉+ | →〉),

| ↖〉 = 1√
2
(| ↑〉+ | →〉).

(1)

Therefore, there is a 50% chance of recording |0〉 or |1〉 state by Bob as well as four
possibilities [9] in Equation (2) as follows:

| ↖〉 with (+) = 1√
2
(| ↑〉− | →〉),

| ↗〉 with (+) = 1√
2
(| ↑〉+ | →〉),

| ↑〉 with (×) = 1√
2
(|↗〉+ | ↖〉),

| →〉 with (×) = 1√
2
(|↗〉−| ↖〉).

(2)

These possibilities are shown on the Bloch sphere to display the measure of each
polarization state that can be displayed in a three-dimensional space (x, y, and z) as shown
in Figure 3.

Cryptography 2022, 6, x FOR PEER REVIEW 6 of 26

principle is described as the impossibility to prepare or measure states simultaneously in

a specific environment based on position and momentum with quantum conditions.

In general, quantum key distribution protocols can be categorized by two disciplines of

the photon behavior: the first one is based on superposition states (orthogonal/non-or-

thogonal) and the second one is based on the entangled states, where the BB84 protocol

uses polarized orthogonal states [26]. In superposition states, Alice sends a state that

should be generated on bases of (×) or (+) as above, where in this case, Bob should

work on one of these bases randomly. Furthermore, if Alice uses the (×) basis to submit

a |1⟩ state, she will send a |↖⟩ state. Following the same, if she wants to send a |↑⟩ state,

and Bob already measured the |↑⟩ state in the (+) basis, he will record a|1⟩ state. Addi-

tionally, if Alice sends a photon as |↗⟩ or |↖⟩ state and Bob just measures the photon in

the basis (+), the measurement will be in the polarized states in Equation (1) as follows:

|↗⟩ =
1

√2
(|↑⟩ + |→⟩),

|↖⟩ =
1

√2
(|↑⟩ + |→⟩).

(1)

Therefore, there is a 50% chance of recording |0⟩ or |1⟩ state by Bob as well as four

possibilities [9] in Equation (2) as follows:

|↖⟩ 𝑤𝑖𝑡ℎ (+) =
1

√2
(|↑⟩ − |→⟩),

|↗⟩ 𝑤𝑖𝑡ℎ (+) =
1

√2
(|↑⟩ + |→⟩),

|↑⟩ 𝑤𝑖𝑡ℎ (×) =
1

√2
(|↗⟩ + |↖⟩),

|→⟩ 𝑤𝑖𝑡ℎ (×) =
1

√2
(|↗⟩ − |↖⟩).

(2)

These possibilities are shown on the Bloch sphere to display the measure of each po-

larization state that can be displayed in a three-dimensional space (x, y, and z) as shown

in Figure 3.

Figure 3. The Bloch Sphere.

In fact, there are many sequential steps for both parties to create a successful Shared

Secret Key (SSK) using the BB84 protocol, as shown in Figure 2. These steps are described

as follows:

Figure 3. The Bloch Sphere.

In fact, there are many sequential steps for both parties to create a successful Shared
Secret Key (SSK) using the BB84 protocol, as shown in Figure 2. These steps are described
as follows:

Step 1: The length of the plaintext X should be set up by Alice to become a string of
n-bits, and then the n-bits are applied to a randomly prepared basis (× or+).

Step 2: Each random basis will produce a random state either |0〉 or |1〉 if the basis is
|×〉, or |0〉 or |1〉 if the basis is |+〉 as shown in Table 2.

Table 2. The Alice sends n random bits in random bases.

Bit Number 0 1 2 3 4 5

Alice’s random bits 0 1 1 0 1 1
Alice’s random bases + + × + + +

Alice sends → ↑ ↖ → ↑ ↑

Cryptography 2022, 6, 12 7 of 25

Step 3: When the string of n-qubits is submitted by Alice, Bob measures the upcoming
n-qubits based on random bases, as shown in Table 3. Next, Bob obtains a string of states
that reflect n-bits. If Bob cannot measure all the submitted qubits, both parties will release
additional qubits by sharing the used bases through a public channel.

Table 3. Bob receives n random bits in random measurements.

Bit Number 0 1 2 3 4 5

Bob’s random bases × + × × + ×
Bob observes ↗ ↑ ↖ ↖ ↑ ↗

Bob’s bits 0 1 1 1 1 0

Step 4: Both Alice and Bob start estimating the errors that could be caused by Eve,
where many error-correction methods [27] are used in the BB84 protocol. The raw secret
key is processed, when Alice and Bob compare the matching bits, where the uncorrelated
bits are discarded, as shown in Table 4. This is called a sifting procedure, which enhances
any attempt by Eve to obtain information and detect any error [28].

Table 4. Alice and bob publicly compare used bases.

Bit Number 0 1 2 3 4 5

Alice’s random bases + + × + + +
Bob’s random bases × + × × + ×

Agreement

Cryptography 2022, 6, x FOR PEER REVIEW 7 of 26

Step 1: The length of the plaintext X should be set up by Alice to become a string of

n-bits, and then the n-bits are applied to a randomly prepared basis (× or +).

Step 2: Each random basis will produce a random state either |0⟩ or|1⟩ if the basis

is |×⟩, or |0⟩ or|1⟩ if the basis is |+⟩ as shown in Table 2.

Table 2. The Alice sends n random bits in random bases.

Bit Number 0 1 2 3 4 5

Alice’s random bits 0 1 1 0 1 1

Alice’s random bases + + × + + +

Alice sends

Step 3: When the string of n-qubits is submitted by Alice, Bob measures the upcom-

ing n-qubits based on random bases, as shown in Table 3. Next, Bob obtains a string of

states that reflect n-bits. If Bob cannot measure all the submitted qubits, both parties will

release additional qubits by sharing the used bases through a public channel.

Table 3. Bob receives n random bits in random measurements.

Bit Number 0 1 2 3 4 5

Bob’s random bases × + × × + ×

Bob observes

Bob’s bits 0 1 1 1 1 0

Step 4: Both Alice and Bob start estimating the errors that could be caused by Eve,

where many error-correction methods [27] are used in the BB84 protocol. The raw secret

key is processed, when Alice and Bob compare the matching bits, where the uncorrelated

bits are discarded, as shown in Table 4. This is called a sifting procedure, which enhances

any attempt by Eve to obtain information and detect any error [28].

Table 4. Alice and bob publicly compare used bases.

Bit Number 0 1 2 3 4 5

Alice’s random bases + + × + + +

Bob’s random bases × + × × + ×

Agreement

Shared secret key 1 1 1

Step 5: After matching the sent and received qubits, the communication moves to the

reconciliation phase only if the error rate is low. On the other hand, Alice and Bob end up

the current communication if the error rate is too high.

Step 6: If the error rate is low, Alice and Bob share the raw key. Moreover, the raw

key contains the matched qubits of both parties. Unmatched qubits are supposed to be

removed from the shared key SSK.

Step 7: Next, Alice and Bob start correcting the erroneous qubits again in a separate

phase, as shown in Table 5, as they endeavor to reduce the number of exposed qubits.

Table 5. Alice and Bob publicly compare half of the remaining bits.

Bit Number 0 1 2 3 4 5

Shared secret keys 1 1 1

Randomly chosen

Shared secret key 1 1 1

Agreements

Unrevealed secret keys 1

Cryptography 2022, 6, x FOR PEER REVIEW 7 of 26

Step 1: The length of the plaintext X should be set up by Alice to become a string of

n-bits, and then the n-bits are applied to a randomly prepared basis (× or +).

Step 2: Each random basis will produce a random state either |0⟩ or|1⟩ if the basis

is |×⟩, or |0⟩ or|1⟩ if the basis is |+⟩ as shown in Table 2.

Table 2. The Alice sends n random bits in random bases.

Bit Number 0 1 2 3 4 5

Alice’s random bits 0 1 1 0 1 1

Alice’s random bases + + × + + +

Alice sends

Step 3: When the string of n-qubits is submitted by Alice, Bob measures the upcom-

ing n-qubits based on random bases, as shown in Table 3. Next, Bob obtains a string of

states that reflect n-bits. If Bob cannot measure all the submitted qubits, both parties will

release additional qubits by sharing the used bases through a public channel.

Table 3. Bob receives n random bits in random measurements.

Bit Number 0 1 2 3 4 5

Bob’s random bases × + × × + ×

Bob observes

Bob’s bits 0 1 1 1 1 0

Step 4: Both Alice and Bob start estimating the errors that could be caused by Eve,

where many error-correction methods [27] are used in the BB84 protocol. The raw secret

key is processed, when Alice and Bob compare the matching bits, where the uncorrelated

bits are discarded, as shown in Table 4. This is called a sifting procedure, which enhances

any attempt by Eve to obtain information and detect any error [28].

Table 4. Alice and bob publicly compare used bases.

Bit Number 0 1 2 3 4 5

Alice’s random bases + + × + + +

Bob’s random bases × + × × + ×

Agreement

Shared secret key 1 1 1

Step 5: After matching the sent and received qubits, the communication moves to the

reconciliation phase only if the error rate is low. On the other hand, Alice and Bob end up

the current communication if the error rate is too high.

Step 6: If the error rate is low, Alice and Bob share the raw key. Moreover, the raw

key contains the matched qubits of both parties. Unmatched qubits are supposed to be

removed from the shared key SSK.

Step 7: Next, Alice and Bob start correcting the erroneous qubits again in a separate

phase, as shown in Table 5, as they endeavor to reduce the number of exposed qubits.

Table 5. Alice and Bob publicly compare half of the remaining bits.

Bit Number 0 1 2 3 4 5

Shared secret keys 1 1 1

Randomly chosen

Shared secret key 1 1 1

Agreements

Unrevealed secret keys 1

Cryptography 2022, 6, x FOR PEER REVIEW 7 of 26

Step 1: The length of the plaintext X should be set up by Alice to become a string of

n-bits, and then the n-bits are applied to a randomly prepared basis (× or +).

Step 2: Each random basis will produce a random state either |0⟩ or|1⟩ if the basis

is |×⟩, or |0⟩ or|1⟩ if the basis is |+⟩ as shown in Table 2.

Table 2. The Alice sends n random bits in random bases.

Bit Number 0 1 2 3 4 5

Alice’s random bits 0 1 1 0 1 1

Alice’s random bases + + × + + +

Alice sends

Step 3: When the string of n-qubits is submitted by Alice, Bob measures the upcom-

ing n-qubits based on random bases, as shown in Table 3. Next, Bob obtains a string of

states that reflect n-bits. If Bob cannot measure all the submitted qubits, both parties will

release additional qubits by sharing the used bases through a public channel.

Table 3. Bob receives n random bits in random measurements.

Bit Number 0 1 2 3 4 5

Bob’s random bases × + × × + ×

Bob observes

Bob’s bits 0 1 1 1 1 0

Step 4: Both Alice and Bob start estimating the errors that could be caused by Eve,

where many error-correction methods [27] are used in the BB84 protocol. The raw secret

key is processed, when Alice and Bob compare the matching bits, where the uncorrelated

bits are discarded, as shown in Table 4. This is called a sifting procedure, which enhances

any attempt by Eve to obtain information and detect any error [28].

Table 4. Alice and bob publicly compare used bases.

Bit Number 0 1 2 3 4 5

Alice’s random bases + + × + + +

Bob’s random bases × + × × + ×

Agreement

Shared secret key 1 1 1

Step 5: After matching the sent and received qubits, the communication moves to the

reconciliation phase only if the error rate is low. On the other hand, Alice and Bob end up

the current communication if the error rate is too high.

Step 6: If the error rate is low, Alice and Bob share the raw key. Moreover, the raw

key contains the matched qubits of both parties. Unmatched qubits are supposed to be

removed from the shared key SSK.

Step 7: Next, Alice and Bob start correcting the erroneous qubits again in a separate

phase, as shown in Table 5, as they endeavor to reduce the number of exposed qubits.

Table 5. Alice and Bob publicly compare half of the remaining bits.

Bit Number 0 1 2 3 4 5

Shared secret keys 1 1 1

Randomly chosen

Shared secret key 1 1 1

Agreements

Unrevealed secret keys 1

Shared secret key 1 1 1

Step 5: After matching the sent and received qubits, the communication moves to the
reconciliation phase only if the error rate is low. On the other hand, Alice and Bob end up
the current communication if the error rate is too high.

Step 6: If the error rate is low, Alice and Bob share the raw key. Moreover, the raw
key contains the matched qubits of both parties. Unmatched qubits are supposed to be
removed from the shared key SSK.

Step 7: Next, Alice and Bob start correcting the erroneous qubits again in a separate
phase, as shown in Table 5, as they endeavor to reduce the number of exposed qubits.

Table 5. Alice and Bob publicly compare half of the remaining bits.

Bit Number 0 1 2 3 4 5

Shared secret keys 1 1 1
Randomly chosen

Cryptography 2022, 6, x FOR PEER REVIEW 7 of 26

Step 1: The length of the plaintext X should be set up by Alice to become a string of

n-bits, and then the n-bits are applied to a randomly prepared basis (× or +).

Step 2: Each random basis will produce a random state either |0⟩ or|1⟩ if the basis

is |×⟩, or |0⟩ or|1⟩ if the basis is |+⟩ as shown in Table 2.

Table 2. The Alice sends n random bits in random bases.

Bit Number 0 1 2 3 4 5

Alice’s random bits 0 1 1 0 1 1

Alice’s random bases + + × + + +

Alice sends

Step 3: When the string of n-qubits is submitted by Alice, Bob measures the upcom-

ing n-qubits based on random bases, as shown in Table 3. Next, Bob obtains a string of

states that reflect n-bits. If Bob cannot measure all the submitted qubits, both parties will

release additional qubits by sharing the used bases through a public channel.

Table 3. Bob receives n random bits in random measurements.

Bit Number 0 1 2 3 4 5

Bob’s random bases × + × × + ×

Bob observes

Bob’s bits 0 1 1 1 1 0

Step 4: Both Alice and Bob start estimating the errors that could be caused by Eve,

where many error-correction methods [27] are used in the BB84 protocol. The raw secret

key is processed, when Alice and Bob compare the matching bits, where the uncorrelated

bits are discarded, as shown in Table 4. This is called a sifting procedure, which enhances

any attempt by Eve to obtain information and detect any error [28].

