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Abstract: This paper suggests a strategy (C5) for assessing cloud and IoT system (CIS) dependabil-
ity, availability, and cybersecurity based on the continuous collection, comparison, choice, and com-
bination of Markov and semi-Markov models (MMs and SMMs). It proposes the systematic building
of an adequate and accurate model to evaluate CISs considering (1) continuous evolution of the
model(s) together with systems induced by changes in the CIS or physical and cyber environment
parameters; (2) the necessity of collecting data on faults, failures, vulnerabilities, cyber-attacks, pri-
vacy violations, and patches to obtain actual data for assessment; (3) renewing the model set based
on analysis of CIS operation; (4) the possibility of choice and utilizing “off-the-shelf” models with
understandable techniques for their development to assure improved accuracy of assessment; (5)
renewing the models during application of CIS by time, component or mixed combining, taking
into consideration different operation and maintenance events. The results obtained were algo-
rithms for data collection and analysis, choice, and combining appropriate MM and SMMs and their
different types, such as multi-fragmental and multiphase models, considering changing failure
rates, cyber-attack parameters, periodical maintenance, etc. To provide and verify the approach,
several private and public clouds and IoT systems were researched and discussed in the context of
C5 and proposed algorithms.

Keywords: Markov modelling; semi-Markov modelling; availability; cybersecurity; cloud; IoT

1. Introduction

The attractiveness of cloud services and Internet of Things (IoT) systems that inte-
grate with them for industrial and individual customers is due to the possibility of de-
ploying scalable capacities and the availability of isolated virtual resources. The demand
for cloud services is growing every year, and the most important characteristics of these
services are given in the documents of leading institutions, namely NIST, ENISA, IEEE,
etc. [1-3]. The mentioned scalability, as well as support for virtualization functions, effi-
cient use, flexibility and, under the first conditions, failure and disaster resistance, provide
significant advantages in comparison with grid computing systems, supercomputers, etc.

The growing need for the use of web technologies is due to the emergence of new
technological developments for greater flexibility and availability at a reduced cost. An
important factor for the effective use of Web, Cloud, and IoT technologies is compliance
with the reasonable requirements of specifications and standards that provide recommen-
dations for minimizing risks and various problems due to failures, cyber-attacks, etc.

Despite the dynamic and successful development of cloud and IoT technologies, their
use in domains sensitive to the consequences of failures has certain limitations [4-6].
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Additional limitations are cloud regulatory requirements for data privacy [7]. By them-
selves, these technologies do not minimize the probability of failures and cyber-attacks,
and the risks of accidents and disasters caused by them for critical systems and infrastruc-
tures. To minimize these risks, first, it is necessary to establish means of ensuring fault
and intrusion tolerance, when developing system projects, to implement and maintain
such means during the operation of systems, improving them with attention to applica-
tion experience.

To develop and implement such tools, it is necessary to accurately and adequately
assess the relevant indicators of reliability and cybersecurity. This is a difficult task, con-
sidering various circumstances [7-10].

e Cloud and IoT systems are complex, multi-component, distributed systems. There-
fore, a certain level of generalization is necessary for the analysis and assessment
of reliability and cybersecurity, which determines the risks to the accuracy of cal-
culating indicators. Indeed, such systems consist of hundreds and thousands of
software and hardware components that have different vulnerabilities and intensi-
ties of failures and different laws of distribution of time to failure and recovery, as
well as their values. Cloud and IoT systems (CISs) have many common features:
they are often combined in integrated cyber-physical systems and IT infrastructure;
therefore, it is advisable to solve the problems of assessment and provision of reli-
ability, availability, and cybersecurity from a single point of view.

e  The peculiarity of CISs is that their structures and values of parameters affecting
the evaluation of indicators are not fixed, although cloud providers providing rel-
evant services use simplified methods based on determining the ratio of the time
when the system is in an operational condition until the total time of its use, con-
sidering downtime. This is a simplified definition of the stationary value of the
availability function, considering downtime for various reasons (failures, cyber-at-
tacks, lack of information sources).

e  (CISs operate in conditions of uncertainty and changes in the parameters of the
physical and informational environment. This factor is particularly influential, as
it causes uncertainty in the assessment of dependability and cybersecurity param-
eters of individual components and systems as a whole.

Thus, there are certain challenges regarding the choice of methods and the types of
models for the evaluation of cloud and IoT systems. These challenges are related to:

e firstly, the possibility of the reliable selection and construction of sufficiently fixed
models, that is, models selected and intended for the evaluation of systems
throughout the entire life cycle, including the operation stage;

e secondly, the possibility of building such sufficiently fixed models in general, con-
sidering various factors that lead to changes in the system and environmental pa-
rameters.

Therefore, first of all, it is important to analyze various methods and model ap-
proaches that are based on the most developed and tested Markov and semi-Markov mod-
els [7,10] and that used to assess reliability, availability, and cybersecurity, and secondly,
to develop a methodology that will provide an answer to the challenges related to the
choice of a model base and its rational change for the monitoring and reliable evaluation
of cloud and IoT systems during their use and evolution, taking into account the physical
and cyber environment.

The objective of this paper is to improve the accuracy and trustworthiness of cloud
and IoT system availability and cybersecurity assessment through informed and flexible
choices and the combined use of different types of Markov and semi-Markov models
(MMs and SMMs).

The following research questions were formulated to address this objective:

e  What approach can be utilized to provide accurate CIS dependability and availability
assessments considering cybersecurity issues?
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e  Which model attributes are important to classify Markov, semi-Markov, and other
derived models that are applied to assess CISs and formulate the tasks to choose ap-
propriate models?

¢  What consequences should be accepted and combined with the different types of
MMs and SMMs for CISs considering the features and parameters of the physical and
cyber environment?

e  How to apply the methodology of choice and combination of MMs, SMMs, and their
modifications to assess the availability and cybersecurity of implemented CISs?

