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Abstract: The development of increasingly sophisticated quantum computers poses a long-term
threat to current cryptographic infrastructure. This has spurred research into both quantum-resistant
algorithms and how to safely transition real-world implementations and protocols to quantum-
resistant replacements. This transition is likely to be a gradual process due to both the complexity and
cost associated with transitioning. One method to ease the transition is the use of classical–quantum
hybrid schemes, which provide security against both classical and quantum adversaries. We present
a new combiner for creating hybrid encryption schemes directly from traditional encryption schemes.
Our construction is the only existing proposal in the literature with IND-CCA-security in the classical
and quantum random oracle models, respectively.

Keywords: public-key cryptography; hybrid encryption; quantum-resistance; combiners; PKEs

1. Introduction

As the age of scalable quantum computing comes closer to becoming a reality, research
into cryptographic algorithms that are secure against quantum adversaries becomes in-
creasingly important. The transition to new algorithms for real-world applications and
protocols has historically been slow. It took nearly two decades [1] for current public-key
cryptographic infrastructure to be fully deployed; hence, new post-quantum infrastructure
can be expected to take a similar amount of time. Additionally, maintaining legacy systems
and addressing concerns of potential downgrade attacks should be considered when the
transition begins. Finally, while quantum-resistant schemes have been increasingly studied
and analyzed, the underlying hardness assumptions remain relatively novel, in which
future cryptanalysis may show that they are vulnerable to quantum attacks or, even worse,
classical attacks. As the release of standards is still years away and full deployment of
quantum-resistant algorithms is a long-term effort, there is still a need to secure today’s
data from quantum adversaries.

Hybrid Cryptography and Combiners. So-called classical–quantum hybrid cryptog-
raphy, which combines classically secure and quantum-resistant algorithms to produce a
new secure scheme, represents a stopgap solution to the dilemma of transitioning from
classical to quantum-resistant cryptographic infrastructure and the need to secure data
and communications versus the cost, and the time, to fully transition. Harnik et al. [2]
formalized this idea of combining algorithms as a (k, n)-robust combiner, where n repre-
sents the number of inputs and k represents the threshold of secure inputs required to
achieve security. Hybrid combiners have been the subject of previous works for various
primitives, such as Bindel et al. [3] on hybrid signatures and Bindel et al. [4] on hybrid key
encapsulation mechanisms (KEMs) and hybrid authenticated key exchange.

Traditional combiners for public-key encryption (PKE), the focus of this work, have
also been studied by Asmuth and Blakely [5], Herzberg [6], and Zhang et al. [7]. However,
these previous results either failed to achieve IND-CCA-security [6], required every input to
be secure [8], or lacked a proof against quantum adversaries [9].
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In the place of PKE combiners, there has been successful work in the field of KEM
combiners. Giacon et al. presented a swath of different construction of robust IND-CCA
combiners for KEMs using different core function constructions to produce the final key [10].
However, the results are limited to only KEMs with perfect correctness, which many
quantum-resistant schemes do not have. Bindel et al. additionally provided three more
constructions of robust KEM combiners against adversaries with varying levels of quantum
capabilities over time [4].

Currently, there is interest in both academia and industry for hybrid cryptography.
As mentioned, both Bindel et al. [3], and Bindel et al. [4] constructed hybrid primitives,
digital signatures, and KEMs, respectively, with the latter also presenting a design for
a hybrid authenticated key exchange built from hybrid KEMs. Mirroring the interest in
hybrid cryptography, ISARA and Cisco investigated the viability of hybrid X.509 digital
certificates [11] in 2018. Meanwhile, in 2016, Google experimented with combining elliptic
curve Diffie–Hellman (ECDH) and ring-learning with errors (R-LWE) key exchange in the
transport layer security (TLS) stack in a test version of its Chrome web browser [12,13].

Our Contributions. In this work, we present a (mostly) generic construction of a (1, 2)-
robust combiner for PKEs that preserves IND-CCA-security in the random oracle model and
in the quantum random oracle model, which we call the Quantum Augmented KEM-DEM
(or QuAKe) combiner. Furthermore, the security reduction of our construction is tight in
both the classical and, more importantly, quantum random oracle models. We achieve
this with the use of two PKEs, one of which we require to be built from the KEM-DEM
paradigm put forth by Cramer and Shoup [14], and a pair of random oracles, Hash1, Hash2.
Our construction relies on preventing an adversary from obtaining both the symmetrically
encrypted message, along with a random seed, and the asymmetrically encrypted key by
encrypting the symmetric ciphertext under the second PKE. By doing this, an adversary can
only obtain the encrypted message and key if they were already able to break the security
of both the KEM-DEM and the second PKE. Additionally, the random seed is used to guard
against re-encryption and re-encapsulation attacks, as well as mix-and-match attacks. We
then prove the security reduction of QuAKe is tight in both the classical and quantum
random oracle models.

The paper is organized as follows. In Section 2, we define our notation lemmas
required for our proof in the quantum random oracle mode and give some preliminary
cryptographic definitions. In Section 3, we present our construction and its security. In
Section 4, we review previous results on PKE and KEM combiners, and then provide a
comparison with previous results. We then conclude our paper in Section 5.

2. Preliminaries

In this section, we cover the preliminaries used in this work. We begin with the
notation used, then an introduction to the random oracle model, the security notions and
definitions used, and finally define (k, n)-robust combiners.

2.1. Notation

By y← A(x) we denote an algorithm, A (either classical or quantum), that runs on
(classical) input x, and (classical) outputs y. When A has access to an oracle, B, we write
this as A(x)B(·). If A is an algorithm that uses some randomness in its execution on input
x and we wish to specify what the randomness is, say r, we denote it as A(x; r). We refer to
specific subroutines within A(·) as A.Subroutine. We consider all adversaries as algorithms
(either classical or quantum) that are probabilistic polynomial time on their input length.

We write x←$ S to denote that x was outputted by S probabilistically, where if S
is some algorithm, then x was selected according to some internal distribution, and if S
is some space, such as {0, 1}l , then we implicitly mean for x to be sampled uniformly
at random.

We say a function g mapping non-negative integers to non-negative reals is called
negligible, if for all positive numbers c, there exists an integer λ0(c) ≥ 0 such that for
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all λ > λ0(c) we have g(λ) < 1
λc . A family of functions F is called q-wise independent

if for any distinct x1, . . . , xq and for f ←$ F the values f (x1), . . . , f (xq) are independently
uniformly distributed.