Table 4. Alice and bob publicly compare used bases.

Bit Number 0 1 2 3 4 5

Alice’s random bases + + × + + +

Bob’s random bases × + × × + ×

Agreement

Shared secret key 1 1 1

Step 5: After matching the sent and received qubits, the communication moves to the

reconciliation phase only if the error rate is low. On the other hand, Alice and Bob end up

the current communication if the error rate is too high.

Step 6: If the error rate is low, Alice and Bob share the raw key. Moreover, the raw

key contains the matched qubits of both parties. Unmatched qubits are supposed to be

removed from the shared key SSK.

Step 7: Next, Alice and Bob start correcting the erroneous qubits again in a separate

phase, as shown in Table 5, as they endeavor to reduce the number of exposed qubits.

Table 5. Alice and Bob publicly compare half of the remaining bits.

Bit Number 0 1 2 3 4 5

Shared secret keys 1 1 1

Randomly chosen

Shared secret key 1 1 1

Agreements

Unrevealed secret keys 1

Cryptography 2022, 6, x FOR PEER REVIEW 7 of 26

Step 1: The length of the plaintext X should be set up by Alice to become a string of

n-bits, and then the n-bits are applied to a randomly prepared basis (× or +).

Step 2: Each random basis will produce a random state either |0⟩ or|1⟩ if the basis

is |×⟩, or |0⟩ or|1⟩ if the basis is |+⟩ as shown in Table 2.

Table 2. The Alice sends n random bits in random bases.

Bit Number 0 1 2 3 4 5

Alice’s random bits 0 1 1 0 1 1

Alice’s random bases + + × + + +

Alice sends

Step 3: When the string of n-qubits is submitted by Alice, Bob measures the upcom-

ing n-qubits based on random bases, as shown in Table 3. Next, Bob obtains a string of

states that reflect n-bits. If Bob cannot measure all the submitted qubits, both parties will

release additional qubits by sharing the used bases through a public channel.

Table 3. Bob receives n random bits in random measurements.

Bit Number 0 1 2 3 4 5

Bob’s random bases × + × × + ×

Bob observes

Bob’s bits 0 1 1 1 1 0

Step 4: Both Alice and Bob start estimating the errors that could be caused by Eve,

where many error-correction methods [27] are used in the BB84 protocol. The raw secret

key is processed, when Alice and Bob compare the matching bits, where the uncorrelated

bits are discarded, as shown in Table 4. This is called a sifting procedure, which enhances

any attempt by Eve to obtain information and detect any error [28].

Table 4. Alice and bob publicly compare used bases.

Bit Number 0 1 2 3 4 5

Alice’s random bases + + × + + +

Bob’s random bases × + × × + ×

Agreement

Shared secret key 1 1 1

Step 5: After matching the sent and received qubits, the communication moves to the

reconciliation phase only if the error rate is low. On the other hand, Alice and Bob end up

the current communication if the error rate is too high.

Step 6: If the error rate is low, Alice and Bob share the raw key. Moreover, the raw

key contains the matched qubits of both parties. Unmatched qubits are supposed to be

removed from the shared key SSK.

Step 7: Next, Alice and Bob start correcting the erroneous qubits again in a separate

phase, as shown in Table 5, as they endeavor to reduce the number of exposed qubits.

Table 5. Alice and Bob publicly compare half of the remaining bits.

Bit Number 0 1 2 3 4 5

Shared secret keys 1 1 1

Randomly chosen

Shared secret key 1 1 1

Agreements

Unrevealed secret keys 1

Shared secret key 1 1 1
Agreements

Cryptography 2022, 6, x FOR PEER REVIEW 7 of 26

Step 1: The length of the plaintext X should be set up by Alice to become a string of

n-bits, and then the n-bits are applied to a randomly prepared basis (× or +).

Step 2: Each random basis will produce a random state either |0⟩ or|1⟩ if the basis

is |×⟩, or |0⟩ or|1⟩ if the basis is |+⟩ as shown in Table 2.

Table 2. The Alice sends n random bits in random bases.

Bit Number 0 1 2 3 4 5

Alice’s random bits 0 1 1 0 1 1

Alice’s random bases + + × + + +

Alice sends

Step 3: When the string of n-qubits is submitted by Alice, Bob measures the upcom-

ing n-qubits based on random bases, as shown in Table 3. Next, Bob obtains a string of

states that reflect n-bits. If Bob cannot measure all the submitted qubits, both parties will

release additional qubits by sharing the used bases through a public channel.

Table 3. Bob receives n random bits in random measurements.

Bit Number 0 1 2 3 4 5

Bob’s random bases × + × × + ×

Bob observes

Bob’s bits 0 1 1 1 1 0

Step 4: Both Alice and Bob start estimating the errors that could be caused by Eve,

where many error-correction methods [27] are used in the BB84 protocol. The raw secret

key is processed, when Alice and Bob compare the matching bits, where the uncorrelated

bits are discarded, as shown in Table 4. This is called a sifting procedure, which enhances

any attempt by Eve to obtain information and detect any error [28].

Table 4. Alice and bob publicly compare used bases.

Bit Number 0 1 2 3 4 5

Alice’s random bases + + × + + +

Bob’s random bases × + × × + ×

Agreement

Shared secret key 1 1 1

Step 5: After matching the sent and received qubits, the communication moves to the

reconciliation phase only if the error rate is low. On the other hand, Alice and Bob end up

the current communication if the error rate is too high.

Step 6: If the error rate is low, Alice and Bob share the raw key. Moreover, the raw

key contains the matched qubits of both parties. Unmatched qubits are supposed to be

removed from the shared key SSK.

Step 7: Next, Alice and Bob start correcting the erroneous qubits again in a separate

phase, as shown in Table 5, as they endeavor to reduce the number of exposed qubits.

Table 5. Alice and Bob publicly compare half of the remaining bits.

Bit Number 0 1 2 3 4 5

Shared secret keys 1 1 1

Randomly chosen

Shared secret key 1 1 1

Agreements

Unrevealed secret keys 1

Cryptography 2022, 6, x FOR PEER REVIEW 7 of 26

Step 1: The length of the plaintext X should be set up by Alice to become a string of

n-bits, and then the n-bits are applied to a randomly prepared basis (× or +).

Step 2: Each random basis will produce a random state either |0⟩ or|1⟩ if the basis

is |×⟩, or |0⟩ or|1⟩ if the basis is |+⟩ as shown in Table 2.

Table 2. The Alice sends n random bits in random bases.

Bit Number 0 1 2 3 4 5

Alice’s random bits 0 1 1 0 1 1

Alice’s random bases + + × + + +

Alice sends

Step 3: When the string of n-qubits is submitted by Alice, Bob measures the upcom-

ing n-qubits based on random bases, as shown in Table 3. Next, Bob obtains a string of

states that reflect n-bits. If Bob cannot measure all the submitted qubits, both parties will

release additional qubits by sharing the used bases through a public channel.

Table 3. Bob receives n random bits in random measurements.

Bit Number 0 1 2 3 4 5

Bob’s random bases × + × × + ×

Bob observes

Bob’s bits 0 1 1 1 1 0

Step 4: Both Alice and Bob start estimating the errors that could be caused by Eve,

where many error-correction methods [27] are used in the BB84 protocol. The raw secret

key is processed, when Alice and Bob compare the matching bits, where the uncorrelated

bits are discarded, as shown in Table 4. This is called a sifting procedure, which enhances

any attempt by Eve to obtain information and detect any error [28].

Table 4. Alice and bob publicly compare used bases.

Bit Number 0 1 2 3 4 5

Alice’s random bases + + × + + +

Bob’s random bases × + × × + ×

Agreement

Shared secret key 1 1 1

Step 5: After matching the sent and received qubits, the communication moves to the

reconciliation phase only if the error rate is low. On the other hand, Alice and Bob end up

the current communication if the error rate is too high.

Step 6: If the error rate is low, Alice and Bob share the raw key. Moreover, the raw

key contains the matched qubits of both parties. Unmatched qubits are supposed to be

removed from the shared key SSK.

Step 7: Next, Alice and Bob start correcting the erroneous qubits again in a separate

phase, as shown in Table 5, as they endeavor to reduce the number of exposed qubits.

Table 5. Alice and Bob publicly compare half of the remaining bits.

Bit Number 0 1 2 3 4 5

Shared secret keys 1 1 1

Randomly chosen

Shared secret key 1 1 1

Agreements

Unrevealed secret keys 1

Unrevealed secret keys 1

Step 8: After checking for errors, Alice and Bob share an SSK that has the same length
of plaintext X [29,30]. In other words, Alice could cheat in this position by sending a
different basis (rectilinear and diagonal basis or neither rectilinear nor diagonal photon), so
that she is not in a position to agree with any of Bob’s table records in step (3). In contrast,
Bob’s table records the result of probabilistic behavior that is not under the control of the
matching raw key [31].

Hence, it is very important to realize that if Alice tries to cheat in step (1), for instance,
by sending a mixture of rectilinear and diagonal states, Alice will lose the ability to agree
with Bob’s records table after step (1).

Cryptography 2022, 6, 12 8 of 25

Finally, the BB84 protocol is assigned a secure protocol as mentioned in [32], and it is a
simple protocol compared with current QKD protocols. This simplicity is based on the law
of physics that occur during key generation.

2.2.2. The SARG04 Protocol

In 2004, SARG04 was introduced by Scarain, Acin, Ribordy, and Gisin [33]. This
protocol was then extracted using the previous protocol BB84. The SARG04 protocol uses
the same bases and states as the BB84 protocol, where two bases (× or +) and four states
(|+〉, |−〉, |0〉, |1〉) are used to initiate quantum submissions between the communicating
parties. The SARG04 protocol is designed to be a robust protocol against Photon-Number-
Splitting (PNS) attacks, especially when weakened laser pulses are emitted instead of a
single photon source. Furthermore, SARG04 and BB84 are essentially equivalent to each
other in the quantum communication phase, but the variation occurs by encoding and
decoding the exchanged information into the classical channel [34].

The SARG04 protocol has a certain number of instructive differences, of which Bob
must always choose the bases with a probability of 1

2 , even when Alice uses the same
bases [35,36], [37] (p. 4). Although the SARG04 protocol is considered a new quantum
mechanism for creating a secure shared key, the BB84 protocol is still seen in the instructions
of the SARG04 protocol. In other words, when Alice matches the initiated qubits with the
equivalent qubits from Bob, the Quantum Bit Error Rate (QBER) increases based on the
presence of the error (unlike BB84, which is satisfied by the sifting phase).

To abstract the sequential steps of the SARG04 protocol between the two legitimate
parties Alice and Bob, one-way communication was applied as follows:

Step 1: Alice creates n photons that start randomly with each of the four states
(|ϕi〉, i = 0, 1, 2, 3.); Bob should receive one of the four states.

Step 2: When the photon is sent to Bob, it is measured randomly into quantum
detectors using two bases (×or +). If this measurement does not match or cannot be
measured, Bob informs Alice to ignore this photon.

Step 3: Alice informs Bob about the states of photons |ϕi〉 that were chosen during
the initiation period. Bob then matches outcomes using only two states. If the result was
proven to be an orthogonal state to one of the set of states, the other states will already be
proven. However, if the measured photons are not orthogonal, Bob should know that the
measurements are not incisive. He then asks Alice to provide more specific details in the
reconciliation phase.

Step 4: In the reconciliation phase, some qubits are chosen randomly to be tested and
corrected by Alice, where Bob calculates the QBER. If the measurement of QBER was very
high, Alice and Bob would agree to cancel the protocol and start another communication.

Step 5: In accordance with the previous step, both Alice and Bob retain only the
conclusively matched qubits, which are used in a raw key. Unmatched qubits are treated
during the qubit error-correction and privacy amplification phases [38–40].

SARG04 protocol can withstand PNS attacks. Although SARG04 appears as the BB84
protocol for all manipulations at the quantum level, it differs in the error-correction phase
(sifting phase), where both parties communicate using a classical channel by encoding and
decoding the shared information.

2.2.3. The B92 Protocol

B92 was proposed by Bennett in 1992 [41]. The protocol contains only two particle
states, rather than four states in the BB84 protocol. The two states should be nonorthogonal,
as illustrated in Figure 4. The process of the B92 protocol is involved in the quantum phase
as follows:

Step 1: Alice sends a random string of qubits (A) to Bob; where A ∈ {0, 1}n, n > N
(which N is the length of final key), so if Alice sent the |0〉 state that means Ai = 0, and
Ai = 1 if she sent |+〉 state, for all i ∈ {0, 1, . . . n}.

Cryptography 2022, 6, 12 9 of 25

Step 2: On the other hand, Bob creates a vector of bits (B) where B ∈ {0, 1}n, n > N,
which if (Bi = 0); then Bob will choose the basis (+), and if (Bi = 1) he will choose the
basis (×) for all i ∈ {0, 1 . . . n}.

Step 3: When Bob starts measuring the upcoming qubits, each qubit is measured on a
selected (+) or (×) basis.

Step 4: After measuring the vector of states, Bob starts completing the following rules:
if the measurement of the qubit produces |0〉 or |+〉 then Ti = 0, and if it produces |1〉 or
|−〉, Ti = 1 for all i ∈ {0, 1 . . . n} [42].

Cryptography 2022, 6, x FOR PEER REVIEW 9 of 26

2.2.3. The B92 Protocol

B92 was proposed by Bennett in 1992 [41]. The protocol contains only two particle

states, rather than four states in the BB84 protocol. The two states should be nonorthogo-

nal, as illustrated in Figure 4. The process of the B92 protocol is involved in the quantum

phase as follows:

Step 1: Alice sends a random string of qubits (A) to Bob; where A ∈ {0,1}n, n > N

(which N is the length of final key), so if Alice sent the |0⟩ state that means Ai = 0, and

Ai = 1 if she sent |+⟩ state, for all i ∈ {0, 1, … n}.

Step 2: On the other hand, Bob creates a vector of bits (B) where B ∈ {0,1}n, n > N,

which if (Bi = 0); then Bob will choose the basis (+), and if (Bi = 1) he will choose the

basis (×) for all i ∈ {0,1 … n}.

Step 3: When Bob starts measuring the upcoming qubits, each qubit is measured on

a selected (+) or (×) basis.