The overall contribution of this research covers the developed methodology of deci-
sion-making support including a strategy and principles for assessing evolvable cloud
and IoT systems’ availability/accessibility depending on the reliability, cybersecurity and
privacy attributes. They are based on: consideration of continuous evolution of systems
and changing CIS parameters; collecting and analyzing data about faults, vulnerabilities
and cyberattacks causing failures; actualization of models set, which can be applied for
assessment by models’ choice and combining taking into account changed conditions and
events. Besides, the applied side of the investigation contribution is the algorithms for
choice and combining models of dependability assessment in the development, modern-
ization and operation of CIS.

The paper is structured as follows. Section 3 describes the approach to the assessment
of CIS dependability and cybersecurity. Section 4 provides results of Markov and semi-
Markov models’ classification and analysis to choose types of models for cloud and IoT
systems assessment. In Section 5, principles and algorithms of choice and combining MMs
and SMMs are developed to provide trustworthiness of CIS dependability, availability,
and cybersecurity assessment. Section 6 describes and discusses cases related to the choice
and combination models to assess real cloud and IoT systems availability and cybersecu-
rity such as cloud video systems, smart building IoT automation systems, unmanned ro-
botics IoT systems, etc. The results of applying the suggested approach to the choice and
combining CIS dependability models are analyzed in Section 7. Finally, Section 8 con-
cludes and discusses research results, and suggests an outline of future directions.

2. State of the Art

The analyzed references considering Markov modelling for assessing the availability
and cybersecurity of cloud and IoT systems can be divided into three groups: the refer-
ences related to assessing availability and reliability [11-27], the references related to as-
sessing cybersecurity [28-39], and references related to assessing both availability and cy-
bersecurity as attributes of dependability of cloud and IoT systems [40—43].

The authors of [11] considered a few scenarios of virtual machine (VM) practices for
single system failure, multiple system failures, and power outages by utilizing a Markov
model. This allowed for the investigation of improved repair strategies of accessibility in
various circumstances. The availability analysis of the cloud infrastructure [12] is based
on a scalable, stochastic model-driven approach to quantify the availability of a large-scale
IaaS cloud. In the paper [13], together with reliability block diagrams (RBDs) and stochas-
tic Petri nets, continuous-time Markov chains (CTMCs) were used for developing a hier-
archical model-based strategy to evaluate the availability and performance-related met-
rics for private cloud storage services. The applicability of the proposed models was
demonstrated through a cloud storage service hosted on the Eucalyptus platform consid-
ering security and privacy issues.

The design of a multi-state semi-Markov availability and reliability prediction model
for nodes in volunteer cloud computing systems was discussed in [14]. The implementa-
tion of the model in a real volunteer cloud system was presented, and the obtained results
were discussed. To analyze the survivability of the cloud service after a service break-
down occurrence, the authors of [15] proposed a model and closed-form solutions involv-
ing a CTMC. The model allowed quantitatively assessing the system survivability while
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providing insights into the efforts invested in system recovery strategies. Based on the
simulation results, certain clarifications of the possible use of the developed models were
suggested. In the paper [16], a Markov model was utilized to develop a novel VM migra-
tion algorithm aimed at predicting the future load of the host. For evaluating the availa-
bility of the algorithm, the cloud simulation software CloudSim was applied. The number
of active hosts, the migration times of the VMs, and the energy consumption were consid-
ered to show the main advantages of the algorithm compared to other algorithms.

The study [17] addressed a Markov reliability model for analyzing the performance
of a multistate cloud computing transition system. The model allowed assessing various
reliability measures such as reliability and availability functions, mean time to failure, and
mean time to repair. The work [18] proposed models utilizing RBDs and the semi-Markov
process to assess the availability of vehicular clouds with a multilayered architecture.
These models were developed for each subsystem of the vehicular system, and they were
combined for evaluating the availability of the complete system. Authors of [19] presented
a Markov process-based reliability model of a flood alerting system (FAS) based on the
IoT. The model utilization allowed calculating the reliability and availability functions, as
well as the mean time to failure of the FAS and its components. The study [20] presented
a modelling methodology based on a hierarchical model of three levels. In addition to an
RBD (at the top level), which was utilized for capturing the overall architecture of the IoT
infrastructure, and a fault tree (at the middle level), which was utilized for elaborating
system architectures of the member systems in the IoT infrastructure, a CTMC (at the bot-
tom level), which was utilized for capturing detailed operative states and transitions of
the bottom subsystems in the IoT infrastructure, was considered. A feature of the pro-
posed methodology is the combined assessment of reliability and cybersecurity, which
has been demonstrated for IoT smart factory infrastructure. To predict the future availa-
bility and reliability of processing requests in a mobile cloud computing (MCC) system, a
semi-Markov processes-based multi-state model was defined in [21]. Utilizing this model,
decision-making on increasing the speed, disk space of the system, etc. can be supported,
and the efficiency of the request processing in the MCC system can be evaluated.

The paper [22] proposed an availability model of a healthcare IoT system comprising
two groups of structures described by separate Markov state-space models. These models
were combined for modelling the whole IoT system and deriving the probabilities of the
full service, the degraded service, and the system unavailability under a given scenario.
The paper [23] was devoted to joint utilization of Markov and semi-Markov processes to
simulate the behavior of a cloud server system (CSS) and assess its availability considering
diverse factors influencing its states. Comparative analysis of simulation results derived
via Markov and semi-Markov availability models of the CSS was conducted in the paper.
These results can be used by developers and service personnel of the CSS systems to de-
scribe the dynamic degradation at different design and functioning phases and consider
the impact facets of diverse inception.