2.2. Random Oracle Model and Quantum Random Oracle Model

In this section, we briefly describe the random oracle model (ROM) and quantum
random oracle model (QROM) and state the lemmas that will be used in the main result
when proving the QcQ-IND-CCA-security of QuAKe. We provide a brief introduction to
quantum computing in Appendix A and refer to Nielsen and Chuang [15] as a standard
text for a more complete explanation.

2.2.1. Random Oracles

In the classical random oracle model (ROM), we assume the existence of a truly random
function H and give all parties access to query this function [16]. When implemented, a
suitable hash function, Hash, is used in place of H. Any queries to the random oracle, made
by any party, is then replaced with an evaluation of Hash on the query.

As in the ROM, in the quantum random oracle model (QROM), all parties are given
access to a random function H, which, when implemented, is replaced by a suitable hash
function Hash. However, in quantum settings, since a quantum algorithm can evaluate Hash
in a superposition of inputs, an adversary must also be allowed to query H in superposition.
This is called the quantum random oracle model [17]. To denote when superposition access
to H is available, we will adopt the notation |H〉.

2.2.2. QROM Lemmas

We next state two useful lemmas regarding quantum random oracles. First is the
one-way-to-hiding (O2H) Lemma, proven by Unruh [18]. The O2H lemma, informally,
states that if a quantum adversary makes at most q queries to a quantum random oracle,
|H〉, and is able to distinguish (x, H(x)) from (x, y), where y was sampled uniformly at
random, then a simulator can recover x by measuring one of the queries to |H〉. In other
words, this lemma reduces distinguishing H(x) from y to guessing x. We present the
updated statement of the O2H Lemma as formulated by Ambainis et al. [19].

Lemma 1 (One-way-to-hiding, probabilities). Let S ⊆ X be random. Let G, H : X → Y
be random functions satisfying ∀x /∈ S, G(x) = H(x). Let z be a random bit string (S, G, H, z
may have arbitrary joint distribution). Let A be a quantum oracle algorithm with query depth q
(not necessarily unitary). Let BH be an oracle algorithm that on input z does the following: pick
i←$ {1, · · · , q} run AH(z) until (just before) the ith query, measure all query input registers in
the computational basis, output the set T of measurement outcomes. Let

Ple f t := Pr
[
b = 1 : b← AH(z)

]
, Pright := Pr

[
b = 1 : b← AG(z)

]
(1)

Pguess := Pr
[
S ∩ T 6= ∅ : T ← BH(z)

]
. (2)

Then, ∣∣∣Ple f t − Pright

∣∣∣ ≤ 2q
√

Pguess, (3)

and ∣∣∣√Ple f t −
√

Pright

∣∣∣ ≤ 2q
√

Pguess. (4)

We refer to the algorithm B as the O2H simulator. As noted by Ambainis et al.,
the original statement of the O2H Lemma by Unruh is a consequence of the updated
version [19].

The next lemma concerns simulating quantum random oracles. In the original QROM
introduced by Boneh et al. [17], reduction or simulator algorithms are not allowed access
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to a random oracle, and therefore, must somehow simulate the oracle itself. Zhandry [20]
demonstrated that a simulator can use a 2q-wise independent function to successfully
simulate a random oracle, where q denotes the number of queries made by the adversary.
Moreover, they proved the simulation of the random oracle is perfect, and no adversary
can distinguish between a true random oracle and a 2q-wise independent function.

Lemma 2. Let H be an oracle drawn from the set of 2q-wise independent functions uniformly
at random. Then, the advantage any quantum algorithm making at most q queries to H has in
distinguishing H from a truly random function is identically 0.

For the security reduction of the main result in the QROM, we implicitly assume
the use of 2q-wise independent functions by any simulators to answer the adversary’s
oracle queries.

2.3. Public-Key Encryption

In this section, we provide an overview of public-key encryption algorithms and the
relevant security definitions. We begin by defining a public-key encryption (PKE) algorithm.
We define the correctness of PKEs in Appendix B.

Definition 1 (Public-Key Encryption Scheme). We say a triple of algorithms Πasym =
(KeyGen, Enc, Dec) form a public-key encryption (PKE) scheme, if:

• KeyGen: the key generation algorithm is a probabilistic algorithm which on input 1n (n ∈ N)
outputs a related pair, (pk, sk), of public and secret keys.

• Enc: the encryption algorithm is a probabilistic algorithm that takes two inputs, a public-key
pk, and a plaintext m, from a designated message space,MΠasym , and outputs a ciphertext c.

• Dec: the decryption algorithm is a deterministic algorithm that takes as input a secret key sk,
and ciphertext c, and returns the plaintext m, or a special designated rejection symbol ⊥.

We now define the IND-CCA-security (also referred to as IND-CCA2-security in the
literature) and security experiment for PKEs in the random oracle model.

Definition 2 (IND-CCA-Security for PKEs in the ROM). We say that a PKE, Πasym, is
IND-CCA-secure in the random oracle model if, for all adversaries A, and a random oracle H,
we have that

AdvIND-CCA
Πasym (A) =

∣∣∣∣Pr
[

ExptIND-CCA
Πasym (A)− 1

2

]∣∣∣∣ (5)

is a negligible function in n ∈ N, where ExptIND-CCA
Πasym (A) is defined in Algorithm 1.

Algorithm 1 The IND-CCA-security experiments for PKEs in the ROM, ExptIND-CCA
Πasym (A).

1: (pk, sk)←$ Πasym.KeyGen(1n)

2: m0, m1, st← AΠasym.Dec(sk,·),H(·)(pk)
3: b←$ {0, 1}
4: c∗ ← Πasym.Enc(pk, mb)

5: b′ ← AΠasym.Dec(sk,·6=c∗),H(·)(pk, st, c∗)
6: Return [b = b′]

In this work, when we discuss security against quantum adversaries, we are consider-
ing the case of an adversary with quantum computational powers, including the ability to
query the random oracle in superposition but who only has classical access to decryption
oracles. We adopt the XyZ notation, introduced in Bindel et al. [3], to denote security
against such adversaries, where X denotes whether the adversary is classical or quantum
while they have decryption oracle access, y denotes whether the adversary can perform
classical or superposition decryption queries, and Z denotes whether the adversary is
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classical or quantum after they lose access to decryption oracles. Thus, IND-CCA-security
against a quantum adversary with only classical decryption queries in the quantum random
oracle model is denoted as QcQ-IND-CCA. Security against an QcQ-IND-CCA-adversary is
defined analogously to Algorithm 1, and we include the full definition in Appendix B.