Step 4: After measuring the vector of states, Bob starts completing the following

rules: if the measurement of the qubit produces |0⟩ or |+⟩ then Ti = 0, and if it pro-

duces |1⟩ or |−⟩, Ti = 1 for all i ∈ {0,1 … n} [42].

Figure 4. The non-orthogonal polarized states in the B92 protocol that represent the four states
|−⟩, |+⟩, |0⟩, and |1⟩.

In general, the B92 protocol uses a non-orthogonal state to transmit information to a

quantum channel. The protocol has a robust scheme with optical imperfection and detec-

tor noise, unlike the BB84 protocol. Naturally, the noise at the end of the communication

can be as high as 1.6% [43]. Moreover, the B92 protocol technically has less usage of quan-

tum memory (if any) and quantum channel capacity.

2.2.4. The Coherent One-Way Protocol

The Coherent One-Way (COW) is a simple protocol [44,45], which depends on de-

coding the information into time slots. Alice sends coherent pulses in logic states as [35]

or decoy states. Each logical bit is encoded to either (μ − 0) for logical (0) or (0 − μ)

for logical (1) by a sequence of two pulses. Furthermore, to improve the security of this

protocol, Alice adds decoy sequences of (μ − μ) while submitting the other logical

states. If the pulses submitted to the interferometer are well aligned on Bob’s side, then

the received pulses will be perfectly detected on DM1 (interferometer) and there will be

no detection on DM2 (detector). Therefore, the loss of coherence will be displayed on the

detector when the eavesdropper tries to listen [46].

logic 1: |0⟩ + |μ⟩

logic 0: |μ⟩ + |0⟩

Decoy: |μ⟩ + |μ⟩,

(3)

where μ is the mean photon number per pulse.

In this protocol, the transmission and reception of data depends on the time of arrival

of the signal and does not depend on the polarization of the optical signals. The COW

protocol works briefly as follows:

Figure 4. The non-orthogonal polarized states in the B92 protocol that represent the four states
|−〉, |+〉 , |0〉, and |1〉.

In general, the B92 protocol uses a non-orthogonal state to transmit information to a
quantum channel. The protocol has a robust scheme with optical imperfection and detector
noise, unlike the BB84 protocol. Naturally, the noise at the end of the communication can
be as high as 1.6% [43]. Moreover, the B92 protocol technically has less usage of quantum
memory (if any) and quantum channel capacity.

2.2.4. The Coherent One-Way Protocol

The Coherent One-Way (COW) is a simple protocol [44,45], which depends on decod-
ing the information into time slots. Alice sends coherent pulses in logic states as [35] or
decoy states. Each logical bit is encoded to either (µ − 0) for logical (0) or (0− µ) for logi-
cal (1) by a sequence of two pulses. Furthermore, to improve the security of this protocol,
Alice adds decoy sequences of (µ − µ) while submitting the other logical states. If the
pulses submitted to the interferometer are well aligned on Bob’s side, then the received
pulses will be perfectly detected on DM1 (interferometer) and there will be no detection on
DM2 (detector). Therefore, the loss of coherence will be displayed on the detector when the
eavesdropper tries to listen [46].

logic 1 : |0〉+|µ〉

logic 0 : |µ〉+|0〉

Decoy : |µ〉+|µ〉,

(3)

where µ is the mean photon number per pulse.
In this protocol, the transmission and reception of data depends on the time of arrival

of the signal and does not depend on the polarization of the optical signals. The COW
protocol works briefly as follows:

Step 1: Alice transmits a sequence of binary bits using time slots to Bob and generates
both logical states of |1〉 or |0〉 (which has the same probability unless decoy states are
added). Obtaining a probability of 1

2 for each of |1〉 or |0〉 states and adding the decoy states
are calculated by (1− f)/2 (where f is the probability of decoy state generation).

Cryptography 2022, 6, 12 10 of 25

Step 2: Bob exploits the time detection to generate a raw key, where all previous
processes are performed by different detectors to improve the security rate in Equation (4).

V =
p(DM1)− p(DM2)

p(DM1) + p(DM2)
(4)

where p
(
DMj

)
is the probability of the

(
DMj

)
clicks at the time when (DM1) should click, as

shown in Figure 5.

Cryptography 2022, 6, x FOR PEER REVIEW 10 of 26

Step 1: Alice transmits a sequence of binary bits using time slots to Bob and generates

both logical states of |1⟩ or |0⟩ (which has the same probability unless decoy states are

added). Obtaining a probability of ½ for each of |1⟩ or |0⟩ states and adding the decoy

states are calculated by (1 − f) 2⁄ (where f is the probability of decoy state generation).

Step 2: Bob exploits the time detection to generate a raw key, where all previous pro-

cesses are performed by different detectors to improve the security rate in Equation (4).

V =
p(DM1) − p(DM2)

p(DM1) + p(DM2)
 (4)

where p(DMj) is the probability of the (DMj) clicks at the time when (DM1) should click,

as shown in Figure 5.

Figure 5. The Coherent-One-Way (COW) scheme between two legitimate parties (Alice and Bob),

where Alice and Bob should have a particular equipment to process the submission and measure

the split time. The submitted qubits include three categories of data, for instance the value of 0, the

value of 1, and value of decoy states.

Step 3: Bob declares the number of bits by simultaneous procedures between the data

detector and time detection on the side.

Step 4: On monitoring the detectors, Alice ensures that the sequence of decoy states

and bit sequences still exists. If not, Eve has tapped the communication. In this case, Alice

breaks the coherence into two pulses to detect an interrupted state.

Step 5: Alice informs Bob about the bits that have been removed from the raw key

because those bits belong to the decoy state sequence.

Step 6: The secret key is extracted after dropping the decoy sequences from the raw

key using a classical process, and the shared key is obtained by error-correction and pri-

vacy amplification [47].

This protocol, as reported in [48], is designed to be a robust quantum protocol against

reduced interference visibility and PNS attacks. The COW protocol also has simple trans-

missions into data lines, low losses at the measurement side, and a small QBER detection.

2.2.5. The KMB09 Protocol

This protocol was presented in 2009 [49] by Khan, Murphy, and Beige, and is de-

signed to be robust against PNS attacks. Khan et al. describe the protocol as being between

two parties (Alice and Bob) and an eavesdropper (Eve). Both parties must use two bases

e and f, where both parties should use different indices i whenever they use the same

basis [50]. Moreover, the i index is publicly declared between two legitimate parties,

which can be pointed to Alice’s prepared indices as i and Bob’s measured indices as j.

In KMB09, the authors attempted to create a protocol that could withstand PNS attacks.

In addition, KMB09 was created when other protocols were used for a few kilometers,

where the system error rate could exceed the eavesdropper’s presence. The protocol was

optimized by using an Index Transmission Error Rate (ITER) instead of QBER during the

reconciliation phase. The next steps briefly explain the KMB09 protocol as follows:

Figure 5. The Coherent-One-Way (COW) scheme between two legitimate parties (Alice and Bob),
where Alice and Bob should have a particular equipment to process the submission and measure the
split time. The submitted qubits include three categories of data, for instance the value of 0, the value
of 1, and value of decoy states.

Step 3: Bob declares the number of bits by simultaneous procedures between the data
detector and time detection on the side.

Step 4: On monitoring the detectors, Alice ensures that the sequence of decoy states
and bit sequences still exists. If not, Eve has tapped the communication. In this case, Alice
breaks the coherence into two pulses to detect an interrupted state.

Step 5: Alice informs Bob about the bits that have been removed from the raw key
because those bits belong to the decoy state sequence.

Step 6: The secret key is extracted after dropping the decoy sequences from the raw
key using a classical process, and the shared key is obtained by error-correction and privacy
amplification [47].

This protocol, as reported in [48], is designed to be a robust quantum protocol against
reduced interference visibility and PNS attacks. The COW protocol also has simple trans-
missions into data lines, low losses at the measurement side, and a small QBER detection.

2.2.5. The KMB09 Protocol

This protocol was presented in 2009 [49] by Khan, Murphy, and Beige, and is designed
to be robust against PNS attacks. Khan et al. describe the protocol as being between
two parties (Alice and Bob) and an eavesdropper (Eve). Both parties must use two bases
e and f, where both parties should use different indices i whenever they use the same
basis [50]. Moreover, the i index is publicly declared between two legitimate parties, which
can be pointed to Alice’s prepared indices as i. and Bob’s measured indices as j.

In KMB09, the authors attempted to create a protocol that could withstand PNS attacks.
In addition, KMB09 was created when other protocols were used for a few kilometers,
where the system error rate could exceed the eavesdropper’s presence. The protocol was
optimized by using an Index Transmission Error Rate (ITER) instead of QBER during the
reconciliation phase. The next steps briefly explain the KMB09 protocol as follows:

Step 1: Alice randomly generates a sequence of classical bits, and then randomly
specifies an index i = 1, 2 . . . N.

Step 2: Alice sends the prepared bits in a single photon into either |ei〉 or |fi〉 basis
to Bob.

Cryptography 2022, 6, 12 11 of 25

Step 3: Each incoming state is measured by Bob to be randomly switched between
bases e and f.

Step 4: Alice announces in public communication to Bob about the random sequential
indices i to obtain the secret key.

Step 5: Bob translates the measurement outcomes.
Step 6: Bob communicates with Alice publicly to share that the photon measurements

were successfully received and obtained the secret key.
Step 7: Alice and Bob can determine whether Eve is eavesdropping on the communi-

cation as Equation (5) [51].

PITER = 1− 1
2N

N

∑
i=1

N

∑
k=1

[
|〈gk|ei〉4 + gk|fi〉4|

]
(5)

where e, f and g are bases, and the state of |gk〉 is Eve’s possible measurement outcomes,
and it is forwarded to Bob without alteration.

The polarization of a single photon is initiated in multi-dimensional states, as shown
in Figure 6, which is based on orthogonal or non-orthogonal bases [52].

Cryptography 2022, 6, x FOR PEER REVIEW 11 of 26

Step 1: Alice randomly generates a sequence of classical bits, and then randomly

specifies an index i = 1, 2 … N.

Step 2: Alice sends the prepared bits in a single photon into either |ei⟩ or |fi⟩ basis

to Bob.

Step 3: Each incoming state is measured by Bob to be randomly switched between

bases e and f.

Step 4: Alice announces in public communication to Bob about the random sequen-

tial indices i to obtain the secret key.

Step 5: Bob translates the measurement outcomes.

Step 6: Bob communicates with Alice publicly to share that the photon measurements

were successfully received and obtained the secret key.

Step 7: Alice and Bob can determine whether Eve is eavesdropping on the commu-

nication as Equation (5) [51].

PITER = 1 −
1

2N
∑ ∑[|⟨gk|ei⟩

4 + ⟨gk|fi⟩
4|]

N

k=1

N

i=1

 (5)

where e, f and g are bases, and the state of |gk⟩ is Eve’s possible measurement outcomes,

and it is forwarded to Bob without alteration.

The polarization of a single photon is initiated in multi-dimensional states, as shown

in Figure 6, which is based on orthogonal or non-orthogonal bases [52].

Figure 6. Two bases vector used by Alice, Bob, and Eve in the N = 2 protocol.

The KMB09 protocol is designed to be used under ideal conditions, where it is im-

possible for Alice and Bob to have different indices while using the same basis. This pro-

tocol is more robust against any eavesdropper who tries to hide his/her presence. In ad-

dition, the strong correlation between QBER and ITER makes the eavesdropper produce

a distinct signature that is easy to detect.

2.2.6. The EPR Protocol

EPR Pair Paradox was inspired by Einstein, Podolsky, and Rosen, who presented a

dialectical paper in 1935 [53]. The presented theory has led to an argument about quantum

mechanics, which is not a completely physical theory. The main concept uses three states

of polarization considering |θ⟩, where the polarization state of the photon is linearly po-

larized at angle θ. More precisely, the EPR is a pair of particles that can be separated even

over a great distance, so that both photons show in a paradox “action at a distance” [54].

To explain the nature of the EPR pair paradox clearly, when one photon is measured

on the right side, the outcome may be a vertical linear polarization |0⟩ state. On the other

hand, the measurement will be a |1⟩ state on the left side, where the measured photons

will be horizontally in a linear polarization state |π/2⟩ (and vice versa). Therefore, the

EPR is one of the four Bell states as Equation (6).

Figure 6. Two bases vector used by Alice, Bob, and Eve in the N = 2 protocol.

The KMB09 protocol is designed to be used under ideal conditions, where it is impos-
sible for Alice and Bob to have different indices while using the same basis. This protocol
is more robust against any eavesdropper who tries to hide his/her presence. In addition,
the strong correlation between QBER and ITER makes the eavesdropper produce a distinct
signature that is easy to detect.

2.2.6. The EPR Protocol

EPR Pair Paradox was inspired by Einstein, Podolsky, and Rosen, who presented a
dialectical paper in 1935 [53]. The presented theory has led to an argument about quantum
mechanics, which is not a completely physical theory. The main concept uses three states of
polarization considering |θ〉, where the polarization state of the photon is linearly polarized
at angle θ. More precisely, the EPR is a pair of particles that can be separated even over a
great distance, so that both photons show in a paradox “action at a distance” [54].

To explain the nature of the EPR pair paradox clearly, when one photon is measured
on the right side, the outcome may be a vertical linear polarization |0〉 state. On the other
hand, the measurement will be a |1〉 state on the left side, where the measured photons will
be horizontally in a linear polarization state |π/2〉 (and vice versa). Therefore, the EPR is
one of the four Bell states as Equation (6).

The EPR protocol was presented by Artur K. Ekert in 1991 [55], which is completely
based on the use of an entanglement state between two remote parties. Moreover, few

Cryptography 2022, 6, 12 12 of 25

modifications have been made since the first EPR protocol has become popular. Hwang
et al. [56] explained some of these modifications to the EPR protocol. The EPR process is
shown in steps that demonstrate the original protocol [9]:

Step 1: Alice creates a sequence of EPR photons (entangled qubits) n, where one
photon is stored in a quantum memory and sends the other to Bob.

|ψ1〉 = 1√
2
(|00〉+|11〉)

|ψ2〉 = 1√
2
(|00〉−|11〉)

|ψ3〉 = 1√
2
(|10〉+|01〉)

|ψ4〉 = 1√
2
(|10〉−|01〉)

(6)

Step 2: Both communicators randomly choose a sequence of bases (×or +); these bases
are used to measure the particles at each side of the communication, as shown in Table 6.