The study [24] presented Markov models for the cloud, fog, and edge systems, which
allowed defining a range of system metrics to study the performance of workflow sched-
uling and offloading of service-based applications. An evidence-based stochastic (Markov
chains) analysis of the Reactive Architecture with a Cloud accountability System was con-
ducted in [25]. The analysis results were utilized for facilitating a method to provide de-
pendability assurance evidence for the Reactive Architecture. A multistage optimization
problem of moving target defense mechanisms deployment was modelled in [26] as con-
strained by Markov decision processes. This modelling allowed maximizing the available
resources of an intelligent system under the limitations of industrial Internet of Things
environments. The authors of [27] proposed an auto-scaling algorithm for an elastic cloud
workflow engine utilizing reinforcement learning and a semi-Markov decision process
(SMDP). The algorithm provides an opportunity to automatically scale instances in ad-
vance and adapts to changes in traffic. It was demonstrated that the algorithm made it
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possible to reduce the violation rate in Service Level Agreements and improve the availa-
bility of the cloud workflow service.

In the paper [28], a Markov model for backhaul link quality was used when develop-
ing a novel decentralized authentication architecture aimed at supporting flexible and
low-cost local authentication with the awareness of context information of 5G mobile edge
computing (MEC) network elements. The simulated results revealed that the architecture
using the Markov model could be applied to achieve a flexible balance between network
operating cost and MEC reliability. For computing the probability distribution of cloud
security threats, a novel approach based on a Markov chain and common vulnerability
scoring System was proposed in [29]. The approach allowed estimating the probabilities
of cloud threats and types of attacks, which were confirmed by the simulation results. To
explore the relationship between physical servers’ failure rates and job failure events, a
CTMC reliability model for Google cluster physical machines was presented in [30]. The
reliability model was utilized for evaluating steady-state availability, steady-state una-
vailability, mean time to failure, and mean time to repair in the Google cluster.

For optimally and dynamically controlling the assignment of VMs based on the types
of service and their stochastic features, cost of security services, cost of blocking, and cost
of location, the work [31] presented a method based on an SMDP. This method was used
when developing optimal security- and location-aware VM mechanisms to efficiently
manage the placement of computation tasks in a multi-cloud environment considering
MEC and the backup cloud. In [32], the IP address allocation behaviors in two major cloud
computing providers (Amazon Web Services and Google Cloud Platform) were analyzed.
A Markov model was utilized for generating an address prediction set from time series
data of collected IP addresses. The model allowed reducing the search space for allocated
IP addresses. To monitor, detect and localize performance anomalies for container-based
clusters, a framework using the hierarchical hidden Markov model was presented in [33].
The results obtained showed that the model could be applied for accurately detecting and
localizing performance anomalies in a timely fashion. To realize a secure execution of of-
floaded tasks in the 5G-driven MEC while minimizing service rejection and security risk, a
secure VM management mechanism using the SMDP framework was formulated in [34].

For evaluating the efficiency of the blockchain-based network utilized to increase the
security of the network, a discrete-time Markov chain (DTMC) model was built and dis-
cussed in [35]. This model allows finding the main influence factors for the efficiency of
the network and strategies to improve its efficiency. To determine the steady state availa-
bility and the mean time to failure of the cloud under an economic denial of sustainability
(EDoS) attack, the work [36] presented a semi-Markov model. This model is a part of the
cost management strategy aimed at preventing a cloud adopter from undergoing bank-
ruptcy. To detect intruders in ad hoc mobile cloud computing networks through intelli-
gent cross-layer analysis, a Markov model was developed and explored in [37]. The model
was simulated via Network Simulator 3 for evaluating parameters such as accuracy, end-
to-end delay, energy consumption, network lifetime, packet delivery ratio, and through-
put.

In the study [38], Markov chains in conjunction with the fault trees were used by a
hierarchical availability model for evaluating the edge-fog-cloud continuum’s availabil-
ity. The possibility of utilizing the model to support the scalability and capacity planning
of edge, fog, and cloud computing environments was demonstrated. To predict and detect
the probability of occurrence of security threats and attacks arising in the cloud environ-
ment, hidden Markov models were utilized in [39]. The model was trained to identify
anomalous sequences or threats by properly detecting accurate and up-to-date infor-
mation on the risk exposure of cloud-hosted services. The model can be used as an under-
lying framework and a guiding tool for cloud systems security experts and administrators
aiming to secure processes and services over the cloud.

To simulate the behavior of an intrusion tolerance system (ITS) aimed at maintaining
a useful level of operational capability throughout ongoing cyber-attacks, a semi-Markov
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process was utilized [40]. This also allowed determining the ITS availability, mean time
to security failure, and cost to quantitatively analyze the ITS security. The paper [41] pre-
sented a case study where, to simulate a cloud-redundant array of an independent disk
storage system under denial-of-service attacks, an analytical method integrating Markov
chains and binary decision diagrams were used. The case study was presented to demon-
strate a risk assessment approach addressing both security and reliability issues. To cap-
ture the behavior of a cloud-based firewall service consisting of a load balancer and virtual
firewalls, a Markov chain-based analytical model was developed in [42]. From this model,
to meet the specified response time, closed-form formulae for determining the minimum
number of virtual firewalls were obtained. Numerical examples of the model utilization
for achieving proper elasticity under fluctuating traffic load were presented.

The authors of [43] developed a Markov model for simulating a distributed denial-
of-service attack based on VM co-residence and analyzing the performance of the cloud
data center. To demonstrate the impact of VM co-residence on the performance of physical
machines, experiments via the developed model were conducted.

Table 1 shows the possibilities of the models presented in [11-43] for the assessment
of cloud/IoT systems.

Table 1. Possibilities of the models presented in [11-43] for assessment of cloud/IoT systems.