2.4. Key/Data Encapsulation Mechanisms

In this section, we define both key encapsulation mechanisms (KEMs), data encap-
sulation mechanisms (DEMs), and the security notions necessary for this work. We then
describe the KEM-DEM paradigm to build a public-key encryption algorithm and the nec-
essary conditions to attain IND-CCA-security using the paradigm. We define the correctness
for both KEMs and DEMs in Appendix B.

First, we define a key encapsulation algorithm [21].

Definition 3 (Key Encapsulation Mechanism). We say the triple of algorithms K = (KeyGen,
Encaps,Decaps) form a key encapsulation mechanism (KEM), if:

• KeyGen: the key generation algorithm is a probabilistic algorithm which on input 1n (n ∈ N),
outputs a related pair, (ek, dk), of a public encapsulation and secret decapsulation keys.

• Encaps: the encapsulation algorithm is a probabilistic algorithm that takes one input, a public
encapsulation key ek, and produces a pair of related outputs, a ciphertext c, and an ephemeral
key k, from a designated key space KSK.

• Decaps: the decapsulation algorithm is a deterministic algorithm that takes as input a secret
decapsulation key dk, and ciphertext c, and returns the related ephemeral key k, or a specially
designated rejection symbol ⊥.

Note that a KEM can be built from a public-key encryption algorithm by simply
sampling a message uniformly at random, to be used as the key, then encrypting it and
sending the ciphertext.

The next definition is for IND-CCA-security of KEMs. We use the standard model in
the following definition, but the definition lifts to the random oracle model in a natural way.

Definition 4 (IND-CCA-Security for KEMs). We say that a KEM, K, is IND-CCA if, for all
adversaries A, we have that

AdvIND-CCA
K (A) =

∣∣∣∣Pr
[

ExptIND-CCA
K (A)− 1

2

]∣∣∣∣ (6)

is a negligible function in n ∈ N, where ExptIND-CCA
K (A) is defined in Algorithm 2.

Algorithm 2 The IND-CCA-security experiments for KEMs, ExptIND-CCA
K (A).

1: (ek, dk)←$K.KeyGen(1n)

2: st← AK.Decaps(dk,·)(ek)
3: (c∗, k0)← K.Encaps(ek)
4: k1←$KSK
5: b←$ {0, 1}
6: b′ ← AK.Decaps(dk,·6=c∗)(ek, st, c∗, kb)
7: Return [b = b′]

We now informally define IND-CCA-security for KEMs against quantum adversaries
in the QROM. As in the PKE case, this security is an extension of classical CCA-security to
the QROM with a quantum adversary that is restricted to only classical decryption queries.
Once again, we adopt the XyZ notation and refer to this security notion as QcQ-IND-CCA-
security for KEMs, or simply QcQ-IND-CCA when the context is clear.

We now define the symmetric primitive and data encapsulation mechanisms (DEMs) [21].
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Definition 5 (Data Encapsulation Mechanism/Symmetric Encryption Scheme). We say a
triple of algorithms Πsym = (KeyGen, Enc, Dec) form a (stateless) data encapsulation mechanism
(DEM), or symmetric encryption scheme, if:

• KeyGen: the key generation algorithm is a probabilistic algorithm that on input 1n (n ∈ N)
outputs a secret key k.

• Enc: the encryption algorithm is a deterministic algorithm that takes two inputs, a secret key k
and a plaintext m, from a designated message spaceMΠsym , and outputs a ciphertext c.

• Dec: the decryption algorithm is a deterministic algorithm that takes as input a secret key k
and ciphertext c, and returns the plaintext m, or a special designated rejection symbol ⊥.

In this work, referring to such an algorithm as a DEM rather than symmetric encryption
emphasizes the relation between KEMs and DEMs covered in the next section.

Next, we define the primary security definition for DEMs this work is concerned with,
the IND-OT-CCA-security introduced by Cramer and Shoup [14]. Informally, IND-OT-CCA
is similar to the IND-CCA-security experiment, except that the adversary cannot encrypt
any messages of their choice and only after receiving the challenge ciphertext is given
access to a decryption oracle. When we wish to consider security of a DEM against a
quantum capable adversary, we again make use of the XyZ notation and denote OT-CCA-
security for a DEM against a quantum adversary with only classical decryption queries as
QcQ-IND-OT-CCA-security.

Definition 6 (IND-OT-CCA-Security for DEMs). We say that a DEM K is IND-OT-CCA if,
for all adversaries A, we have that:

AdvIND-OT-CCA
Πsym (A) =

∣∣∣∣Pr
[

ExptIND-OT-CCA
Πsym (A)− 1

2

]∣∣∣∣ (7)

is a negligible function in n ∈ N, where ExptIND-OT-CCA
Πsym (A) is defined in Algorithm 3.

Algorithm 3 The IND-OT-CCA-security experiments for DEMs, ExptIND-OT-CCA
Πsym (A).

1: (ek, dk)←$K.KeyGen(1n)
2: k←$ Πsym.KeyGen(1n)
3: m0, m1, st← A(1n)
4: b←$ {0, 1}
5: c∗ ← Πsym.Enc(k, mb)

6: b′ ← AΠsym.Dec(sk,·6=c∗)(st, c∗)
7: Return [b = b′]

KEM-DEM Paradigm

We go on to describe how a public-key encryption system can be built from a KEM
and DEM pair.

Intuitively, a KEM can be used to generate a key from the key space of the DEM, which,
in turn, is used to encrypt the message. The KEM-DEM paradigm of constructing a PKE was
first proposed by Cramer and Shoup [14]. The PKE is built by using the KEM keys as the
public and private key, generating a ciphertext–key pair from the KEM, then using the key
as the symmetric key to encrypt the message and sending the asymmetric and symmetric
ciphertexts. Decryption is defined in the natural way. Traditionally, the KEM-DEM is
referred to in the literature as a hybrid scheme, referencing public-key–symmetric-key
hybrid. To avoid confusion, we elect to use the term KEM-DEM paradigm instead and use
hybrid schemes to refer to classical–quantum hybrid schemes.

In addition to proposing the KEM-DEM paradigm, Cramer and Shoup outlined the
necessary conditions on the KEM, K, and DEM, Πsym, for the resulting PKE, (K, Πsym), to
achieve IND-CCA-security. The following theorem outlines these conditions.
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Theorem 1. If K, a KEM, is IND-CCA-secure and Πsym, a DEM, is IND-OT-CCA-secure, then
(K, Πsym), described in Algorithms 4–6 is an IND-CCA-secure PKE.