Table 6. The measurements in the EPR protocol Alice and bob measure in each of their random bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +
Alice’s observations ↗ ↖ → ↑ ↗ →
Bob’s random bases × + + × × +
Bob’s observations ↗ → → ↗ ↗ →

Step 3: In public, Alice and Bob match the outcomes of their measurements and keep
only the qubits that were measured on the same basis, as in Table 7.

Table 7. The measurements in the EPR protocol Alice and bob publicly compare their bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +
Public channel

Cryptography 2022, 6, x FOR PEER REVIEW 12 of 26

The EPR protocol was presented by Artur K. Ekert in 1991 [55], which is completely

based on the use of an entanglement state between two remote parties. Moreover, few

modifications have been made since the first EPR protocol has become popular. Hwang

et al. [56] explained some of these modifications to the EPR protocol. The EPR process is

shown in steps that demonstrate the original protocol [9]:

Step 1: Alice creates a sequence of EPR photons (entangled qubits) n, where one

photon is stored in a quantum memory and sends the other to Bob.

|��⟩ =
1

√2
(|00⟩ + |11⟩)

|��⟩ =
1

√2
(|00⟩ − |11⟩)

|��⟩ =
1

√2
(|10⟩ + |01⟩)

|��⟩ =
1

√2
(|10⟩ − |01⟩)

(6)

Step 2: Both communicators randomly choose a sequence of bases (× or +); these

bases are used to measure the particles at each side of the communication, as shown in

Table 6.

Table 6. the measurements in the EPR protocol Alice and bob measure in each of their random

bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +

Alice’s observations

Bob’s random bases × + + × × +

Bob’s observations

Step 3: In public, Alice and Bob match the outcomes of their measurements and keep

only the qubits that were measured on the same basis, as in Table 7.

Table 7. The measurements in the EPR protocol Alice and bob publicly compare their bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +

Public channel

Bob’s random bases × + + × × +

Agree

The remaining of EPR protocol includes decisions made by communicating parties.

The public channel will be the next choice to ignore any errors while exchanging qubits

through the quantum channel. Therefore, classical communication is analogous to the rec-

onciliation phase of the BB84 protocol.

2.2.7. The S09 Protocol

S09 protocol was presented by Esteban and Serna in 2012; this protocol has a different

technique compared to the previous protocols. S09 relies on public-private key cryptog-

raphy, and the main process of the S09 is based on exchanging a qubit multiple times to

build a secret key between Alice and Bob. However, the S09 protocol transfers the qubit

into any arbitrary state that is agreed on between Alice and Bob only through the quantum

channel. The sequences of the S09 protocol are briefly explained as follows.

Cryptography 2022, 6, x FOR PEER REVIEW 12 of 26

The EPR protocol was presented by Artur K. Ekert in 1991 [55], which is completely

based on the use of an entanglement state between two remote parties. Moreover, few

modifications have been made since the first EPR protocol has become popular. Hwang

et al. [56] explained some of these modifications to the EPR protocol. The EPR process is

shown in steps that demonstrate the original protocol [9]:

Step 1: Alice creates a sequence of EPR photons (entangled qubits) n, where one

photon is stored in a quantum memory and sends the other to Bob.

|��⟩ =
1

√2
(|00⟩ + |11⟩)

|��⟩ =
1

√2
(|00⟩ − |11⟩)

|��⟩ =
1

√2
(|10⟩ + |01⟩)

|��⟩ =
1

√2
(|10⟩ − |01⟩)

(6)

Step 2: Both communicators randomly choose a sequence of bases (× or +); these

bases are used to measure the particles at each side of the communication, as shown in

Table 6.

Table 6. the measurements in the EPR protocol Alice and bob measure in each of their random

bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +

Alice’s observations

Bob’s random bases × + + × × +

Bob’s observations

Step 3: In public, Alice and Bob match the outcomes of their measurements and keep

only the qubits that were measured on the same basis, as in Table 7.

Table 7. The measurements in the EPR protocol Alice and bob publicly compare their bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +

Public channel

Bob’s random bases × + + × × +

Agree

The remaining of EPR protocol includes decisions made by communicating parties.

The public channel will be the next choice to ignore any errors while exchanging qubits

through the quantum channel. Therefore, classical communication is analogous to the rec-

onciliation phase of the BB84 protocol.

2.2.7. The S09 Protocol

S09 protocol was presented by Esteban and Serna in 2012; this protocol has a different

technique compared to the previous protocols. S09 relies on public-private key cryptog-

raphy, and the main process of the S09 is based on exchanging a qubit multiple times to

build a secret key between Alice and Bob. However, the S09 protocol transfers the qubit

into any arbitrary state that is agreed on between Alice and Bob only through the quantum

channel. The sequences of the S09 protocol are briefly explained as follows.

Cryptography 2022, 6, x FOR PEER REVIEW 12 of 26

The EPR protocol was presented by Artur K. Ekert in 1991 [55], which is completely

based on the use of an entanglement state between two remote parties. Moreover, few

modifications have been made since the first EPR protocol has become popular. Hwang

et al. [56] explained some of these modifications to the EPR protocol. The EPR process is

shown in steps that demonstrate the original protocol [9]:

Step 1: Alice creates a sequence of EPR photons (entangled qubits) n, where one

photon is stored in a quantum memory and sends the other to Bob.

|��⟩ =
1

√2
(|00⟩ + |11⟩)

|��⟩ =
1

√2
(|00⟩ − |11⟩)

|��⟩ =
1

√2
(|10⟩ + |01⟩)

|��⟩ =
1

√2
(|10⟩ − |01⟩)

(6)

Step 2: Both communicators randomly choose a sequence of bases (× or +); these

bases are used to measure the particles at each side of the communication, as shown in

Table 6.

Table 6. the measurements in the EPR protocol Alice and bob measure in each of their random

bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +

Alice’s observations

Bob’s random bases × + + × × +

Bob’s observations

Step 3: In public, Alice and Bob match the outcomes of their measurements and keep

only the qubits that were measured on the same basis, as in Table 7.

Table 7. The measurements in the EPR protocol Alice and bob publicly compare their bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +

Public channel

Bob’s random bases × + + × × +

Agree

The remaining of EPR protocol includes decisions made by communicating parties.

The public channel will be the next choice to ignore any errors while exchanging qubits

through the quantum channel. Therefore, classical communication is analogous to the rec-

onciliation phase of the BB84 protocol.

2.2.7. The S09 Protocol

S09 protocol was presented by Esteban and Serna in 2012; this protocol has a different

technique compared to the previous protocols. S09 relies on public-private key cryptog-

raphy, and the main process of the S09 is based on exchanging a qubit multiple times to

build a secret key between Alice and Bob. However, the S09 protocol transfers the qubit

into any arbitrary state that is agreed on between Alice and Bob only through the quantum

channel. The sequences of the S09 protocol are briefly explained as follows.

Cryptography 2022, 6, x FOR PEER REVIEW 12 of 26

The EPR protocol was presented by Artur K. Ekert in 1991 [55], which is completely

based on the use of an entanglement state between two remote parties. Moreover, few

modifications have been made since the first EPR protocol has become popular. Hwang

et al. [56] explained some of these modifications to the EPR protocol. The EPR process is

shown in steps that demonstrate the original protocol [9]:

Step 1: Alice creates a sequence of EPR photons (entangled qubits) n, where one

photon is stored in a quantum memory and sends the other to Bob.

|��⟩ =
1

√2
(|00⟩ + |11⟩)

|��⟩ =
1

√2
(|00⟩ − |11⟩)

|��⟩ =
1

√2
(|10⟩ + |01⟩)

|��⟩ =
1

√2
(|10⟩ − |01⟩)

(6)

Step 2: Both communicators randomly choose a sequence of bases (× or +); these

bases are used to measure the particles at each side of the communication, as shown in

Table 6.

Table 6. the measurements in the EPR protocol Alice and bob measure in each of their random

bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +

Alice’s observations

Bob’s random bases × + + × × +

Bob’s observations

Step 3: In public, Alice and Bob match the outcomes of their measurements and keep

only the qubits that were measured on the same basis, as in Table 7.

Table 7. The measurements in the EPR protocol Alice and bob publicly compare their bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +

Public channel

Bob’s random bases × + + × × +

Agree

The remaining of EPR protocol includes decisions made by communicating parties.

The public channel will be the next choice to ignore any errors while exchanging qubits

through the quantum channel. Therefore, classical communication is analogous to the rec-

onciliation phase of the BB84 protocol.

2.2.7. The S09 Protocol

S09 protocol was presented by Esteban and Serna in 2012; this protocol has a different

technique compared to the previous protocols. S09 relies on public-private key cryptog-

raphy, and the main process of the S09 is based on exchanging a qubit multiple times to

build a secret key between Alice and Bob. However, the S09 protocol transfers the qubit

into any arbitrary state that is agreed on between Alice and Bob only through the quantum

channel. The sequences of the S09 protocol are briefly explained as follows.

Cryptography 2022, 6, x FOR PEER REVIEW 12 of 26

The EPR protocol was presented by Artur K. Ekert in 1991 [55], which is completely

based on the use of an entanglement state between two remote parties. Moreover, few

modifications have been made since the first EPR protocol has become popular. Hwang

et al. [56] explained some of these modifications to the EPR protocol. The EPR process is

shown in steps that demonstrate the original protocol [9]:

Step 1: Alice creates a sequence of EPR photons (entangled qubits) n, where one

photon is stored in a quantum memory and sends the other to Bob.

|��⟩ =
1

√2
(|00⟩ + |11⟩)

|��⟩ =
1

√2
(|00⟩ − |11⟩)

|��⟩ =
1

√2
(|10⟩ + |01⟩)

|��⟩ =
1

√2
(|10⟩ − |01⟩)

(6)

Step 2: Both communicators randomly choose a sequence of bases (× or +); these

bases are used to measure the particles at each side of the communication, as shown in

Table 6.

Table 6. the measurements in the EPR protocol Alice and bob measure in each of their random

bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +

Alice’s observations

Bob’s random bases × + + × × +

Bob’s observations

Step 3: In public, Alice and Bob match the outcomes of their measurements and keep

only the qubits that were measured on the same basis, as in Table 7.

Table 7. The measurements in the EPR protocol Alice and bob publicly compare their bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +

Public channel

Bob’s random bases × + + × × +

Agree

The remaining of EPR protocol includes decisions made by communicating parties.

The public channel will be the next choice to ignore any errors while exchanging qubits

through the quantum channel. Therefore, classical communication is analogous to the rec-

onciliation phase of the BB84 protocol.

2.2.7. The S09 Protocol

S09 protocol was presented by Esteban and Serna in 2012; this protocol has a different

technique compared to the previous protocols. S09 relies on public-private key cryptog-

raphy, and the main process of the S09 is based on exchanging a qubit multiple times to

build a secret key between Alice and Bob. However, the S09 protocol transfers the qubit

into any arbitrary state that is agreed on between Alice and Bob only through the quantum

channel. The sequences of the S09 protocol are briefly explained as follows.

Cryptography 2022, 6, x FOR PEER REVIEW 12 of 26

The EPR protocol was presented by Artur K. Ekert in 1991 [55], which is completely

based on the use of an entanglement state between two remote parties. Moreover, few

modifications have been made since the first EPR protocol has become popular. Hwang

et al. [56] explained some of these modifications to the EPR protocol. The EPR process is

shown in steps that demonstrate the original protocol [9]:

Step 1: Alice creates a sequence of EPR photons (entangled qubits) n, where one

photon is stored in a quantum memory and sends the other to Bob.

|��⟩ =
1

√2
(|00⟩ + |11⟩)

|��⟩ =
1

√2
(|00⟩ − |11⟩)

|��⟩ =
1

√2
(|10⟩ + |01⟩)

|��⟩ =
1

√2
(|10⟩ − |01⟩)

(6)

Step 2: Both communicators randomly choose a sequence of bases (× or +); these

bases are used to measure the particles at each side of the communication, as shown in

Table 6.

Table 6. the measurements in the EPR protocol Alice and bob measure in each of their random

bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +

Alice’s observations

Bob’s random bases × + + × × +

Bob’s observations

Step 3: In public, Alice and Bob match the outcomes of their measurements and keep

only the qubits that were measured on the same basis, as in Table 7.

Table 7. The measurements in the EPR protocol Alice and bob publicly compare their bases.

Bit Number 1 2 3 4 5 6

Alice’s random bases × × + + × +

Public channel

Bob’s random bases × + + × × +

Agree

The remaining of EPR protocol includes decisions made by communicating parties.

The public channel will be the next choice to ignore any errors while exchanging qubits

through the quantum channel. Therefore, classical communication is analogous to the rec-

onciliation phase of the BB84 protocol.

2.2.7. The S09 Protocol

S09 protocol was presented by Esteban and Serna in 2012; this protocol has a different

technique compared to the previous protocols. S09 relies on public-private key cryptog-

raphy, and the main process of the S09 is based on exchanging a qubit multiple times to

build a secret key between Alice and Bob. However, the S09 protocol transfers the qubit

into any arbitrary state that is agreed on between Alice and Bob only through the quantum

channel. The sequences of the S09 protocol are briefly explained as follows.

Bob’s random bases × + + × × +
Agree

Cryptography 2022, 6, x FOR PEER REVIEW 7 of 26

Step 1: The length of the plaintext X should be set up by Alice to become a string of

n-bits, and then the n-bits are applied to a randomly prepared basis (× or +).

Step 2: Each random basis will produce a random state either |0⟩ or|1⟩ if the basis

is |×⟩, or |0⟩ or|1⟩ if the basis is |+⟩ as shown in Table 2.

Table 2. The Alice sends n random bits in random bases.

Bit Number 0 1 2 3 4 5

Alice’s random bits 0 1 1 0 1 1

Alice’s random bases + + × + + +

Alice sends

Step 3: When the string of n-qubits is submitted by Alice, Bob measures the upcom-

ing n-qubits based on random bases, as shown in Table 3. Next, Bob obtains a string of

states that reflect n-bits. If Bob cannot measure all the submitted qubits, both parties will

release additional qubits by sharing the used bases through a public channel.

Table 3. Bob receives n random bits in random measurements.