Systems

) Models Utilized Characteristics Assessed
Considered

Intru-
Semi- Availa- Relia- Cyber Depend- sion
Markov bility bility Security ability Toler-
ance

Reference
Cloud IoT Markov

[11] - - -
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19] - + + -
[20] - +
[21] + - - +
[22] - +
[23] +
[24] + -
[25] +
[26] - +
[27] + -
[28] - +
[29] +
[30] +
[31] + -

+

+

[+ [+ |+ |+ |+ |+
I
I

+
|

++ |+ |+ |+
[

|+ [+ |+ |||+ |+ ][+ |+ |+ |+ ]+]+]|+
|+ [+ |+ ||| F [+ |+ ][+ |+ |+ |[+]+]+]|+
[
[
[

|
+

[
+ 0+ |+
[
[
[

|
+
|
|

[32]
[33]
[34] -+
[35] -+ ¥ - - -
[36] - - + - -

I
I
I
I
|+ [+ [+ |+ |+ |+ [+ ]+
I
I
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[37] + - + - - - - -
[38] + - + - - - - -
[39] + - + - - - - -
[40] -+ - ¥ - - _ ; ;
[41] + — + — — — — + +
[42] -+ - - - _ ; ;
[43] -+ - - _ ; ;

The results of the analysis in Table 1 are the following:

e  (loud and IoT systems were considered in 25 and 8 papers, respectively;

e  Only Markov and semi-Markov models were utilized in 23 and 9 papers, respectively;

e  Both Markov and semi-Markov models were utilized in 1 paper;

e Approaches to availability and reliability assessment of IoT/Cloud systems were pre-
sented in 17 papers;

e  Twelve papers demonstrated approaches to cybersecurity assessment of IoT/Cloud sys-
tems;

e  Four papers considered the intrusion tolerance issues related to IoT/Cloud systems.

Thus, there were almost no works devoted to joint utilization of Markov and semi-
Markov models for assessing the availability and cybersecurity of cloud and IoT systems.

The general conclusion considering the analysis of the publications concerning the
assessment of CIS dependability and cybersecurity using different types of models, espe-
cially MMs and SMMs, is the following. Most of them provide a fixed choice of models,
without detailed consideration for alternatives and characteristics of individual compo-
nents, changes in parameters over time and evolution of systems, or physical and cyber
environments.

3. Approach and Stages

The proposed approach to the assessment of CISs is based on the strategy of model
design consisting of the step-by-step selection, adaptation, and possible change of the type
and parameters of the models during the use of the system. This strategy is implemented
as follows.

3.1. Selection of Models

Systems, subject to compliance with the basic assumptions, are evaluated by Markov
(MM) and semi-Markov (SMM) models or their modifications, in particular, multi-frag-
mental (MFM) and multi-phase (MPM) models, which:

e are (notonly) selected in such a way that the peculiarities of systems, as well as phys-
ical and cyber environments during their development, are considered,

e  (but also) vary (change) with the systems during their use, so that various events,
changes in failure parameters, cyber-attacks, privacy violations, recovery, etc. are
considered for improving the adequacy and accuracy of the assessment of availabil-
ity and cybersecurity.

3.2. Combination of Models

An important component of the approach also offers the possibility to combine mod-
els both in time (time combination, t.c.) and by individual components or subsystems
(component combination, c.c.).

Therefore, it is about ensuring an adequate selection and “rejuvenation” of the model
base of MMs, SMMs, and the use of combined models for the evaluation of cloud and IoT
systems. Combining and fitting models in space “time-components” provide increasing
adequacy and accuracy of CIS dependability and cybersecurity assessment.
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3.3. Attributes and Indicators
For evaluation, the following dependability attributes [44,45] were chosen:

o  reliability as a continuity of correct functioning and delivery of service;

e  availability as availability for correct functioning and delivery of service at any time;

e  cybersecurity as a composite of the sub-attributes, first of all, integrity (absence of
improper system alterations) and accessibility to services.

Safety (an absence of catastrophic consequences for the user(s) and the environment
[44]) is not considered in the framework of the paper. However, the suggested approach
can be extended to safety-critical systems as well by the specification of unsafe states and
application of safe availability function [45].

The main indicators applied for the assessment of CIS are based on the availability
function that considers different reasons for failures including cyber-attacks on system
assets. In addition, special indicators of cybersecurity such as rates of attacks on compo-
nents, the criticality of attacks, and losses of CIS availability caused by cyberattacks are
applied.

It should also be noted that in this study, privacy is considered one of the attributes
of cybersecurity. To assess privacy using the approach proposed, it is necessary to perform
an analysis of cyber-attacks considering the data privacy vector [7,13,46,47].

3.4. Stages of Modelling and Assessment

The presented approach is based on the combination of the following main intercon-
nected principles and procedures (Figure 1).

Preliminary stage Section 3
Analysis and
classification of models
according with attributes |
Sa, Ss and S Set Su
e sage y Sediond
|
} Analysis of |
Choice / |
} parameters N |
| Combining | |,
I'| System| Environment }
i:i:iii:iii [ ‘
} Dynamical stage V¥ }
} Changed |
} parameters |
| Y |
|
} Analysis of Rechoice / | |
| parameters —» | Recombi- }
| changes ning |
i 1
|
‘ |
! |
! |
! |

Verification and implementation stage Section 5,6

(Case1) (Case?) |(Case3) (Cased)

Figure 1. Stage of the implementing approach.
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1. Preliminary stage: analysis and classification of MMs, SMMs, and their modifica-
tion according to the specified set of attributes Sa considering different features of systems
Ss and factors Sk of the environment. According to the combination of Sa, Ss, and Sk (in
general, their Cartesian product), a set of models Su is formed:

{Sa X S5 x Sg} = Sy, Sy = {Swum> Ssumts Smrm> Supms Scm b 1)

where Smm, Ssmm, Smem, Smpem, and Scum are sets of Markov, semi-Markov, multi-fragmental,
multi-phase, and combined models, correspondingly:

Sum = M1, s Mya},
Ssmm = {MSMl' "'iMSMb}'
Surm = {Mur1 - Murch, 2)
Supm = {(Myp1, ---'MMPd}:

Sem = {Mcp ---'MCe}/

where g, b, ¢, d, e—numbers of different models for the sets.

A detailed description of the model sets classification and analysis is presented in the
next section.