Algorithm 4 (K, Πsym).KeyGen(1n).

1: (ek, dk)←$K.KeyGen(1n)
2: Return (ek, dk)

Algorithm 5 (K, Πsym).Enc(ek, m).

1: (c1, k)← K.Encaps(ek)
2: c2 ← Πsym.Enc(k, n)
3: Return (c1, c2)

Algorithm 6 (K, Πsym).Dec(dk, (c1, c2)).

1: k← K.Decaps(dk, c1)
2: m← Πsym.Dec(k, c2)

We include an informal outline of the proof of Theorem 1.
Since K is IND-CCA-secure, the key used to encrypt the challenge message k∗ is

indistinguishable from a bit string of equal length sampled uniformly at random, say r.
The challenger then generates (c∗KEM, k∗), but instead of using k∗ to encrypt the message,
r is used. From here, the adversary is then given (c∗KEM, c∗Πsym) and is effectively in the
IND-OT-CCA-security experiment for Πsym.

We make the observation that the proof of this theorem is also directly applicable in
the quantum setting, and as a corollary state the quantum version of Theorem 1.

Corollary 1. If K, a KEM, is QcQ-IND-CCA-secure and Πsym, a DEM, is QcQ-IND-OT-CCA-
secure, then (K, Πsym), as described in Algorithms 4–6, is an QcQ-IND-CCA-secure PKE.

2.5. Combiners

In this section, we introduce and formally define robust combiners. We provide a review
of previous PKE and KEM combiners in Section 4.

First, we define the notion of a (k, n)-robust combiner. Informally, a (k, n)-robust
combiner is an algorithm that accepts inputs of n of the same type of cryptographic schemes
to produce a new cryptographic scheme, and so long as at least k of the inputs satisfies the
same security notion the output is also equally secure. The formal definition of a robust
combiner was first proposed by Harnik et al. [2] to formalize such combinations.

Definition 7 ((k, n)-Robust Combiner). Let P be a set of cryptographic primitives. A (k, n)-
robust combiner is an algorithm that gets n candidate schemes from P as inputs, and whose output
is a single algorithm that is secure to some security specification s, if the following holds:

1. If at least k candidates securely implement the security specification s, then the result of the
combiner also securely implements s.

2. The running time of the result of the combiner is polynomial in the security parameter m, in n,
and in the lengths of the inputs to P.

3. QuAKe

In this section, we propose the Quantum Augmented KEM-DEM (QuAKe) combiner
and then prove it is a (1, 2)-robust combiner for both IND-CCA- and QcQ-IND-CCA-security
in the classical and quantum random oracle models, respectively.
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3.1. Construction

We first outline the QuAKe combiner. Informally, QuAKe encrypts the message with
the KEM-DEM scheme, (K, Πsym), then encrypts the DEM component of the ciphertext
using the second PKE, Πasym. Intuitively, we prevent an adversary who can break the
IND-CCA-security of (K, Πsym) from having the (K, Πsym) ciphertexts and prevent an ad-
versary who can break the IND-CCA-security of Πasym from directly seeing the message
encrypted within. Importantly, along with the message, we encrypt a secret random value,
δ. Two hashes of δ are used as the randomness for the encapsulation of the KEM,K, and the
encryption under Πasym, respectively. This δ value is then later used during the decryption
process to provide a method of ensuring that the ciphertext was well-formed. This ensures
that the adversary cannot perform any re-encryption/encapsulation attacks on a ciphertext.
We formally present QuAKe in Algorithms 7–9.

Algorithm 7 Π.KeyGen(1n).

1: (pk, sk)←$ Πasym.KeyGen(1n)
2: (ek, dk)←$K.KeyGen(1n)
3: pk′ ← (pk, ek)
4: sk′ ← (sk, dk)
5: Return (pk′, sk′)

Algorithm 8 (K, Πsym).Enc(ek, m).

1: δ←$ {0, 1}l

2: (cKEM, k)← K.Encaps(ek; Hash1(δ))
3: cDEM ← Πsym.Enc(k, m‖δ)
4: cPKE ← Πasym.Enc(pk, cDEM; Hash2(δ))
5: return (cKEM, cPKE)

Algorithm 9 Π.Dec((sk, dk), ((cKEM, cPKE))).

1: cDEM ← Πasym.Dec(sk, cPKE)
2: k← K.Decaps(dk, cKEM)
3: m‖δ← Πsym.Dec(k, cDEM)
4: if m‖δ = ⊥ then
5: Return ⊥
6: else
7: if (cKEM,−) ← K.Encaps(ek; Hash1(δ)) ∧ cPKE ← Πasym.Enc(pk, cDEM; Hash2(δ))

then
8: Return m
9: else

10: Return ⊥
11: end if
12: end if

We first provide some insight into the construction of QuAKe. As mentioned, the
use of δ is to deterministically randomize the encryption (encapsulation) of Πasym (K) and
perform a check. This check is intended to guard against adversaries capable of total
manipulation of either Πasym or K. For example, if an adversary is able to recover the key
from any ciphertext of K, as well as encapsulate any key they wish, the adversary may
attempt to recover the key used in the challenge ciphertext, re-encapsulate to a different
ciphertext, and then submit it to the decryption oracle. Without a check, the decryption
oracle would then return the challenge message directly to the adversary. The case of Πasym

being completely broken by the adversary is analogous to the situation described above.
Thus, without any check, there is no hope for security if one of Πasym or K is broken by
the adversary.
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3.2. Security of QuAKe

In this section, we prove that QuAKe is a (1, 2)-robust combiner with a tight secu-
rity reduction for both IND-CCA and QcQ-IND-CCA-security in the classical and quantum
random oracle models, respectively.

3.2.1. IND-CCA-Security of QuAKe.

We begin with the IND-CCA-security.

Theorem 2. Let Hash1 : {0, 1}l → {0, 1}n1 and Hash2 : {0, 1}l → {0, 1}n2 be random ora-
cles. Let (K, Πsym) be an ε1-correct KEM-DEM-based PKE and Πasym be an ε2-correct PKE. If
either (K, Πsym) is IND-CCA-secure or Πasym is IND-CCA-secure PKE, then Π, as described in
Algorithms 7–9, is a (1, 2)-robust combiner for IND-CCA-security in the random oracle model and
is ε-correct, where ε = max{ε1, ε2}. More precisely, for any efficient classical adversary A that
breaks the IND-CCA-security of Π, there exist efficient adversaries B1, and B2 such that

AdvIND-CCA
Π ≤

qHash1
+ qHash2

2l + ε · qDec + min{AdvIND-CCA
(K,Πsym) (B1), AdvIND-CCA

Πasym (B2)}, (8)

where the run times of all Bi are approximately equal to that of A, qDec is the number of decryption
queries made by A, and qHashi

is the number of queries made to the random oracle Hashi by A.