Bit Number 0 1 2 3 4 5

Bob’s random bases × + × × + ×

Bob observes

Bob’s bits 0 1 1 1 1 0

Step 4: Both Alice and Bob start estimating the errors that could be caused by Eve,

where many error-correction methods [27] are used in the BB84 protocol. The raw secret

key is processed, when Alice and Bob compare the matching bits, where the uncorrelated

bits are discarded, as shown in Table 4. This is called a sifting procedure, which enhances

any attempt by Eve to obtain information and detect any error [28].

Table 4. Alice and bob publicly compare used bases.

Bit Number 0 1 2 3 4 5

Alice’s random bases + + × + + +

Bob’s random bases × + × × + ×

Agreement

Shared secret key 1 1 1

Step 5: After matching the sent and received qubits, the communication moves to the

reconciliation phase only if the error rate is low. On the other hand, Alice and Bob end up

the current communication if the error rate is too high.

Step 6: If the error rate is low, Alice and Bob share the raw key. Moreover, the raw

key contains the matched qubits of both parties. Unmatched qubits are supposed to be

removed from the shared key SSK.

Step 7: Next, Alice and Bob start correcting the erroneous qubits again in a separate

phase, as shown in Table 5, as they endeavor to reduce the number of exposed qubits.

Table 5. Alice and Bob publicly compare half of the remaining bits.

Bit Number 0 1 2 3 4 5

Shared secret keys 1 1 1

Randomly chosen

Shared secret key 1 1 1

Agreements

Unrevealed secret keys 1

Cryptography 2022, 6, x FOR PEER REVIEW 7 of 26

Step 1: The length of the plaintext X should be set up by Alice to become a string of

n-bits, and then the n-bits are applied to a randomly prepared basis (× or +).

Step 2: Each random basis will produce a random state either |0⟩ or|1⟩ if the basis

is |×⟩, or |0⟩ or|1⟩ if the basis is |+⟩ as shown in Table 2.

Table 2. The Alice sends n random bits in random bases.

Bit Number 0 1 2 3 4 5

Alice’s random bits 0 1 1 0 1 1

Alice’s random bases + + × + + +

Alice sends

Step 3: When the string of n-qubits is submitted by Alice, Bob measures the upcom-

ing n-qubits based on random bases, as shown in Table 3. Next, Bob obtains a string of

states that reflect n-bits. If Bob cannot measure all the submitted qubits, both parties will

release additional qubits by sharing the used bases through a public channel.

Table 3. Bob receives n random bits in random measurements.

Bit Number 0 1 2 3 4 5

Bob’s random bases × + × × + ×

Bob observes

Bob’s bits 0 1 1 1 1 0

Step 4: Both Alice and Bob start estimating the errors that could be caused by Eve,

where many error-correction methods [27] are used in the BB84 protocol. The raw secret

key is processed, when Alice and Bob compare the matching bits, where the uncorrelated

bits are discarded, as shown in Table 4. This is called a sifting procedure, which enhances

any attempt by Eve to obtain information and detect any error [28].

Table 4. Alice and bob publicly compare used bases.

Bit Number 0 1 2 3 4 5

Alice’s random bases + + × + + +

Bob’s random bases × + × × + ×

Agreement

Shared secret key 1 1 1

Step 5: After matching the sent and received qubits, the communication moves to the

reconciliation phase only if the error rate is low. On the other hand, Alice and Bob end up

the current communication if the error rate is too high.

Step 6: If the error rate is low, Alice and Bob share the raw key. Moreover, the raw

key contains the matched qubits of both parties. Unmatched qubits are supposed to be

removed from the shared key SSK.

Step 7: Next, Alice and Bob start correcting the erroneous qubits again in a separate

phase, as shown in Table 5, as they endeavor to reduce the number of exposed qubits.

Table 5. Alice and Bob publicly compare half of the remaining bits.

Bit Number 0 1 2 3 4 5

Shared secret keys 1 1 1

Randomly chosen

Shared secret key 1 1 1

Agreements

Unrevealed secret keys 1

Cryptography 2022, 6, x FOR PEER REVIEW 7 of 26

Step 1: The length of the plaintext X should be set up by Alice to become a string of

n-bits, and then the n-bits are applied to a randomly prepared basis (× or +).

Step 2: Each random basis will produce a random state either |0⟩ or|1⟩ if the basis

is |×⟩, or |0⟩ or|1⟩ if the basis is |+⟩ as shown in Table 2.

Table 2. The Alice sends n random bits in random bases.

Bit Number 0 1 2 3 4 5

Alice’s random bits 0 1 1 0 1 1

Alice’s random bases + + × + + +

Alice sends

Step 3: When the string of n-qubits is submitted by Alice, Bob measures the upcom-

ing n-qubits based on random bases, as shown in Table 3. Next, Bob obtains a string of

states that reflect n-bits. If Bob cannot measure all the submitted qubits, both parties will

release additional qubits by sharing the used bases through a public channel.

Table 3. Bob receives n random bits in random measurements.

Bit Number 0 1 2 3 4 5

Bob’s random bases × + × × + ×

Bob observes

Bob’s bits 0 1 1 1 1 0

Step 4: Both Alice and Bob start estimating the errors that could be caused by Eve,

where many error-correction methods [27] are used in the BB84 protocol. The raw secret

key is processed, when Alice and Bob compare the matching bits, where the uncorrelated

bits are discarded, as shown in Table 4. This is called a sifting procedure, which enhances

any attempt by Eve to obtain information and detect any error [28].

Table 4. Alice and bob publicly compare used bases.

Bit Number 0 1 2 3 4 5

Alice’s random bases + + × + + +

Bob’s random bases × + × × + ×

Agreement

Shared secret key 1 1 1

Step 5: After matching the sent and received qubits, the communication moves to the

reconciliation phase only if the error rate is low. On the other hand, Alice and Bob end up

the current communication if the error rate is too high.

Step 6: If the error rate is low, Alice and Bob share the raw key. Moreover, the raw

key contains the matched qubits of both parties. Unmatched qubits are supposed to be

removed from the shared key SSK.

Step 7: Next, Alice and Bob start correcting the erroneous qubits again in a separate

phase, as shown in Table 5, as they endeavor to reduce the number of exposed qubits.

Table 5. Alice and Bob publicly compare half of the remaining bits.

Bit Number 0 1 2 3 4 5

Shared secret keys 1 1 1

Randomly chosen

Shared secret key 1 1 1

Agreements

Unrevealed secret keys 1

Cryptography 2022, 6, x FOR PEER REVIEW 7 of 26

Step 1: The length of the plaintext X should be set up by Alice to become a string of

n-bits, and then the n-bits are applied to a randomly prepared basis (× or +).

Step 2: Each random basis will produce a random state either |0⟩ or|1⟩ if the basis

is |×⟩, or |0⟩ or|1⟩ if the basis is |+⟩ as shown in Table 2.

Table 2. The Alice sends n random bits in random bases.

Bit Number 0 1 2 3 4 5

Alice’s random bits 0 1 1 0 1 1

Alice’s random bases + + × + + +

Alice sends

Step 3: When the string of n-qubits is submitted by Alice, Bob measures the upcom-

ing n-qubits based on random bases, as shown in Table 3. Next, Bob obtains a string of

states that reflect n-bits. If Bob cannot measure all the submitted qubits, both parties will

release additional qubits by sharing the used bases through a public channel.

Table 3. Bob receives n random bits in random measurements.

Bit Number 0 1 2 3 4 5

Bob’s random bases × + × × + ×

Bob observes

Bob’s bits 0 1 1 1 1 0

Step 4: Both Alice and Bob start estimating the errors that could be caused by Eve,

where many error-correction methods [27] are used in the BB84 protocol. The raw secret

key is processed, when Alice and Bob compare the matching bits, where the uncorrelated

bits are discarded, as shown in Table 4. This is called a sifting procedure, which enhances

any attempt by Eve to obtain information and detect any error [28].

Table 4. Alice and bob publicly compare used bases.

Bit Number 0 1 2 3 4 5

Alice’s random bases + + × + + +

Bob’s random bases × + × × + ×

Agreement

Shared secret key 1 1 1

Step 5: After matching the sent and received qubits, the communication moves to the

reconciliation phase only if the error rate is low. On the other hand, Alice and Bob end up

the current communication if the error rate is too high.

Step 6: If the error rate is low, Alice and Bob share the raw key. Moreover, the raw

key contains the matched qubits of both parties. Unmatched qubits are supposed to be

removed from the shared key SSK.

Step 7: Next, Alice and Bob start correcting the erroneous qubits again in a separate

phase, as shown in Table 5, as they endeavor to reduce the number of exposed qubits.

Table 5. Alice and Bob publicly compare half of the remaining bits.

Bit Number 0 1 2 3 4 5

Shared secret keys 1 1 1

Randomly chosen

Shared secret key 1 1 1

Agreements

Unrevealed secret keys 1

The remaining of EPR protocol includes decisions made by communicating parties.
The public channel will be the next choice to ignore any errors while exchanging qubits
through the quantum channel. Therefore, classical communication is analogous to the
reconciliation phase of the BB84 protocol.

2.2.7. The S09 Protocol

S09 protocol was presented by Esteban and Serna in 2012; this protocol has a different
technique compared to the previous protocols. S09 relies on public-private key cryptogra-
phy, and the main process of the S09 is based on exchanging a qubit multiple times to build
a secret key between Alice and Bob. However, the S09 protocol transfers the qubit into any
arbitrary state that is agreed on between Alice and Bob only through the quantum channel.
The sequences of the S09 protocol are briefly explained as follows.

Step 1: Generate a bit i by Alice that would be in element of a secret base (Bk) to create
a qubit |Ψ, k〉, which in turn is sent to Bob with a quantum channel.

Step 2: Bob applies
(
Uj
)

to qubit |Ψ, k〉 on the other side, which is only recognized by
Bob. Thus, he can send the outcome of the qubit to Alice.

Step 3: When Alice receives the qubit, it is measured in the base (Bk) and includes bit
j, where the qubit must be in a pure state (ρ) by the operator density [50]:

ρ = |Ψ, k〉〈Ψ, k|, (7)

Cryptography 2022, 6, 12 13 of 25

where the interaction of the qubits (ρ) with the environment produces:

ρ′ = ∑
j

EjρE†
j , (8)

where Ej is an operator that acts in the space of a qubit. Subsequently, these operators
convey the state of qubit |Ψ, k〉 in the overlap.

|Ψ, k〉 → Ei |Ψ, k〉 (9)

Step 4: After a complex operation, parity bits are appended by the operators
(‖ or &&).

Step 5: The previous step is attached to the distribution of the sent addresses or
hashed values.

In addition, with the approach of this protocol, Eve can obtain nothing from her
eavesdropping, since Bk and Uj transformations can be changed as frequently as needed.
On the other hand, the S09 protocol has a complex exchange process that makes operating
the protocol inefficient.

2.2.8. The S13 Protocol

S13 is a quantum key distribution protocol developed by Serna in 2013 [57]. This
protocol corresponds to the BB84 protocol in quantum procedures but differs in the classical
channel. S13 was designed for implementation in current system devices, without the need
for modifications.

Furthermore, S13 has the same quantum communication phase as BB84; however,
this will be overlooked in this section because it is already explained in Section 2.2.1. The
second phase of the S13 protocol is explained as follows:

• Quantum part

- Raw key exchange: (as shown in the BB84 protocol).
- Random seed: one of the communicating parties creates a random binary string

(x1 x2 . . . xN).
- Missing key exchange:

1. Alice makes a summation of the random binary string with the binary
basis from the first part and obtains a binary basis (t1 t2 . . . tN). Alice then
randomly generates another string of binary

(
j1 j2 . . . jN

)
, where this is an

exchanged key with Bob.
2. Bob sums each of the sequences sent to him by Alice with the created

binary string (1⊕mk) ⊕ xk, where (k = 1, 2 . . . N). Thus, the sum be-
comes a binary string basis (n1 n2 . . . nN). Next, Bob measures the re-
ceived state |Ψtk jk〉, with the correspondence of the basis (Bnk) to generate
(b1 b2 . . . bN).

• Classical part
Alice and Bob apply function (f) to different binary exchanges in a set of binary strings:

f (z, x, y) :=
{

x, z = 0
y, z = 1

(10)

1. Asymmetric cryptography:
Step 1: Alice sums the binary string created by her in quantum part i with a
random string of binary values that were created by missing the key exchange j.

ik ⊕ jk, (k = 1, 2 . . . N), (11)

where (y1 y2 . . . yN) will be sent to Bob.

Cryptography 2022, 6, 12 14 of 25

Step 2: To obtain the public key, Bob encrypts:

uk = nk ⊕ f (mk, ak, bk ⊕ yk),

vk = nk ⊕ f (mk, bk, ak ⊕ yk).
(12)

Step 3: Alice makes a summation to obtain the private string of mk, which is:

tk ⊕ f (sk, (1⊕ ik)⊕ uk, jk ⊕ vk), (13)

and then decrypts the string (m1 m2 . . . mN).
2. Private Reconciliation:

Step 4: Bob receives the binary sequence (l1 l2 . . . lN) after completing the com-
parison between (s1 s2 . . . sN) and (m1 m2 . . . mN) by Alice.
Step 5: Bob sums the sequence of bases mk with lk, where (mk ⊕ lk), k = 1, 2 . . . N.
This is to obtain the private string sk.

f (lk, ak, bk ⊕ yk) ≡ ik

f (lk, ak ⊕ yk, bk) ≡ jk,

(k = 1, 2 . . . N).

(14)

Bob then obtains the private string from Alice (i1 i2 . . . iN).

Finally, the S13 protocol is designed to be functional with existing devices, especially in
the exchange phase after a qubit transmission. Several exchanges in the public channel will
lead to a waste of time, as well as a chance for an eavesdropper to tap data. Furthermore,
S13 is an improvement of the S09 protocol, which was ranked as a complex QKD protocol.

2.2.9. The Differential-Phase-Shift Protocol

The Differential-Phase-Shift (DPS) protocol was developed in 2002 by Inoue et al. [48].
The DPS protocol is based on four fully non-orthogonal states, in which Alice’s photon
splits into three pulses and it is randomly modulated. On the other hand, Bob measures
the incoming photons from Alice with a differential phase measurement. As mentioned
in [58], the DPS protocol is more suitable for fiber-optic transmission and provides a higher
effective shared key than the BB84 protocol. Additionally, the DPS protocol has specific
advantageous features that are included in a simple configuration, accurate time usage,
and robustness again PNS attacks [59].