Initial stage: analysis of features of systems Ss* € Ssand environment St* € St, and
choice of appropriate model Smo* € Sm or combining models Scmo* € Smaccording to a block
of algorithms that will be developed in Section 4.

Dynamical stage: analysis of changing system and environment parameters, different
events (failures, cyber-attacks and their effects including violations of privacy, integrity,
and confidentiality) and re-selection of the models Smi* € Sm or combining models Scmi* e
Smaccording to developed algorithms (Section 4).

Verification and implementation stage: choice, development and research on the
availability and cybersecurity models for several real cloud and IoT systems (Sections 5).

Thus, it is necessary to detail the features of classification of subsets of SMM, SSMM,
SMFEM, SMPM, and SCM models and suggest a general model classifier. Based on the
analysis of publications, and the research and project experience of the authors, the clas-
sification of models used or that can be used to evaluate CIS availability and cybersecurity
is proposed.

4. Classification of the Models for Choice and Combining
A set of models is divided according to the following characteristics:

e the degree of Markovity;

e  the number and types of phases;

e  the number and types of fragments;
e  the possibility of combining models.

4.1. The Degree of Markovity

The first attribute is the degree of Markovity (DoM) of the process describing the
dependability-related behavior of CIS (Markov and semi-Markov models, the sets Smwm
and Ssmm).

4.2. Multiphase Models

The next attribute is the number of phases that can be used to describe the behavior
of a CIS considering changes in the system parameters and/or states (one and multi-phase
models, the sets Sorvand Swrm). Multiphase models (MPM) are used to describe time-de-
terministic events that affect the values of system parameters. Figure 2 shows an example
of a multiphase model of an imaginary single channel system with a scheduled mainte-
nance procedure. During the time intervals (phases) between events that change the pa-
rameters of the system, its behavior is modelled by a Markov process (a letter within a
phase in Figure 2).
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Figure 2. Example of a multiphase model.

As an example, a one-component regenerative system is considered, which can be in
the operational (S0) and non-operational (S1) states. State S2 simulates maintenance, dur-
ing which the design defect is eliminated, and as a result, the intensity of failures A1
changes (decreases). The oriented graph does not have transitions to the S2 state, since the
service start event, which causes a change in the system parameters, occurs at some point
in time (in Figure 2 —after a time interval t). At these moments linking matrix is used. The
linking matrix [L] is used to calculate the initial conditions at the beginning of phase (i +
1), based on the probabilities of the conditions at the end of the phase (i), which are math-
ematically written in the form of Equation (3).

Po(0)| 11007 [Po(®f _ _
P1(0) =[001 P@| = P41 (0) = [LIB(2) ©)
P,(0)] loo1l [P,(0)

Replacing the probability Pi(t) with the values obtained at the previous iteration de-
termines the repetition of Equation (1), which allows one to set the initial conditions at the
beginning of each online verification interval (model phase) calculation.

In turn, depending on the type of period of change, set Smem can be divided into
models with a fixed value of the period of change..., Smrym tp. and changed value of the
period Smpm, chp.

4.3. Multi-Fragmental Models

The next attribute is the number of fragments that describe the behavior of the CIS
considering changing parameters of failure rate caused by detection and elimination of
design faults and vulnerabilities, recovery rate caused by the increasing complexity of
maintenance, etc. According to this attribute, it is distinguished by single and multi-frag-
mental models (the sets Sormand Smrm).

MFMs are models in which changes in individual parameters and their combinations
are described by sets of interconnected fragments of states F1, F2,... If the moments of
occurrence of events that cause a change in system parameters are random variables, such
events are included in the state space of the oriented graph of the model fragment. Exits
from such states initiate a fragment change, and in the next fragment, the system will re-
ceive new parameter values (and possibly a new state space).

Figure 3 illustrates a multi-fragment model considering four events related to differ-
ent types of service procedures. The first fragment contains the initial state of the system
S0 and a group of inoperable states S1...54 caused by maintenance procedures. The second
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fragment in Figure 3 contains a subset of states S50*...54*. The states S0 and S0* in the gen-
eral macro model are a combination of individual states caused by failures and restoration
of system components; therefore, they are marked on the graph with a separate figure—a
decagon. State S1 simulates update procedures caused by changing requirements to func-
tionality, security, privacy, etc., S2—vulnerability patching, S3—online verification, and
S4—preventive testing. The two-fragment model (Figure 3) describes the removal of one
bug/vulnerability after an update or patch. In the case of successive removals of more than
one fault, which may lead to CIS failure, the number of fragments of the general model
will increase.

/ Update N ye N
/ g tch: N / \
/ (requirementchange) \ {

i Online verification Pat ching Proof Test
I (change of environment
\ parameters) 4 \ /

N Fragment 1 S Fragment 2 s

Figure 3. An example of a multi-fragmental model.

Besides, set Smrm can be divided into subsets of models according to the subattributes:

e  the number of changed parameters: MFMs with one (Smry, 1¢:p.) and more (SMeM, m chp.)
changed parameters;

e  the presence of reverse transitions between fragments: MFMs without reverse tran-
sitions (Smrm, rt-) and MFMs with reverse transitions (Smrm, r.+). Due to various types
of faults and vulnerabilities for some of them, it is advisable to restart without delet-
ing; for others, it is necessary to delete);

e the number of steps of transitions between fragments: MFM with one (Smem, 1) and
more (Smem, nst) steps of transitions when several faults or vulnerabilities appear
and/or are removed at once. In this case, additional distribution laws and their pa-
rameters should be identified (for example, for several simultaneously occurring/de-
tected and eliminated design faults and vulnerabilities).

4.4. Combined Models

An additional attribute is a possibility of combining different MM and SMM. There
are, as mentioned above, two types of combining and subsets of corresponding models:
combined model with time (Scum «c.) and component (Scuc.c) combining.

In the first case, different models can describe the behavior of the CIS at different
operational stages. In the second case, the different models can be applied for the descrip-
tion of different CIS components or subsystems depending on changed conditions.