We begin with the correctness of Π. It is straightforward to see that Π is perfectly correct
if both (K, Πsym) and Πasym are perfectly correct. If (K, Πsym) is perfectly correct, then the real
encrypted message m‖δ in (cKEM, cDEM) is always recovered when running the (K, Πsym)
part of the decryption. If Πasym is perfectly correct, then cPKE always correctly decrypts to
cDEM. Finally, the deterministic re-encryption check is done; thus, an honestly generated
ciphertext δ would have been used to generate the randomness for both cKEM and cPKE
and so would pass the re-encryption check. Therefore, we have that Π is perfectly correct.

We now suppose that (K, Πsym) and Πasym are both not perfectly correct, but are
ε1- and ε2-correct, respectively. Whenever a decryption query is made, both K.Decaps
and Πasym.Dec are performed. In the case of a decapsulation error occurring, a different
symmetric key is recovered and used to decrypt some c′DEM and obtain some m′‖δ′. The
case where m′‖δ′ is equal to the actual message and randomness used is overwhelmingly
unlikely. Therefore, either ⊥ is returned if either check fails or a different message is
returned if the checks are passed. As decapsulation errors happen with probability ε1, the
probability of returning a different output instead of the true message is bounded above by
probability ε1.

The argument is analogous when considering the case of a decryption error occurring,
and the probability of an output that is not the true message being returned is bounded
above by ε2. We thus conclude that Π is ε-correct, where ε = max{ε1, ε2}.

Proof. We now prove the security of Π. First, we assume (K, Πsym) is an IND-CCA-secure
KEM-DEM encryption scheme.

G0: Game 0, described in Algorithm 10, is the IND-CCA-security experiment for Π so,

AdvIND-CCA
Π =

∣∣∣∣Pr[G0 → 1]− 1
2

∣∣∣∣. (9)
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Algorithm 10 Game 0 for the proof of Theorem 2, G0.

1: ((pk, ek), (sk, dk))←$ Π.KeyGen(1n)

2: m0, m1, st← ADec((sk,dk),·),Hash1(·),Hash2(·)(pk, ek)
3: b←$ {0, 1}
4: δ∗←$ {0, 1}l

5: (c∗KEM, k∗)← K.Encaps(ek; Hash1(δ
∗))

6: c∗DEM ← Πsym.Enc(k∗, mb‖δ∗)
7: c∗PKE ← Πasym.Enc(pk, c∗DEM; Hash2(δ

∗))

8: b′ ← ADec((sk,dk),·6=(c∗KEM ,c∗PKE)),Hash1(·),Hash2(·)(pk, ek, st, (c∗KEM, c∗PKE))
9: Return [b′ = b]

G1: For Game 1, outlined in Algorithm 11, we replace both Hash1(δ
∗) and Hash2(δ

∗)
with h′ and h′′, respectively, chosen uniformly at random from the ranges of Hash1 and
Hash2, so that if Hashi is called on δ∗, either h′ or h′′ is returned instead of Hash1(δ

∗),
or Hash2(δ

∗), respectively. This replacement is done consistently with the decryption
algorithm so that if Hashi is evaluated on δ∗ during decryption, h′ and h′′ are used to
perform the checks. The probability of distinguishing between the first two games is upper
bounded by the probability ofA guessing δ∗ and querying it. As δ∗ was sampled uniformly
at random, and as A has no access to δ∗, unless they are able to completely invert both
Πasym and (K, Πsym) since the decryption oracle never returns δ∗, we have that

|Pr[G0 → 1]− Pr[G1 → 1]| ≤
qHash1

+ qHash2

2l , (10)

where qHashi
is the number of queries Amakes to Hashi.

Algorithm 11 Game 1 for the proof of Theorem 2, G1.

1: ((pk, ek), (sk, dk))←$ Π.KeyGen(1n)

2: m0, m1, st← ADec((sk,dk),·),Hash1(·),Hash2(·)(pk, ek)
3: b←$ {0, 1}
4: δ∗←$ {0, 1}l

5: h′←$ Hash1.Range //Using random coins in place of Hash1(δ
∗)

6: h′′←$ Hash2.Range //Using random coins in place of Hash2(δ
∗)

7: (c∗KEM, k∗)← K.Encaps(ek; h′)
8: c∗DEM ← Πsym.Enc(k∗, mb‖δ∗)
9: c∗PKE ← Πasym.Enc(pk, c∗DEM; h′′)

10: b′ ← ADec((sk,dk),·6=(c∗KEM ,c∗PKE)),Hash1(·),Hash2(·)(pk, ek, st, (c∗KEM, c∗PKE))
11: Return [b′ = b]

We can now demonstrate that if A can win Game 1, then A can be used as an oracle
algorithm to win the IND-CCA experiment of (K, Πsym).
Claim: [1]

Pr[G1 → 1] ≤ AdvIND-CCA
(K,Πsym) (B1) + ε · qDec. (11)

Proof. In the IND-CCA experiment of (K, Πsym), B1 is first given the encapsulation key ek of
K, then it runs Πasym and generates (pk, sk), and picks two random oracles Hash1 and Hash2,
then forwards (pk, ek) to A. Here, B1 is able to perfectly simulate the oracles A would
have at this point, until eventually A terminates and outputs its two challenge messages
m0 and m1. Then, B1 picks δ∗ uniformly at random and submits m0‖δ∗ and m1‖δ∗ as its
challenge messages. It then receives (c∗KEM, c∗DEM) before picking h′′ uniformly at random
and computing c∗PKE ← Πasym.Enc(pk, c∗DEM; h′′) and giving (c∗KEM, c∗PKE) to A.

To answer decryption queries for A, when B1 receives (cKEM, cPKE) it first decrypts
cPKE itself by using sk, then uses its decryption oracle (cKEM, cPKE), and finally performs
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the checks after receiving the decryption m′‖δ′. Note that if (cKEM, cDEM) = (c∗KEM, c∗DEM),
then B1 cannot query its decryption oracle, but it does not need to do so, as in the real
experiment such a query, provided a decryption error does not occur, would fail the re-
encryption check. Thus, B1 will just perform a hash query to each of Hash1 and Hash2
before returning⊥. As a result, the simulation is then perfect unless an error occurs in Game
1 during decryption and results in a message being returned. Eventually, A will submit a
guess and B1 will submit the same guess.