Technically, the DPS is used to create a secret key between two parties, and it starts
at Alice’s side when the single photon is divided into three paths (a, b, and c) and then
recombined them using a beam splitter (BS) or optical switcher (SW), as shown in Figure 7.
Moreover, the time delay (between a, b and b, c) is equal, so that the recombined photon
is converted to each of (0 || π). The incoming photons from Alice to Bob are divided into
two paths and recombined using (50:50) beam splitters. The entire expected scenario of the
DPS protocol is performed in the following sequential steps.

Step 1: At Alice’s side, a photon is sent from (a) to the short path on Bob’s side.
Step 2: Another photon is pushed through (a) to the long path on Bob’s side and

through (b) to the short path.
Step 3: A photon is pushed through (b) to the long path on Bob’s side, and (c) to the

short path.
Step 4: Another photon is pushed through (c) to the long path on Bob’s side.
In the first part of processing DPS, two probabilities overlap in steps (2) and (3), where

the phase difference is (0 or ± π) which depends on Alice’s modulation. Moreover, each
detector clicks on (0) and the other clicks on (±π) phase difference. Finally, when Bob’s
detectors click, Bob records the time and knows which detector clicks. During the classical
two-way communication, Alice knows which one clicks at Bob’s detector [48,58].

Cryptography 2022, 6, 12 15 of 25Cryptography 2022, 6, x FOR PEER REVIEW 15 of 26

Figure 7. The DPS scheme between two parties (Alice and Bob) where |𝜑⟩ is the qubits that are

transmitted in certain time (Differential-Phase). T is the slot time considered to be measured by

detectors on Bob’s side, also Bob uses the double beam splitters with accuracy of 50:50.

Step 1: At Alice’s side, a photon is sent from (a) to the short path on Bob’s side.

Step 2: Another photon is pushed through (a) to the long path on Bob’s side and

through (b) to the short path.

Step 3: A photon is pushed through (b) to the long path on Bob’s side, and (c) to the

short path.

Step 4: Another photon is pushed through (c) to the long path on Bob’s side.

In the first part of processing DPS, two probabilities overlap in steps (2) and (3), where the

phase difference is (0 𝑜𝑟 ± 𝜋) which depends on Alice’s modulation. Moreover, each de-

tector clicks on (0) and the other clicks on (±𝜋) phase difference. Finally, when Bob’s de-

tectors click, Bob records the time and knows which detector clicks. During the classical

two-way communication, Alice knows which one clicks at Bob’s detector [48,58].

3. The QKD Protocols Features Based on Quantum Computing

As stated in the previous schemes, each quantum key distribution protocol is ad-

dressed in two critical aspects. The first aspect is the movement of particles, which is re-

lated to quantum mechanics and theories of physics. Moreover, this aspect shows the

physical motion of specific photons using the required observables (polarization, momen-

tum, mass, etc.) at initiation and measurement conditions. The second aspect represents

the comfort of using a classical system (or our current computer) with quantum bits

(qubits). The ability to convert qubits to bits in existing platforms using quantum comput-

ers is still unavailable.

Furthermore, the conclusion of the previous aspects has been collected on the cryp-

tographic point of view as shown in Table 8 [60], where the main security classifications

of the quantum cryptography for some well-known QKD protocols (review of previous

literature) are presented. These classifications focused on the instructions for the QKD

protocols that used either the law of physics or the fundamentals of classical cryptog-

raphy. However, many cryptographic features are still not available for approval today,

such as professional quantum apparatus and quantum hardware. To improve the pres-

ence of these features, the entire classical system used, and the upcoming quantum system

should overlap. For example, security attackers attempt to break any information system

by discovering vulnerabilities and weaknesses into those platforms.

Figure 7. The DPS scheme between two parties (Alice and Bob) where |ϕ〉 is the qubits that are
transmitted in certain time (Differential-Phase). T is the slot time considered to be measured by
detectors on Bob’s side, also Bob uses the double beam splitters with accuracy of 50:50.

3. The QKD Protocols Features Based on Quantum Computing

As stated in the previous schemes, each quantum key distribution protocol is ad-
dressed in two critical aspects. The first aspect is the movement of particles, which is
related to quantum mechanics and theories of physics. Moreover, this aspect shows the
physical motion of specific photons using the required observables (polarization, momen-
tum, mass, etc.) at initiation and measurement conditions. The second aspect represents the
comfort of using a classical system (or our current computer) with quantum bits (qubits).
The ability to convert qubits to bits in existing platforms using quantum computers is
still unavailable.

Furthermore, the conclusion of the previous aspects has been collected on the cryp-
tographic point of view as shown in Table 8 [60], where the main security classifications
of the quantum cryptography for some well-known QKD protocols (review of previous
literature) are presented. These classifications focused on the instructions for the QKD
protocols that used either the law of physics or the fundamentals of classical cryptography.
However, many cryptographic features are still not available for approval today, such
as professional quantum apparatus and quantum hardware. To improve the presence
of these features, the entire classical system used, and the upcoming quantum system
should overlap. For example, security attackers attempt to break any information system
by discovering vulnerabilities and weaknesses into those platforms.

Table 8. The mechanism and features of well-known GKD protocols.

Cases
Quantum Key Distribution Protocols

BB84 B92 SARG04 COW KMB09 EPR S09 S13 DPS

Properties Heisenberg Heisenberg Heisenberg Arbitrary Heisenberg Entanglement Kp, Ks Heisenberg Arbitrary
Number of
States 4 states 2 States 4 States Time slots 2 states 2 EPR Arbitrary

states 4 states 4 States

Detection of
presence QBER QBER QBER Break of

coherence ITER Bell’s
inequality

appending
parity bits

Random
Seed Timeslot

Polarization Orthogonal Non
orthogonal Orthogonal Arbitrary Arbitrary Orthogonal Bit-Flip

Phase-Flip 2 orthogonal DPS

State
Probability Various 50% 50% Calculated 50% Equal Various Various Equal

Qubit String Discrete Discrete Discrete Discrete Discrete Discrete No Discrete Discrete
Classical
channels Yes Yes Yes Yes Yes Yes No Yes Yes

Decoy States No No No Yes No No Yes No No

Sifting phase Revealing
Bases

Alice =
1 − Bob

Revealing
non-orth. state

Revealing
times 2k + 1

Revealing
Indices

Bell’s
Inequality No Revealing

Bases Timeslot

Bell’s
inequality No No No No No Yes No No No

Cryptography 2022, 6, 12 16 of 25

Table 8. Cont.

Cases
Quantum Key Distribution Protocols

BB84 B92 SARG04 COW KMB09 EPR S09 S13 DPS

PNS attack Vulnerable Vulnerable better than
BB84 Robust Robust N/A N/A N/A Robust

IRUD attack Vulnerable Vulnerable Vulnerable Under Test Under Test Vulnerable N/A N/A N/A
BS attack Vulnerable Vulnerable Robust Robust Robust Vulnerable N/A N/A Robust
DoS attack Vulnerable Vulnerable Vulnerable Vulnerable Vulnerable Vulnerable N/A N/A Robust
MAM attack Vulnerable Robust Robust Robust Robust Robust Robust N/A Robust

IRA attack Vulnerable Vulnerable Robust Robust Robust Bell’s
inequality Robust N/A Robust

Authentication No No No No No No No Yes
[classic] No

4. Runtime Analysis of QKD Protocols

Since the processing time of each QKD protocol is a critical term for secret key genera-
tion, the runtime execution has been experimented with in a specific ecological scheme. The
same number of n-qubits has been implemented, and all QKD algorithms are formatted
based on the original protocol, with many improvements recently updated. Moreover,
the experiments present runtime simulations of all QKD protocols in a classical system
by applying quantum libraries [61,62] in MATLAB. All these simulations reflected a high
percentage of reality as far as they are used in a quantum system. These simulations were
implemented by applying 500 qubits to create a secret key (SSK), where each protocol has
an independent scheme. In terms of the number of qubits that can be sent from Alice to
Bob, each QKD protocol expects an error rate (covered qubits). Based on the recorded error
rate, both participants can decide to either extend the protocol’s operations or cancel the
communication entirely.

Figures 8–16 [60] show only one of the runtime execution measurements for each QKD
protocol, although several implementations were performed to determine the behavior
of each QKD protocol. The measurements show variations during the process of each
QKD protocol, as well as the real-time of each protocol, especially, when the QKD protocol
applies more than 500 qubits between two legitimate parties. The gaps between each
runtime execution depend on the properties of the states used (arbitrary, superposition, or
entangled) and the number of bases used (orthogonal or non-orthogonal) that are employed
for encrypting/decrypting the plaintext X. In addition, the differences between the studied
QKD are related to the type of communication channels that are initiated between two
legitimate parties (e.g., quantum or public channels). Each communication channel should
have a certain mechanism, either to generate a specific state of a photon or to measure
the received qubits. Therefore, runtime execution measurements were applied in the
absence of Eve since Eve can cause relative and unstable errors. These errors can produce
large variations based on different methods [63]. However, noise was applied in these
experiments, which are usually generated by the environment.

After simulating each QKD algorithm by applying the runtime execution T(n) function,
the results show the relative complexity in each QKD protocol with obvious variations. The
T(n) function is linear and will lead to an increase in the life of the key generation, as long
as the communication is active. For instance, the SARG04 protocol is similar to the BB84
protocol, except that SARG04 has a higher complexity than the BB84 protocol. Furthermore,
SARG04 takes (≈ 0.815 ms) to generate a secret key more than BB84 (≈ 0.364 ms). Table IX
shows the runtime execution of the QKD protocol limited to 500 qubits (ms).

In addition, the runtime execution measurement for the DPS protocol shows differen-
tiation because initiating the DPS requires applying a photon in multiple states (arbitrary
states). The differentiation of running each QKD protocol at certain functions and opera-
tions is based on the nature of each operation complexity such as converting a bit to qubit.
In addition, the looping of each function produces sequential procedures before creating
the SSK.

Cryptography 2022, 6, 12 17 of 25Cryptography 2022, 6, x FOR PEER REVIEW 17 of 26

Figure 8. The Runtime Execution is measured in the BB84 by applying 500 qubits of transferred data

(qubits) into quantum channel as well as reconciliation phase into classical channel. This QKD pro-

tocol was experimented with in a classical system using quantum libraries, where these libraries

designed in Python as well as MATLAB. The accuracy of these experiments would be high enough

to run the QKD protocols and measure the time needed to create a secret key.

Figure 9. The Runtime Execution in the SARG04 after applying 500 qubits of transferred data

(qubits) into quantum channel as well as reconciliation phase into classical channel. The SARG04

protocol was experimented with in a classical system using quantum libraries, where these libraries

designed in Python as well as MATLAB. The accuracy of these experiments would be high enough

to run the QKD protocols and measure the time needed to create a secret key.

Figure 8. The Runtime Execution is measured in the BB84 by applying 500 qubits of transferred
data (qubits) into quantum channel as well as reconciliation phase into classical channel. This QKD
protocol was experimented with in a classical system using quantum libraries, where these libraries
designed in Python as well as MATLAB. The accuracy of these experiments would be high enough to
run the QKD protocols and measure the time needed to create a secret key.

Cryptography 2022, 6, x FOR PEER REVIEW 17 of 26

Figure 8. The Runtime Execution is measured in the BB84 by applying 500 qubits of transferred data

(qubits) into quantum channel as well as reconciliation phase into classical channel. This QKD pro-

tocol was experimented with in a classical system using quantum libraries, where these libraries

designed in Python as well as MATLAB. The accuracy of these experiments would be high enough

to run the QKD protocols and measure the time needed to create a secret key.

Figure 9. The Runtime Execution in the SARG04 after applying 500 qubits of transferred data

(qubits) into quantum channel as well as reconciliation phase into classical channel. The SARG04

protocol was experimented with in a classical system using quantum libraries, where these libraries

designed in Python as well as MATLAB. The accuracy of these experiments would be high enough

to run the QKD protocols and measure the time needed to create a secret key.

Figure 9. The Runtime Execution in the SARG04 after applying 500 qubits of transferred data (qubits)
into quantum channel as well as reconciliation phase into classical channel. The SARG04 protocol
was experimented with in a classical system using quantum libraries, where these libraries designed
in Python as well as MATLAB. The accuracy of these experiments would be high enough to run the
QKD protocols and measure the time needed to create a secret key.

Cryptography 2022, 6, 12 18 of 25Cryptography 2022, 6, x FOR PEER REVIEW 18 of 26

Figure 10. The Runtime Execution in the B92 after applying 500 qubits of transferred data (qubits)

into quantum channel as well as reconciliation phase into classical channel. The B92 protocol was

experimented with in a classical system using quantum libraries, where these libraries designed in

Python as well as MATLAB. The accuracy of these experiments would be high enough to run the

QKD protocols and measure the time needed to create a secret key.

Figure 11. The Runtime Execution in COW after applying 500 qubits of transferred data (qubits)

into quantum channel as well as reconciliation phase into classical channel. The COW protocol was

experimented with in a classical system using quantum libraries, where these libraries designed in

Python as well as MATLAB. The accuracy of these experiments would be high enough to run the

QKD protocols and measure the time needed to create a secret key.

Figure 10. The Runtime Execution in the B92 after applying 500 qubits of transferred data (qubits)
into quantum channel as well as reconciliation phase into classical channel. The B92 protocol was
experimented with in a classical system using quantum libraries, where these libraries designed in
Python as well as MATLAB. The accuracy of these experiments would be high enough to run the
QKD protocols and measure the time needed to create a secret key.

Cryptography 2022, 6, x FOR PEER REVIEW 18 of 26

Figure 10. The Runtime Execution in the B92 after applying 500 qubits of transferred data (qubits)

into quantum channel as well as reconciliation phase into classical channel. The B92 protocol was

experimented with in a classical system using quantum libraries, where these libraries designed in

Python as well as MATLAB. The accuracy of these experiments would be high enough to run the

QKD protocols and measure the time needed to create a secret key.

Figure 11. The Runtime Execution in COW after applying 500 qubits of transferred data (qubits)

into quantum channel as well as reconciliation phase into classical channel. The COW protocol was

experimented with in a classical system using quantum libraries, where these libraries designed in

Python as well as MATLAB. The accuracy of these experiments would be high enough to run the

QKD protocols and measure the time needed to create a secret key.