4.5. General Classification
Figure 4 presents a matrix classification of models for CIS dependability assessment.
Points mark the presence of relevant attributes/features of the models. Eight models are
singled out for sets Swm and Ssmm:
e  one-phase and one-fragmental models Mwmi and Msmy;
e  one-phase and multi-fragmental models MM2 and MSM2 with one changed param-
eter, one-step transition, and without reverse transitions;
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e  one-phase and multi-fragmental models MM3 and MSM3 with m changed parame-
ters, one-step transition and without reverse transitions;

e  one-phase and multi-fragmental models MM4 and MSM4 with one changed param-
eter, one-step transition, and reverse transitions;

e  one-phase and multi-fragmental models MM5 and MSM5 with one changed param-
eter, n-step transitions and reverse transitions;

e  one-phase and multi-fragmental models MM6 and MSM6 with m changed parame-
ters, n-step transition and reverse transitions;

e  one-fragmental and multi-phase models MM7 and MSM7 with a fixed value of the
period of change;

e  one-fragmental and multi-phase models MM8 and MSM8 with the changed value of
the period.

There are more complex types of multi-phase models with the multi-fragmental
structure of the phase blocks that are not considered in this research.

The set of combined models Scum is a union of the set models of time and component
combining Scy = Sepmr.c. U Scm e, and is presented by the Cartesian product of the above-
described sets: Scy = {Sumts > Sumst X {Ssmmrar - » Ssmmsl-

Any combined model of this set can be used for time and component combining. In
general, both types of combining can be utilized, i.e., different time combining for differ-
ent components (subsystems).

Smm Ssnvm

A

-Sorm
—SMPM—[f'p'
c.p.
-Sorm:
1 ch.p.
m ch.p.
T.t.-
-Smem
T.t.+
1 s.t.
n s.t.
1{2|13(4]5]6[7]8 1{2|13(4]5]6[7]8

. - J U - J
t.c—
so i ( X )

Figure 4. Classification of CIS Markov, semi-Markov models.

5. Method of Model Choice and Combining
5.1. General Algorithm

The method of model selection and combination is illustrated by the diagram of the
algorithm in Figure 5. In the initial stage (block 2), the analysis of the operating conditions
and system parameters is carried out. The task of this analysis is to determine the possi-
bility of building a single system model (Markov or semi-Markov) (choice block 3). The
construction of a single model is possible in the presence of sufficient descriptive statistics
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about the states of operation, failure, and repair of system components, and is, as a rule,
characteristic of Markov models (blocks 4 and 6).

In some cases, it is advisable to build separate models for each component of the
system (for example, for a web server and a database server), which are examined at the
same time intervals, with subsequent integration of the obtained results (blocks 5 and 7).
Such a case within the proposed concept illustrates components that combine models.

The description of the use of simulation results is illustrated by block 8 (its details are
beyond the scope of this article, but, as an example, it is considered in [48]). It is worth
noting that for modern CIS, block 8 is constantly used not only in the design stage, but
until now, the system will not be disposed of (this is defined by block 12). Blocks 9-11
illustrate the system’s response to changes in operating conditions, its architecture, or the
parameters of its components. Block 9 must capture and analyze the changes. When the
changes are captured (block 10), it must determine whether they have been provided in
the system models (models of its components during component combination).

For example, a multi-fragment model can describe a change in the intensity of fail-
ures during cyber-attacks, the restoration of a safe state of a component during a proof
test in a multiphase model, etc. If there is no change mechanism in the system model, it is
necessary to apply the principle of time combination, that is, to return to block 2 and ini-
tiate the transition to the initial stage of selection and combination of CIS models.

< NO
Analysis of CIS
operating %
conditions and : 8
Processing and
parameters
use of
modeling
results
CIS parameters allow to AnaI;/sis of

consider it as a integrity object? changes in the

YES NO operating
conditions and
parameters of CIS

Choice of a single
model from a set Multimodel choice
(single choice)

v

Modeling of CIS
with a single model

10
Is there a change?

Modeling of CIS |
subsystems by
separate models
(Component
combining)

Are the changes taken into account in
the model / models of subsystem ?

b 4

—
A

End

Figure 5. The general algorithm of choice and combining models.

In the future, it is worth describing the algorithms of the key procedures of the
method, namely blocks 2, 4, and 9.
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NO

5.2. Algorithm of Choice

The selection of the appropriate model is carried out both for the CIS as a whole
(block 4, Figure 5) and for individual components of the system (block 5 in Figure 5). The
model selection algorithm is shown in Figure 6 outlined. This algorithm includes the con-
ditions for choosing an adequate mathematical apparatus, considering the conditions of
system operation and the principle of minimizing efforts to build a model. For CIS cases
with non-renewable components, it is enough to build models of failure trees or RBD
(block 4).

oes CIS function in the conditions o
change?

3
Should CIS recovery be
considered?

4

fault tree or

Build a CIS model in the form of a

RBD

re event streams exponentia

distributed?

YES NO
| 6 |
Construction of the CIS Markov 7
model in the form of a graph of Construction of SMM or CIS—H YES
states and transitions simulation model

Can the flow of events describing the

NO changes be reduced to exponential?

YES

9

Construction of SMM or CIS

simulation model considering
changes

Do deterministic events work on the

system?

YES

12

s there a change in CIS parameters afte
reaching special states?

11
Construction of a multiphase CIS
model considering changes

YES YES
13 ‘
Construction of the Markov one- 14
fragment CIS model Construction of a multi-fragment CIS

model considering parameter changes

15
End >

Figure 6. Algorithm of model choice.

Block 7 describes the construction of CIS Markov models without considering
changes. Blocks 8 and 10 summarize the procedures for selecting and building semi-
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Begin

e

CIS architecture
detalization

L5

Search ofdata
sources

4
ether aar

sources were
found?