Let E denote the event that A performs a query of the form, (c∗KEM, cPKE) and
Dec(sk, cPKE) = c∗DEM, that does not return ⊥ in Game 1 but does return ⊥ when sim-
ulated by B1.

We have that

Pr[G1 → 1] = Pr[G1 → 1|E] · Pr[E] + Pr[G1 → 1|¬E] · Pr[¬E] (12)

≤ Pr[E] + Pr[G1 → 1|¬E] (13)

First, note that ¬E corresponds to B1’s simulation of A’s decryption oracle being
perfect, that is B1’s answer to queries of the form (c∗KEM, cPKE) and Dec(sk, cPKE) = c∗DEM
agree with A’s decryption oracle. Thus, we have

Pr[G1 → 1|¬E] ≤ AdvIND-CCA
Πasym (B1). (14)

We now bound from above Pr[E]. As described, if decryption was performed correctly,
the oracle would return ⊥ as the query would fail the re-encryption check; thus, E could
only have occurred if a decryption error had taken place. Since QuAKe is ε-correct we
apply a uniform bound across all decryption queries and conclude that Pr[E] ≤ ε · qDec.

Thus , we have

Pr[G1 → 1] ≤ AdvIND-CCA
(K,Πsym) (B1) + ε · qDec.

As a result, by combing the inequalities above, we have

AdvIND-CCA
Π (A) ≤ AdvIND-CCA

(K,Πsym) (B1) + ε · qDec +
qHash1

+ qHash2

2l . (15)

We now consider the case where Πasym is an IND-CCA PKE.

Proof. G0: Game 0, as described in Algorithm 10, is the IND-CCA-security experiment for
Π so,

AdvIND-CCA
kdp =

∣∣∣∣Pr[G0 → 1]− 1
2

∣∣∣∣. (16)

G1: For Game 1, we perform the same game hop as before in Algorithm 11, and replace
both Hash1(δ

∗) and Hash2(δ
∗) with h′ and h′′, chosen independently and uniformly at

random from the ranges of Hash1 and Hash2. This change is done consistently with the
random oracles and the decryption oracle so that if δ∗ is queried during decryption, h′ and
h′′ are used for the check. By the same argument as above we have that the probability that
A distinguishes between these games is

|Pr[G0 → 1]− Pr[G1 → 1]| ≤
qHash1

+ qHash2

2l , (17)

where qHashi
is the number of queries Amakes to Hashi.

We are now able to show that if A can win Game 1, then A can be used as an oracle
algorithm to win the IND-CCA experiment of Πasym.
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Claim: [2]
Pr[G1 → 1] ≤ AdvIND-CCA

Πasym (B2) + ε · qDec. (18)

Proof. Suppose that A can win Game 1 in the classical setting with non-negligible proba-
bility, then it can be used as an oracle algorithm to break the IND-CCA-security of Πasym as
follows. Once B2 is given pk by the IND-CCA challenger it runs (K, Πsym) to generate the
key pair (ek, dk), then it selects Hash1 and Hash2 uniformly at random, and finally forwards
the (pk, ek) to A. At this stage, B2 can perfectly act as a random oracle to A and uses its
decryption oracle for Πasym to act as a decryption oracle for Π. Eventually, A terminates
and outputs challenge messages m0 and m1 to B2 who then selects δ∗ and h′ uniformly at
random and performs the following computations:

(c∗KEM, k∗)← K.Encaps(ek; h′), (19)

c∗DEM,0 ← Πsym.Enc(k, m0‖δ∗), (20)

c∗DEM,1 ← Πsym.Enc(k, m1‖δ∗). (21)

Then, B2 submits c∗DEM,0, c∗DEM,1 as its challenge messages. Next, B2 then receives
c∗PKE and forwards (c∗KEM, c∗PKE) to A and acts as the decryption oracle. We note that there
are special cases of decryption queries that B2 will not fully perform, but can answer.

1. (c, c∗PKE): B2 cannot query c∗PKE to its own decryption oracle. However, B2 answers
the query as follows: use dk to decapsulate c; if the result is k∗, query Hash1 and
Hash2 on r, a uniform random value, then return ⊥; otherwise, simply return ⊥
without querying the random oracles. In the first case, the real IND-CCA experiment
would reject, as the re-encapsulation check would fail. While in the second case, the
symmetric decryption algorithm would reject as c∗DEM,b was encrypted under k∗ and
the key given was different.

2. (c∗KEM, cPKE) ∧Dec(sk, cPKE) = c∗DEM,b: B2 will always return ⊥ and query Hash1 and
Hash2 on r, a uniform random value. In a real experiment, such a query would be
rejected as it would fail the re-encryption check.

For all other queries, B2 is able to perform decryption queries perfectly matching
A’s oracles.

Eventually, A terminates and outputs a guess, which B2 matches.
Let F denote the event that A performs a special case decryption query that does not

return ⊥ in Game 1 but returns ⊥ when simulated by B2.
We have that

Pr[G1 → 1] = Pr[G1 → 1|F] · Pr[F] + Pr[G1 → 1|¬E] · Pr[¬F] (22)

≤ Pr[F] + Pr[G1 → 1|¬F]. (23)

First, note that ¬F corresponds to B2’s simulation of A’s decryption oracle being
perfect, as it was able to correctly answer all special case decryption queries. Thus, we have

Pr[G1 → 1|¬F] ≤ AdvIND-CCA
Πasym (B2). (24)

We now bound from above Pr[F]. As outlined above in how B2 answers special
decryption cases, if decryption was performed correctly, both cases would return ⊥, thus F
could only have occurred if a decryption error had taken place. Since QuAKe is ε-correct
we apply a uniform bound across all decryption queries and conclude that Pr[F] ≤ ε · qDec.

Thus, we have
Pr[G1 → 1] ≤ AdvIND-CCA

Πasym (B2) + ε · qDec.



Cryptography 2022, 6, 15 13 of 18

Finally, we can conclude if Πasym is in an IND-CCA PKE, then

AdvIND-CCA
Π ≤ AdvIND-CCA

Πasym (B2) + ε · qDec +
qHash1

+ qHash2

2l . (25)

3.2.2. QcQ-IND-CCA-Security of QuAKe

Next, we prove the QcQ-IND-CCA-security of QuAKe.