Figure 11. The Runtime Execution in COW after applying 500 qubits of transferred data (qubits)
into quantum channel as well as reconciliation phase into classical channel. The COW protocol was
experimented with in a classical system using quantum libraries, where these libraries designed in
Python as well as MATLAB. The accuracy of these experiments would be high enough to run the
QKD protocols and measure the time needed to create a secret key.

Cryptography 2022, 6, 12 19 of 25Cryptography 2022, 6, x FOR PEER REVIEW 19 of 26

Figure 12. The Runtime Execution in the KMB09 after assigning multidimensional qubits of trans-

ferred data (qubits) into quantum channel as well as reconciliation phase into classical channel. The

KMB09 protocol was experimented with in a classical system using quantum libraries, where these

libraries designed in Python as well as MATLAB. The accuracy of these experiments would be high

enough to run the QKD protocols and measure the time needed to create a secret key.

Figure 13. The Runtime Execution in the EPR after applying 500 qubits of transferred data (qubits)

into quantum channel as well as reconciliation phase into classical channel. The EPR protocol was

experimented with in a classical system using quantum libraries, where these libraries designed in

Python as well as MATLAB. The accuracy of these experiments would be high enough to run the

QKD protocols and measure the time needed to create a secret key.

Figure 12. The Runtime Execution in the KMB09 after assigning multidimensional qubits of trans-
ferred data (qubits) into quantum channel as well as reconciliation phase into classical channel. The
KMB09 protocol was experimented with in a classical system using quantum libraries, where these
libraries designed in Python as well as MATLAB. The accuracy of these experiments would be high
enough to run the QKD protocols and measure the time needed to create a secret key.

Cryptography 2022, 6, x FOR PEER REVIEW 19 of 26

Figure 12. The Runtime Execution in the KMB09 after assigning multidimensional qubits of trans-

ferred data (qubits) into quantum channel as well as reconciliation phase into classical channel. The

KMB09 protocol was experimented with in a classical system using quantum libraries, where these

libraries designed in Python as well as MATLAB. The accuracy of these experiments would be high

enough to run the QKD protocols and measure the time needed to create a secret key.

Figure 13. The Runtime Execution in the EPR after applying 500 qubits of transferred data (qubits)

into quantum channel as well as reconciliation phase into classical channel. The EPR protocol was

experimented with in a classical system using quantum libraries, where these libraries designed in

Python as well as MATLAB. The accuracy of these experiments would be high enough to run the

QKD protocols and measure the time needed to create a secret key.

Figure 13. The Runtime Execution in the EPR after applying 500 qubits of transferred data (qubits)
into quantum channel as well as reconciliation phase into classical channel. The EPR protocol was
experimented with in a classical system using quantum libraries, where these libraries designed in
Python as well as MATLAB. The accuracy of these experiments would be high enough to run the
QKD protocols and measure the time needed to create a secret key.

Cryptography 2022, 6, 12 20 of 25Cryptography 2022, 6, x FOR PEER REVIEW 20 of 26

Figure 14. The Runtime Execution in the S09 after applying 500 qubits of transferred data (qubits)

into quantum channel as well as reconciliation phase into classical channel. The S09 protocol was

experimented with in a classical system using quantum libraries, where these libraries designed in

Python as well as MATLAB. The accuracy of these experiments would be high enough to run the

QKD protocols and measure the time needed to create a secret key.

Figure 15. The Runtime Execution in the S13 after applying 500 qubits of transferred data (qubits)

into quantum channel as well as reconciliation phase into classical channel. The S13 protocol was

experimented with in a classical system using quantum libraries, where these libraries designed in

Python as well as MATLAB. The accuracy of these experiments would be high enough to run the

QKD protocols and measure the time needed to create a secret key.

Figure 14. The Runtime Execution in the S09 after applying 500 qubits of transferred data (qubits)
into quantum channel as well as reconciliation phase into classical channel. The S09 protocol was
experimented with in a classical system using quantum libraries, where these libraries designed in
Python as well as MATLAB. The accuracy of these experiments would be high enough to run the
QKD protocols and measure the time needed to create a secret key.

Cryptography 2022, 6, x FOR PEER REVIEW 20 of 26

Figure 14. The Runtime Execution in the S09 after applying 500 qubits of transferred data (qubits)

into quantum channel as well as reconciliation phase into classical channel. The S09 protocol was

experimented with in a classical system using quantum libraries, where these libraries designed in

Python as well as MATLAB. The accuracy of these experiments would be high enough to run the

QKD protocols and measure the time needed to create a secret key.

Figure 15. The Runtime Execution in the S13 after applying 500 qubits of transferred data (qubits)

into quantum channel as well as reconciliation phase into classical channel. The S13 protocol was

experimented with in a classical system using quantum libraries, where these libraries designed in

Python as well as MATLAB. The accuracy of these experiments would be high enough to run the

QKD protocols and measure the time needed to create a secret key.

Figure 15. The Runtime Execution in the S13 after applying 500 qubits of transferred data (qubits)
into quantum channel as well as reconciliation phase into classical channel. The S13 protocol was
experimented with in a classical system using quantum libraries, where these libraries designed in
Python as well as MATLAB. The accuracy of these experiments would be high enough to run the
QKD protocols and measure the time needed to create a secret key.

Cryptography 2022, 6, 12 21 of 25Cryptography 2022, 6, x FOR PEER REVIEW 21 of 26

Figure 16. The Runtime Execution in the DPS after applying 500 qubits of transferred data (qubits)

into quantum channel as well as reconciliation phase into classical channel. The DPS protocol was

experimented with in a classical system using quantum libraries, where these libraries designed in

Python as well as MATLAB. The accuracy of these experiments would be high enough to run the

QKD protocols and measure the time needed to create a secret key.

After simulating each QKD algorithm by applying the runtime execution T(n) func-

tion, the results show the relative complexity in each QKD protocol with obvious varia-

tions. The T(n) function is linear and will lead to an increase in the life of the key genera-

tion, as long as the communication is active. For instance, the SARG04 protocol is similar

to the BB84 protocol, except that SARG04 has a higher complexity than the BB84 protocol.

Furthermore, SARG04 takes (≈ 0.815 ms) to generate a secret key more than BB84 (≈

0.364 ms). Table Ⅸ shows the runtime execution of the QKD protocol limited to 500 qubits

(ms).

In addition, the runtime execution measurement for the DPS protocol shows differ-

entiation because initiating the DPS requires applying a photon in multiple states (arbi-

trary states). The differentiation of running each QKD protocol at certain functions and

operations is based on the nature of each operation complexity such as converting a bit to

qubit. In addition, the looping of each function produces sequential procedures before

creating the SSK.

For instance, matching the measured qubits with the expected raw key depends on a

separate reconciliation algorithm. Hence, the operations of running each reconciliation

algorithm are calculated with the entire execution process, which starts from initiating a

stream of bits until the secret key SSK is created before correcting any errors. Therefore,

the following formula is applied to measure the runtime execution for each QKD protocol:

𝑇(𝑛) = ∑ (𝑝. 𝑡)𝑖=1 , (15)

where 𝑝 is a single loop of each QKD protocol process, 𝑡 is the total time taken by each

loop, and 𝑛 is the length of plaintext X. Furthermore, each QKD protocol should have

multiple operations during the quantum communication and reconciliation (usually clas-

sical communications) phases to generate a secret key. Afterwards, the QKD protocols are

similar in three sequential phases: the first phase is initiation and preparation, the second

phase is a submission, and the third phase is a reconciliation phase. These phases are

shown in the previous QKD protocol, Algorithm 1.

Figure 16. The Runtime Execution in the DPS after applying 500 qubits of transferred data (qubits)
into quantum channel as well as reconciliation phase into classical channel. The DPS protocol was
experimented with in a classical system using quantum libraries, where these libraries designed in
Python as well as MATLAB. The accuracy of these experiments would be high enough to run the
QKD protocols and measure the time needed to create a secret key.

For instance, matching the measured qubits with the expected raw key depends on
a separate reconciliation algorithm. Hence, the operations of running each reconciliation
algorithm are calculated with the entire execution process, which starts from initiating a
stream of bits until the secret key SSK is created before correcting any errors. Therefore, the
following formula is applied to measure the runtime execution for each QKD protocol:

T(n) = ∑i=1(p.t), (15)

where p is a single loop of each QKD protocol process, t is the total time taken by each loop,
and n is the length of plaintext X. Furthermore, each QKD protocol should have multiple
operations during the quantum communication and reconciliation (usually classical com-
munications) phases to generate a secret key. Afterwards, the QKD protocols are similar in
three sequential phases: the first phase is initiation and preparation, the second phase is a
submission, and the third phase is a reconciliation phase. These phases are shown in the
previous QKD protocol, Algorithm 1.

Algorithm 1: QKD Protocol

1. Initiate n Qubits // prepare a plaintext
2. for: each n→ (+ || ×) // Initiation loop
3. if (ni == +) :
4. then ni (0 || 90) // Loop (1)
5. else ni (45 || 135)
6. end; end // ending the loop
7. Reconciliation phase:
8. for: 1→ n // reconciliation loop
9. if : (i 6= j) // loop (2)
10. use different mechanisms
11. to correct error,
12. else : accept
13. end; end; //ending the loop

Cryptography 2022, 6, 12 22 of 25

More precisely, many execution loops occurred in the S09 and S13 protocols, especially
during the reconciliation phase, unlike the BB84 and B92 protocols. The KMB09 protocol
uses unique reconciliation procedures by exchanging indices instead of bases, which makes
the correction phase more efficient. Therefore, runtime execution reflects the simplicity of
using each QKD protocol. Thus, the BB84 protocol is classified as a simple QKD protocol
based on previous measurement.

5. Comparison between QKD Protocols

Subsequently, several cryptographic approaches were extracted from the well-known
QKD protocol (BB84, B92, SARG04, EPR, COW, DPS, KMB09, S09, and S13), which clarified
the variations between these QKD protocols. These variations assist in realizing the weak-
nesses and strengths of each QKD process during communication between two users. As
shown in the previous sections, some technical details are presented in the definition of
each protocol, especially when a certain protocol has a unique design, such as the Coherent-
One-Way (COW) protocol. The COW protocol depends on the insertion of the decoy states
(µi) in pulse transmission. Using decoy states means more protection against PNS attacks,
while extra time is required during either the submission or reconciliation phases.

Moreover, the QKD protocols vary in terms of the techniques used to determine
the reliability of each QKD protocol against attack challenges. Security, simplicity, and
efficiency are factors that are typically applied to measure QKD protocols. The previous
QKD protocols were tested using one of these factors, where the simplicity factor was
applied to test the runtime execution at a limited number of qubits. On the other hand, the
major issue in most QKD protocols is the verification of the identity of the communicated
parties. As demonstrated in Table 9, the authentication is not approved in the previous
QKD protocols except for the S13 protocol, which requires verification of user identity in
the classical channel. Moreover, verification requires additional procedures that reduce
the lifetime of the protocol. Thus, spending a long term could expose communication,
especially when the public channel is used to confirm the transferred data during the
quantum channel. In other words, the multiple processes that occur in the classical channel
provide a high rate of information gain by eavesdroppers.

Table 9. The Runtime Execution of QKD protocols limited up to 500 qubits (ms).

QKDP Input (Qubit) Output (Qubit) Time (ms)

BB84 500 142 0.164
B92 500 119 0.177

SARG04 500 247 0.815
KMB09 16 362 0.012

EPR 500 119 0.860
DPS 500 N/A Constant
S09 500 N/A 0.927
S13 500 N/A 0.639

COW 500 126 0.686

In addition, there are three categories that cryptosystem designers try to achieve. First,
designing a cryptographic algorithm assists the submitted data in being heavily mixed and
complex. Second, creating encryption/decryption keys locks and unlocks the submitted
plaintext X. Finally, the secure keys should be distributed between trusted communicating
entities. In other words, there are still several hard attempts to break the QKD protocol or at
least show weak points. None of these attempts can be functionally considered, even when
Eve tries to intercept and resend the submitted particles and then generate new particles.
On the other hand, the eavesdropper wishes to read at least 25% of the originally submitted
message, where the rest of the message remains for guessing as null.

Furthermore, Intercepted/Resend attacks (IRA) are a well-known strategy against
QKD protocols. IRA is the most popular attack, which is based on replacing some of

Cryptography 2022, 6, 12 23 of 25

the submitted qubits by applying a random basis (× or +) when Alice sends qubits to
Bob. Meanwhile, Eve leaves the rest of these qubits without changes because Eve wishes
that the qubits should be received by Bob without changes. Next, when Alice and Bob
start to compare the matching qubits, Eve constructs other qubits to be incompatible
measurements. More precisely, if Eve attempts to listen to the transmitted qubits between
Alice and Bob, Eve and Bob will use identical bases sent by Alice. Bob obtains identical
bases to the eavesdropper, but no one can detect Eve. In other words, if Eve used a different
measurement to intercept the bases sent by Alice, Eve will would experience uncertain
changes in the state’s polarization.

6. Conclusions

This paper presents a set of QKD protocols over a period of time, as QKD is a new
generation of cryptography in the information theory world. Moreover, several issues in
quantum cryptography are theoretically solved using the QKD protocol; in particular, QKD
is powered by quantum mechanics. The reason behind the strength of quantum mechanics
is the non-cloning theory, which produces an alteration of any permeation. On the other
hand, the explanation of ambiguous ideas was clearly discovered in this study to show the
mechanism of each QKD protocol. One of the most important insights is to implement the
runtime of each QKD protocol, as the use of multi-communications in a classical channel
requires extending the life of the QKD protocol process as well as increasing the rate of
information attacks. The classical channel is used heavily during the implementation of
each QKD protocol, where a significant amount of processing time is spent during the
reconciliation phase. In contrast, a classical channel is needed, as long as there is no way
to reconcile the submitted information during the quantum channel. In other words, the
classical channel should not completely affect the implementation of the QKD protocol,
as this will lead to an infinite experience. Finally, the QKD protocol provides a Secure
Shared Key (SSK) between legitimate parties through the secure communication. The
secret key should be robust against any type of information attack with a 0.0% exposure to
the SSK. QKD is expected to be the next generation of secret key in various information
exchange systems.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C; John Wiley & Sons: Hoboken, NJ, USA, 2007.
2. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM

1978, 21, 120–126. [CrossRef]
3. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. [CrossRef]
4. Wiesner, S. Conjugate coding. ACM Sigact News 1983, 15, 78–88. [CrossRef]
5. Brassard, G. Brief history of quantum cryptography: A personal perspective. In IEEE Information Theory Workshop on Theory and

Practice in Information-Theoretic Security; IEEE: Piscataway, NJ, USA, 2005; Volume 2005, pp. 19–23.
6. Walk, N.; Ralph, T.C.; Symul, T.; Lam, P.K. Security of post-selection based continuous variable quantum key distribution against

arbitrary attacks. In CLEO: Applications and Technology; Optical Society of America: Washingdon, DC, USA, 2011; p. JTuC4.
7. Oesterling, L.; Hayford, D.; Friend, G. Comparison of commercial and next generation quantum key distribution: Technologies

for secure communication of information. In Proceedings of the 2012 IEEE Conference on Technologies for Homeland Security
(HST), Waltham, MA, USA, 13–15 November 2012; pp. 156–161.