(a)

Markov and simulation models (as an example, considered in [23,49]). Block 12 describes
the construction of a multiphase CIS model. Block 14 describes the construction of single-
fragment Markov models with maintenance procedures. Block 15 describes the construc-
tion of multi-fragment CIS models considering parameter changes.

5.3. Algorithms of Data Analysis for Combining Models

The proposed method includes the procedures of primary and repeated analysis
(through operational data processing) and initialization of the time combination principle
when the initial CIS model (CIS component models) does not correspond to a change in
operating conditions or parameters. The details of the P2 (primary analysis) and P9 (re-
peated analysis) procedures are shown in Figure 7. Vulnerability repositories, bug track-
ing, and analytical studies (articles, reviews, monographs, etc.) can be used as data sources
for analysis.

Begin
2 5 9
v s CIS architecture ot Check the
check NO sources YES relevance of data
Accessing and
downloading data 3 10
vetherdwmgswe Whether kn e elher‘haevmve
ey souees e et e e
4L 6 — YES
YES Bringing datato
one format and Refnamont of IS =
T elinement O .
refining architecture Find new Accessingand
NO components sources downloading data
1,
. T 12—
Formation of
sampl&s (data other 2.8 Bring datato one
filtering) sources were >—YE format and refine NO
found?
_
‘ 8 13
Formation of
Data samples (data
processing filtering)
: 14
9 Data
processing
End
15
End

Figure 7. Algorithms of primary (a) and repeated (b) data analysis during combination.

To summarize the considered algorithms, it should be noted that the selection of an
adequate CIS model is carried out by an expert method and must consider:

e  statistical studies of input parameters of the system, results of checking statistical
hypotheses about compliance with the exponential distribution law (or other corre-
sponding distribution laws);

e  requirements of control documents, standards, norms, rules, contracts, and customer
agreements if they indicate the type or class of the model;

e time and computational resources for modelling (a model that is too detailed may be
incalculable due to a lack of resources);

. analysis of the work of other researchers, ease of use of the resulting indicators, and
other secondary factors.
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6. Implementation of Suggested Approach and Algorithms of Choice and Combining
Models

Next, cases illustrating the choice and elements of the combination of CIS models will
be considered. First, a single model of the four-component cloud server system is pro-
posed; Markov and semi-Markov models are selected for comparison. In the second case,
a more complex cloud video system architecture, containing 11 components, is consid-
ered. For this architecture, an RBD model that can be used for component combination is
given and compared to the CIS Markov model. To consider attacks on one component, a
multi-fragment CIS model was built.

In the third case study, a multiphase model is selected, built, and investigated for an
unattended robotic [oT system. In the fourth case, the web service of the cloud system
model is also considered. To consider the changes in parameters caused by cyber-attacks,
a multi-fragment model was chosen, built, and investigated. Other models, in particular,
models of failure trees and cyber-attacks on CIS, FMECA/IMECA techniques, as well as
their simulation modelling methods, can be found in [50,51].

6.1. System 1: Cloud Server System
6.1.1. General Description of the CSS

As indicated in stages 1.2, 2, and 3, the question of modelling cloud systems is cur-
rently being worked out in detail, but most studies use the principle of building a single
and fixed model. Taking this into account, further attention will be drawn in this case to
the issue of choosing an adequate model and rejecting the simulation results in case of a
wrong choice.

Since cloud systems have renewable components, block 5 will be used in the selection
procedure (Figure 6) (checking the exponential law of the distribution of failure and re-
covery flow). Next, for comparison, two options will be considered:

o the first option, when block 6 is involved and a Markov model is built;
e the second option, when block 7 of the selection algorithms for building a semi-Mar-
kov model is involved.

This case shows a model of a system that functions in perfectly protected conditions
against cyber criminals. When considering the semi-Markov model, it is emphasized that
the change of the failure intensity parameter with the Weibull distribution can also be
used to describe the failures caused by attacks on the system in the presence of supporting
statistics. When building CSS models, the “time complexity” principle was not used, since
there are no statistics for the modelling system that would predict temporal changes in
the parameters of its components.

6.1.2. Development of the CSS Model

The architecture of the cloud system is considered in [23]. The CSS component con-
tains four subsystems, as shown in Figure 8.
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Cloud Server System
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Figure 8. The architecture of the cloud computing system (a) and Markov graph of its component
CSS (b).

Markov’s Availability Model

The constructed Markov model has one working and four down states S={0,1,2,3,4}.
In SO, the CSS system is operational (available). In state S1, the system is unavailable due
to permanent part (PP) failure; in state S2, it is unavailable due to an operating system
(OS) failure; in state S3, unavailable due to software server (SS) failure; and in state 54,
unavailable due to transient part (TP) failure.

Further development of the Markov model is the construction and solution of the
system of Kolmogorov-Chapman differential equations. A simplified version of the solu-
tion consists of reducing the system to a linear form due to the equality:

Yieo.qpAij pi =0, j €{0...4}. @)

Solving the system of linear equations makes it possible to investigate the stationary
availability coefficient of the CSS.

Semi-Markov Availability Model

The oriented graph (Figure 8b) is used to build a semi-Markov CSS model. In [23],
two possible options for working out statistical hypotheses regarding the distribution of
input parameters are defined. In the first case, the cumulative distribution law (CDF) of
the recovery time of the CSS component is distributed according to the Erlang law of the
second order:

Qij(t) = 1~ (1 + p;t)e™™* = Erlang(2, uy), ®)

where p;—repair rate of the CSS components;

t—recovery time of the CSS component, random parameter.