Theorem 3. Let Hash1 : {0, 1}l → {0, 1}n1 and Hash2 : {0, 1}l → {0, 1}n2 be quantum random
oracles. Let (K, Πsym) be an ε1-correct KEM-DEM based PKE and Πasym be an ε2-correct PKE. If
either (K, Πsym) is QcQ-IND-CCA-secure or Πasym is QcQ-IND-CCA-secure, then Π, as described
in Algorithms 7–9, is a (1, 2)-robust combiner for QcQ-IND-CCA-security in the quantum random
oracle model and is ε-correct, where ε = max{ε1, ε2}. More precisely, for any efficient quantum
adversary A that breaks the QcQ-IND-CCA-security of Π, there exists efficient adversaries B1 and
B2 such that

AdvQcQ-IND-CCA
Π ≤

2(qHash1
+ qHash2 + qDec)√

2l
+ ε · qDec + min

{
AdvQcQ-IND-CCA

(K,Πsym)
(B1)

AdvQcQ-IND-CCA
Πasym (B2)

. (26)

where the run times of all Bi are approximately equal to that of A, and the hash queries performed
by each Bi are equal to A.

Proof. We will outline the proof of QcQ-IND-CCA-security of QuAKe. It is virtually identi-
cal to that of Theorem 2, except Hash1 and Hash2 are replaced with quantum random oracles,
|Hash1〉 and |Hash2〉, the simulator algorithms use 2q′-wise independent functions, where
q′ is the number of queries the adversary makes in the reduction, and the adversaries are
quantum. The primary difference is the first game hop to G1, as described in Algorithm 11
in both halves of the proof. In the classical setting, we employ a simple replacement of
Hashi(δ) with h′ or h′′. However, such a replacement does not work in the quantum random
oracle model. This is due to the inability of the challenger to read the oracle queries and
perform the replacement of Hash1(δ) with h′ and Hash2(δ) with h′′ in the quantum random
oracle model as a result of superposition access to the oracles. Instead, we invoke the O2H
Lemma 1 to replace the hashes with random values and otherwise continue in the same
manner. We provide a description of the O2H simulator B below in Algorithm 12, where A
is the QcQ-IND-CCA adversary from the security experiment. After this replacement, the
proof continues in the same fashion as in Theorem 2.

In Game 1, we reprogram both Hash1 and Hash2 on δ∗; thus, to invoke the O2H Lemma
we set S := {δ}, H := |Hash1 ×Hash2〉, where Hash1 × Hash2(a) := (Hash1(a), Hash2(a)),
G is H except reprogrammed such that when queried on δ, (h′, h′′) is returned, and z =
(δ∗, (Hash1(δ

∗), Hash2(δ
∗)).

Algorithm 12 O2H Simulator algorithm, B|Hash1×Hash2〉(δ∗)

1: i←$ {1, ..., q′}
2: run A|Hash1×Hash2〉(δ∗, (Hash1(δ

∗), Hash2(δ
∗)) until the ith query.

3: if i > the number of queries made to |Hash1 ×Hash2〉 then
4: Return ⊥
5: elseMeasure the query δ̂
6: return [[δ̂ = δ∗]]
7: end if

We then have that Ple f t, as in the O2H Lemma, describes Game 0 for A as it is running
with the original, untampered oracle H. While Pright describes A running with the repro-
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grammed oracle G, which returns (h′, h′′) when queried on δ∗. In both cases, A is running
on input z = (δ∗, (Hash1(δ

∗), Hash2(δ
∗)).

Finally, Pguess is then described in Algorithm 12. Note, as δ∗ was chosen uniformly
at random from {0, 1}l , we have Pguess =

1
2l . We also note that B makes at most qHash1

+
qHash2 + qDec queries to its oracle |Hash1 ×Hash2〉 to answer A’s queries, and so we have
that q′ = qHash1

+ qHash2 + qDec. Thus, by the O2H Lemma, we have that

|Pr[G0 → 1]− Pr[G1 → 1]| ≤
2(qHash1

+ qHash2 + qDec)√
2l

. (27)

As mentioned before, from here, the proof proceeds in the same fashion as in Theorem 2,
and we can then conclude

AdvQcQ-IND-CCA
Π ≤

2(qHash1
+ qHash2 + qDec)√

2l
+ ε · qDec + min

{
AdvQcQ-IND-CCA

(K,Πsym)
(B1)

AdvQcQ-IND-CCA
Πasym (B2)

.

4. Comparisons

We next include a brief discussion on the previous results on combiners, beginning
with PKE combiners and then KEM combiners.

4.1. PKE Combiners

Asmuth and Blakely [5] proposed what would retroactively become one of the first
PKE combiner with the so-called “XOR-Input” combiner, defined as

c = (Π1.Enc(pk1, r), Π2.Enc(pk2, m⊕ r)), (28)

where r is a uniformly random value. However, Harnik et al. would later prove that such a
combiner is not robust for IND-CCA-security, but rather is only robust for weaker notions,
such as IND-CPA and IND-CCA1-security [6]. Additionally, Harnik et al. proved that the
nested, or cascade, encryption combiner is also not robust for IND-CCA-security.

Hohenberger et al. [8] proposed a combiner which does attain IND-CCA-security but
requires three encryption schemes, each of which are required to be secure according to
three different security notions, meaning it is, in essence, a (3, 3)-robust combiner. This
undermines the appeal of using combiners in that the resulting algorithm is secure without
full trust in the security of all inputs. Furthermore, there does not exist any result on
the necessary and, more importantly, sufficient conditions to reach QcQ-IND-CCA-security.
Thus, the viability of this combiner for classical and quantum schemes is unclear.

4.2. KEM Combiners

Giacon et al. provided several IND-CCA-robust KEM combiners with different con-
structions assuming either the standard, random oracle, or ideal cipher models [10]. In this
work, various key-mixing functions, or core functions, as Giacon et al. termed them, are
used to combine the different keys and ciphertexts to produce a new secure key. Moreover,
the authors establish a sufficient condition for the core function, such that the respective
combiners retain IND-CCA-security from any one of the input KEMs. This condition is a
novel security notion called split-key pseudorandomness. Informally, split-key pseudoran-
domness states that so long as any of the input keys are uniformly distributed, then the
resulting evaluation of the core function will also be uniformly distributed. The specific
core functions used in this work include: evaluating a pseudorandom function (PRF) on an
individual key and all ciphertexts before XORing all evaluations together, using a random
oracle on the ciphertexts and the keys or in a nested series of keyed permutations, and
finally evaluating a PRF on the ciphertexts and a nested series of ideal cipher evaluations.
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Bindel et al. provided further constructions of KEM combiners with the further
consideration of adversaries with different levels of quantum capabilities, so-called XyZ
adversaries [4]. The results of this approach were three KEM combiners in the same vein
as Giacon et al.’s core functions which combine the different keys to produce the new key
while also being secure against both classical and quantum adversaries. Specifically, the
combiners constructed are the so-called “XOR-then MAC” combiners where the keys are
split to produce an ephemeral key and MAC key to be computed over the ciphertexts and
two combiners using a dual PRF as well as traditional PRFs.