8. Possignolo, R.T.; Margi, C.B. A quantum-classical hybrid architecture for security algorithms acceleration. In Proceedings of the
2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, Liverpool, UK,
25–27 June 2012; pp. 1032–1037.

9. Yanofsky, N.S.; Mannucci, M.A. Quantum Computing for Computer Scientists; Cambridge University Press: Cambridge, UK, 2008.
10. Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al.

Advances in Quantum Cryptography. Adv. Opt. Photon. 2020, 12, 1012. [CrossRef]
11. Sharbaf, M.S. Quantum cryptography: An emerging technology in network security. In Proceedings of the 2011 IEEE International

Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 15–17 November 2011; pp. 13–19.

http://doi.org/10.1145/359340.359342
http://doi.org/10.1109/TIT.1976.1055638
http://doi.org/10.1145/1008908.1008920
http://doi.org/10.1364/AOP.361502

Cryptography 2022, 6, 12 24 of 25

12. Barker, W.C.; Barker, E.B. SP 800-67 Rev. 1. Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher; Citeseer:
Princeton, NJ, USA, 2012.

13. Schneier, B. Description of a new variable-length key, 64-bit block cipher (Blowfish). In International Workshop on Fast Software
Encryption; Springer: Berlin/Heidelberg, Germany, 1993; pp. 191–204.

14. Patarin, J.; Goubin, L. Asymmetric cryptography with S-Boxes Is it easier than expected to design efficient asymmetric cryp-
tosystems? In Proceedings of the International Conference on Information and Communications Security, Beijing, China,
11–14 November 1997; pp. 369–380.

15. Lo, H.-K.; Ma, X.; Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 2005, 94, 230504. [CrossRef] [PubMed]
16. Bužek, V.; Hillery, M. Quantum copying: Beyond the no-cloning theorem. Phys. Rev. A 1996, 54, 1844. [CrossRef]
17. Steege, M. Free-Space Optics: A Viable, Secure Last Mile Solution? Sans Institute: Bethesda, MD, USA, 2002.
18. Niemiec, M.; Pach, A.R. Management of security in quantum cryptography. IEEE Commun. Mag. 2013, 51, 36–41. [CrossRef]
19. Cabello, A.; Feito, Á.; Lamas-Linares, A. Bell’s inequalities with realistic noise for polarization-entangled photons. Phys. Rev. A

2005, 72, 052112. [CrossRef]
20. Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11.

[CrossRef]
21. Russell, J. Application of quantum key distribution. In Proceedings of the MILCOM 2008—2008 IEEE Military Communications

Conference, San Diego, CA, USA, 16–19 November 2008; pp. 1–6.
22. Gottesman, D.; Lo, H.-K. From quantum cheating to quantum security. arXiv 2001, arXiv:quant-ph/0111100. [CrossRef]
23. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,

41, 303–332. [CrossRef]
24. Cao, Z.; Liu, L. Improvement of one quantum encryption scheme. Int. J. Quantum Inf. 2012, 10, 1250076. [CrossRef]
25. Zhao, S.-M.; Li, F.; Zheng, B.-Y. A proof of security of quantum key distribution in probabilistic clone scheme. In Proceedings of

the International Conference on Communication Technology Proceedings, ICCT 2003, Beijing, China, 9–11 April 2003; Voume 2,
pp. 1507–1509.

26. Sharma, R.D.; De, A. A new secure model for quantum key distribution protocol. In Proceedings of the 2011 6th International
Conference on Industrial and Information Systems, Kandy, Sri Lanka, 16–19 August 2011; pp. 462–466.

27. Jouguet, P.; Kunz-Jacques, S. High performance error correction for quantum key distribution using polar codes. arXiv 2012,
arXiv:1204.5882. [CrossRef]

28. Cerf, N.J.; Bourennane, M.; Karlsson, A.; Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett.
2002, 88, 127902. [CrossRef]

29. Kartheek, D.N.; Amarnath, G.; Reddy, P.V. Security in quantum computing using quantum key distribution protocols. In
Proceedings of the 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed
Sensing (iMac4s), Kottayam, India, 22–23 March 2013; pp. 19–25.

30. Zeng, G.; Wang, X. Quantum key distribution with authentication. arXiv 1998, arXiv:quant-ph/9812022.
31. Sharma, A.; Ojha, V.; Lenka, S.K. Security of entanglement based version of BB84 protocol for Quantum Cryptography. In

Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology, Chengdu, China,
9–11 July 2010; Volume 9, pp. 615–619.

32. Shor, P.W.; Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 2000, 85, 441.
[CrossRef]

33. Scarani, V.; Acin, A.; Ribordy, G.; Gisin, N. Quantum cryptography protocols robust against photon number splitting attacks for
weak laser pulse implementations. Phys. Rev. Lett. 2004, 92, 057901. [CrossRef]

34. ElGamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 1985, 31,
469–472. [CrossRef]

35. Stipčević, M. How secure is quantum cryptography? In Proceedings of the 2012 35th International Convention MIPRO, Opatija,
Croatia, 21–25 May 2012; pp. 1529–1533.

36. Ghazali, L.I.A.; Abas, A.F.; Adnan, W.A.W.; Mokhtar, M.; Mahdi, M.A.; Saripan, M.I. Security proof of Improved-SARG04
protocol using the same four qubit states. In Proceedings of the International Conference on Photonics 2010, Langkawi, Malaysia,
5–7 July 2010.

37. Abushgra, A.A. SARG04 and AK15 Protocols Based on the Run-Time Execution and QBER. In Proceedings of the 2021 IEEE 5th
International Conference on Cryptography, Security and Privacy (CSP), Zhuhai, China, 8–10 January 2021; pp. 176–180.

38. Rass, S.; Schartner, P.; Greiler, M. Quantum coin-flipping-based authentication. In Proceedings of the 2009 IEEE International
Conference on Communications, Dresden, Germany, 14–18 June 2009; pp. 1–5.

39. Zhou, Y.; Zhou, X.; Gao, J. Scarani-acin-ribordy-gisin decoy-state protocols in quantum key distribution with a heralded single
photon source. In Proceedings of the 2009 9th International Conference on Electronic Measurement & Instruments, Beijing, China,
16–19 August 2009; pp. 4–751.

40. Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key
distribution. Rev. Mod. Phys. 2009, 81, 1301. [CrossRef]

41. Bennett, C.H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 1992, 68, 3121. [CrossRef] [PubMed]
42. Elboukhari, M.; Azizi, M.; Azizi, A. Quantum Key Distribution Protocols: A Survey. Int. J. Univers. Comput. Sci. 2010, 1, 59–67.

http://doi.org/10.1103/PhysRevLett.94.230504
http://www.ncbi.nlm.nih.gov/pubmed/16090452
http://doi.org/10.1103/PhysRevA.54.1844
http://doi.org/10.1109/MCOM.2013.6576336
http://doi.org/10.1103/PhysRevA.72.052112
http://doi.org/10.1016/j.tcs.2014.05.025
http://doi.org/10.1063/1.1333282
http://doi.org/10.1137/S0036144598347011
http://doi.org/10.1142/S0219749912500761
http://doi.org/10.26421/QIC14.3-4-8
http://doi.org/10.1103/PhysRevLett.88.127902
http://doi.org/10.1103/PhysRevLett.85.441
http://doi.org/10.1103/PhysRevLett.92.057901
http://doi.org/10.1109/TIT.1985.1057074
http://doi.org/10.1103/RevModPhys.81.1301
http://doi.org/10.1103/PhysRevLett.68.3121
http://www.ncbi.nlm.nih.gov/pubmed/10045619

Cryptography 2022, 6, 12 25 of 25

43. Jobez, P.; Timoney, N.; Laplane, C.; Etesse, J.; Ferrier, A.; Goldner, P.; Gisin, N.; Afzelius, M. Towards highly multimode optical
quantum memory for quantum repeaters. Phys. Rev. A 2016, 93, 032327. [CrossRef]

44. Gisin, N.; Ribordy, G.; Zbinden, H.; Stucki, D.; Brunner, N.; Scarani, V. Towards practical and fast quantum cryptography. arXiv
2004, arXiv:quant-ph/0411022.

45. Stucki, D.; Brunner, N.; Gisin, N.; Scarani, V.; Zbinden, H. Fast and simple one-way quantum key distribution. Appl. Phys. Lett.
2005, 87, 194108. [CrossRef]

46. Gottesman, D.; Lo, H.-K.; Lutkenhaus, N.; Preskill, J. Security of quantum key distribution with imperfect devices. In Proceedings
of the International Symposium onInformation Theory, Chicago, IL, USA, 27 June–2 July 200; p. 136.

47. Singh, H.; Gupta, D.L.; Singh, A.K. Quantum key distribution protocols: A review. J. Comput. Eng. 2014, 16, 1–9. [CrossRef]
48. Inoue, K.; Waks, E.; Yamamoto, Y. Differential phase shift quantum key distribution. Phys. Rev. Lett. 2002, 89, 037902. [CrossRef]
49. Khan, M.M.; Murphy, M.; Beige, A. High error-rate quantum key distribution for long-distance communication. New J. Phys.

2009, 11, 063043. [CrossRef]
50. Serna, E.H. Quantum key distribution protocol with private-public key. arXiv 2009, arXiv:0908.2146.
51. Han, Z.-F.; Li, H. Security of practical quantum key distribution system. In Proceedings of the 2011 International Symposium on

Intelligent Signal Processing and Communications Systems (ISPACS), Chiang Mai, Tailand, 7–9 December 2011; pp. 1–3.
52. Khan, M.M.; Xu, J.; Beige, A. Improved Eavesdropping Detection in Quantum Key Distribution. arXiv 2011, arXiv:1112.1110.
53. Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.

1935, 47, 777. [CrossRef]
54. Abushgra, A.; Elleithy, K. Initiated decoy states in quantum key distribution protocol by 3 ways channel. In Proceedings of the

2015 Long Island Systems, Applications and Technology, Farmingdale, NY, USA, 1 May 2015; pp. 1–5. [CrossRef]
55. Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661. [CrossRef] [PubMed]
56. Hwang, T.; Lee, K.-C. EPR quantum key distribution protocols with potential 100% qubit efficiency. IET Inf. Secur. 2007, 1, 43–45.

[CrossRef]
57. Serna, E.H. Quantum Key Distribution from a random seed. arXiv 2013, arXiv:1311.1582.
58. Inoue, K.; Waks, E.; Yamamoto, Y. Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A 2003,

68, 022317. [CrossRef]
59. Honjo, T.; Uchida, A.; Amano, K.; Hirano, K.; Someya, H.; Okumura, H.; Yoshimura, K.; Davis, P.; Tokura, Y. Differential-phase-

shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers. Opt.
Express 2009, 17, 9053. [CrossRef] [PubMed]

60. Abushgra, A.; Elleithy, K. Differentiations of QKDPs in Run-Time Execution. p. 12. Available online: Khaledelleithy.org/
Conferences/5-%20Differentiations%20of%20QKDPs%20in%20Run-Time%20Execution.pdf (accessed on 10 January 2022).

61. Rohde, P.P. Quack! A Quantum Computer Simulator for Matlab; Centre for Quantum Computer Technology, Department of Physics,
University of Queensland: Brisbane, Australia, 2005.

62. Tan, S.M. A quantum optics toolbox for Matlab 5. J. Opt. B Quantum Semiclass. Opt 1999, 1, 161. [CrossRef]
63. Bruen, A.A.; Forcinito, M.A. Cryptography, Information Theory, and Error-Correction: A Handbook for the 21st Century; John Wiley &

Sons: Hoboken, NJ, USA, 2011; Volume 68.

http://doi.org/10.1103/PhysRevA.93.032327
http://doi.org/10.1063/1.2126792
http://doi.org/10.1155/2014/785294
http://doi.org/10.1103/PhysRevLett.89.037902
http://doi.org/10.1088/1367-2630/11/6/063043
http://doi.org/10.1103/PhysRev.47.777
http://doi.org/10.1109/LISAT.2015.7160178
http://doi.org/10.1103/PhysRevLett.67.661
http://www.ncbi.nlm.nih.gov/pubmed/10044956
http://doi.org/10.1049/iet-ifs:20060124
http://doi.org/10.1103/PhysRevA.68.022317
http://doi.org/10.1364/OE.17.009053
http://www.ncbi.nlm.nih.gov/pubmed/19466155
Khaledelleithy.org/Conferences/5-%20Differentiations%20of%20QKDPs%20in%20Run-Time%20Execution.pdf
Khaledelleithy.org/Conferences/5-%20Differentiations%20of%20QKDPs%20in%20Run-Time%20Execution.pdf
http://doi.org/10.1088/1464-4266/1/4/312

	Introduction
	Literature Review
	Classical Cryptography
	Quantum Cryptography
	The BBB84 Protocol
	The SARG04 Protocol
	The B92 Protocol
	The Coherent One-Way Protocol
	The KMB09 Protocol
	The EPR Protocol
	The S09 Protocol
	The S13 Protocol
	The Differential-Phase-Shift Protocol

	The QKD Protocols Features Based on Quantum Computing
	Runtime Analysis of QKD Protocols
	Comparison between QKD Protocols
	Conclusions
	References