Ultimately, the most successful previous works are those which present constructions
of hybrid secure robust KEM combiners, that hybridize PKEs according to Theorem 1
and Corollary 1. However, this is done utilizing a similar approach, namely generating
multiple keys and using core functions to sufficiently randomize them and creating a single
symmetric key.

In comparison, our construction relies on fewer and relatively traditional assumptions
of cryptographic primitives than the previous constructions. However, our construction
does have the drawback of worse performance during decryption due to the re-encryption
and re-encapsulation checks performed. Finally, most of the previous constructions rely on
the secure KEM component having perfect correctness. This limits which quantum-resistant
algorithms can be used as inputs due to the correctness error present in many lattice-based
schemes. Our construction does not have this limitation.

5. Conclusions

Hybrid cryptographic algorithms, which combine both classical and quantum-resistant
primitives, offer an appealing solution to the upcoming problems associated with the tran-
sitioning of the cryptographic infrastructure. Such algorithms provide quantum-resistance
without the risk of losing current-day security assurances and satisfy existing standards.
While there have been earlier work on the theory of hybrid cryptography, there have not
been any results on direct constructions of hybrid PKEs or hybrid combiners for PKEs.
The more common approach has been to develop KEM combiners and then convert the
resulting KEM into a PKE.

In this work, we furthered the theory of hybrid cryptography by proposing a new
provably secure (1, 2)-robust combiner, QuAKe, with tight reduction for both IND-CCA-
security in the random oracle model, and QcQ-IND-CCA-security in the quantum random
oracle model. Our combiner built from the KEM-DEM paradigm first proposed by Cramer
and Shoup [14] and augmented the paradigm to directly construct a new, fully secure PKE.
Moreover, our construction was built with fewer components and security assumptions
when compared with previous results, as well as not being limited to schemes with perfect
decryption correctness.
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Appendix A

We now provide a brief introduction to quantum computation knowledge used for this
work. Nielsen and Chuang [15] provide a standard text with a more complete explanation
of the subject.

LetH be a finite-dimensional complex Hilbert space with an inner product. Vectors in
H are denoted with “bra–ket” notation, with |x〉 being a vector inH, and 〈x| denoting the
complex conjugate transpose of |x〉. The inner product on |x〉, |y〉 is then given by 〈x, y|x, y〉.
A quantum state is defined as a vector inH with norm 1. Let {|x〉}x be a basis forH, then
any quantum state |y〉 inH can be represented in superposition as,

|y〉 = ∑ φx|x〉, (A1)

where φx are complex numbers such that |y〉 has norm 1.
For two quantum systems H1 and H2, the joint quantum system is given by the

tensor productH1 ⊗H2; for two states |x〉 inH1 and |y〉 inH2, the joint quantum state is
represented as |x〉|y〉, or |x, y〉. Quantum operations onH are represented by the unitary
transformations U. Consequently, these quantum operations are, in fact, reversible prior to
measurement, as during quantum computation they are unitary matrices. This is notable as
it imposes some constraints with the quantization of classical operations such as decryption
or decapsulation. In particular, let A be a classical algorithm with input x in {0, 1}a and
output y in {0, 1}b and

{0, 1}a × {0, 1}b → {0, 1}a × {0, 1}b : (x, t) 7→ (x, t⊕A(x)) (A2)

be a classical reversible mapping. Then, the corresponding unitary transformation A acting
linearly on quantum states is given by

A : ∑
x,t

ψx,t|x, t〉 7→∑
x,t

ψx,t|x, t⊕A(x)〉.

For full generality, an additional workspace register may be included with the input
and output registers. Thus, the general quantization of the classical algorithm is

A : ∑
x,t,z

ψx,t,z|x, t, z〉 7→ ∑
x,t,z

ψx,t,z|x, t⊕A(x), z〉. (A3)

Appendix B

We now include the omitted definitions from Section 2 of the main paper.

Definition A1 (Correctness of PKEs). We say that a public-key encryption scheme Πasym is
ε-correct, if for all messages m in the message spaceMΠasym :

Pr[Dec(sk, c) 6= m|(pk, sk)← KeyGen, c← Enc(pk, m)] ≤ ε. (A4)

We say that a PKE Πasym is perfectly correct, if ε = 0.

Definition A2 (IND-CCA-Security for PKEs in the QROM). We say that a PKE Πasym is
IND-CCA-secure in the QROM (QcQ-IND-CCA-secure) in the quantum random oracle model, if,
for all quantum adversaries AQ and a quantum random oracle |H〉, we have that

AdvQcQ-IND-CCA
Πasym (AQ) =

∣∣∣∣Pr
[

ExptQcQ-IND-CCA
Πasym (AQ)−

1
2

]∣∣∣∣ (A5)

is a negligible function in n ∈ N , where ExptQcQ-IND-CCA
Πasym (AQ) is defined in Algorithm A1.
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Algorithm A1 The QcQ-IND-CCA-security experiments for PKEs in the QROM,
ExptQcQ-IND-CCA

Πasym (AQ).

1: (pk, sk)←$ Πasym.KeyGen(1n)

2: m0, m1, st← AΠasym.Dec(sk,·),|H(·)〉
Q (pk)

3: b←$ {0, 1}
4: c∗ ← Πasym.Enc(pk, mb)

5: b′ ← AΠasym.Dec(sk,·6=c∗),|H(·)〉
Q (pk, st, c∗)

6: return [b = b′]

Definition A3 (Correctness of KEMs). We say that a KEM K is ε-correct, if:

Pr[Decaps(dk, c) 6= k|(ek, dk)← KeyGen, (c, k)← Encaps(ek)] ≤ ε. (A6)

We say a KEM K is perfectly correct, if ε = 0.

Definition A4 (Correctness of DEMs). We say that a DEM Πsym is ε-correct, if for all messages
m in the message spaceMΠsym :

Pr[Dec(k, c) 6= m|K ← KeyGen, c← Enc(k, m)] ≤ (A7)

We say that a DEM Πsym is perfectly correct, if ε = 0.
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