In the second case, the law of distribution of the failure flow of the software server
component is defined as Weibull:

Qo3(t) = 1 - e_(%) = Weibull(a3,ﬁ3), (6)

where 1; = ﬁi—a failure rate of the software server.
3

The remaining transition probabilities (as in the Markov model) remain distributed
according to the exponential law.
The CSS semi-Markov model includes a matrix of transition probabilities:
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0 Poi Doz Doz DPoa
1 0 0 0 0
P=[p;]=]1 o o o o] @)
1 0 0 0 O
1 0 0 0 O
The transient probabilities for Matrix (7) are described as
t

py = Py© = [ [ [0 - 0utw) doy . ®

0 l#j

Sojourn time distribution H;(t) and mean sojourn time h; at state i have been de-
termined according to the main provisions for the SMMPs [51]. As a result, the steady-
state availability of CSS for relevant vector m = {m,, 1, T,, M3, m,} is described by the ex-

pression:
A o
css = .
ho + 2 (Pm 4 Poz 4 Po3 P04) 9)
M1 Uz Us Uy

6.1.3. Research and Analysis of the Results

The numerical data of the parameters for the relevant familiar availability model [52]
are listed in Table 2.

Table 2. Numerical Values of Modeling Parameters.

Parameters Value (1/hour) Parameters Value (1/Hour)
App 0.0014 Up.p 0.1667
Aos 0.0042 Hos 12
Ass 0...0.01 Us.s 20...70
Arp 0.0028 Urp 30

Figure 9a shows availability dependency and comparative availability assessments
based on MMPs and SMMPs for the first situation considering failures of the software
server of the CSS system. Figure 9b illustrates comparative availability assessments of the
MMPs and SMMPs for the second situation. The modelling results testify that availability
assessments based on MMPs and SMMPs are associated and can be employed by devel-
opers of the CSSs to create effective functioning systems considering dependability facets.

The following conclusions are based on the simulation results:

e  the use of the Markov model allows obtaining the average result of the availability
in comparison with the semi-Markov model for different distribution laws;

e  if the statistical hypotheses for the input parameters assessment tend to the Weibull
distribution with the parameter a =0.5...1.5, using the MM is possible to simplify the
modelling. However, such values of the Weibull parameter are rarely applicable for
the assessment of cyber-attacks on the CIS, leading to the construction of more com-
plex models.
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Figure 9. Comparative availability assessments for MMPs and SMMPs: (a) 1—for MMPs; 2—for
SMMPs with CDF Erlang (18, pj); 3—for SMMPs with CDF Erlang (11, wj). (b) 1—for MMPs; 2—for
SMMPs with CDF Weibull (0.5, 33); 3—for SMMPs with CDF Weibull (1.5, 33)
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6.2. System 2: Cloud Video System
6.2.1. General Description of the CVS

In this example, the construction, comparison and choice of one of the three models
are considered:

e  RBD for cases of component combination (block 5 of the selection and combination
algorithm in Figure 5 is involved);

e multi-fragment model (block 14 of the algorithm in Figure 6);

e  for the case when the RBD model combines the Markov models of the different CVS
components.

The aspect of cybersecurity is considered when building a multi-fragment model
since the change in model fragments is due to a successful attack on the CDN component.

6.2.2. Development of the CVS Model

In this case, an example of the functioning of cloud services for processing video traf-
fic is considered [10]. The video service cloud architecture model contains three levels of
virtual networks (mobile, CDN, and primary virtual network) that serve groups of end
devices. The CDN is separated from the primary virtual network by the SignalR service
and a VPN gateway. Application services (app service API, calls and autoscale service)
are located in the primary virtual network. It also hosts the Message Queuing Service (QS)
and the Load Balancer (LB). The common elements for a typical cloud system are, there-
fore, a group of end devices (DSM), physical access network (MNT), virtual access net-
work elements (VPN and SGR) and load balancing (LB). Cloud application services (API,
calls, autoscaling) are specialized video hosting services. Such an important element as a
CDN should be singled out since the use of a network enables partial offloading of re-
gional cloud services. A CDN also protects against DDoS-type cyber-attacks, but this ele-
ment is most often attacked among other components.

RBD Availability Model

The reliability block diagram (RBD) of the cloud system (Figure 10) will include seven
consecutive elements. Each of the elements characterizes the serviceability of the corre-
sponding elements of the architecture.

Parallel links in RBD create WiFi and MNT, SGR and VPN. Elements are: web servers
(LB, QS) and application servers (APS) that can be reserved through a high availability
cluster, in which case RBD will contain additional redundant components.
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Figure 10. Case 2: RBD for CVS.

According to [51], the calculation of the availability of the system with a mixed con-
nection of elements is performed by formula (10):

Acvs = Apsm X Acpn X Awm X Agps1 X Ags X Apg X Appss X Agpsa, (10)

where

Ay =1— (1 = Awirp) (1 — Aynr), Ays = 1 — (1 = Aypy) (1 — Aggr)- (11)

The availability values obtained by Formulas (10) and (11) are stationary. This greatly
simplifies the model but does not allow studying the dynamics of changes in availability
function over time. The availability of each of the components of the cloud architecture in
Equation (10) is determined by the formula pi/(pit+Ai), where the values of pi and Ai are the
input parameters averaged by the method in [51,52] for each element of the cloud system.

Multi-Fragment Availability Model Considering Attacks on CDN

The multi-fragment model of cloud system availability allows considering the
change of input parameters in one model step. This complicates the marked-oriented
graph of the functioning of the system, as shown in Figure 11. The process of functioning
of the cloud system is as follows. Initially, the system implements all planned functions
and is in state S1. In the process of functioning, the failures of the system components are
manifested, as a result of which it passes into the states 52...514 and is restored (the system
returns to state S1).

To simplify the perception of the model, in the oriented graph (Figure 11) all transi-
tions not related to the attack on the CDN are hidden in the superstates S (1..14%) (for the
first fragment) and S (15..28%) (for the second fragment).

After a certain time interval, the system fails due to an attack on the vulnerability of
the CDN component, and it goes into state S3. If the attacker succeeds (the CDN attack
was successful), the system moves to a new part of the model (state S17), and if the attack
fails, it returns to state S1. The probability of successful attack is weighted by the param-
eter a€ [0...1]. After several successful attacks (usually Nf = [8...12], the attack rate reaches
maximum Aconma (because for technical reasons, the attacker cannot speed them up).

S S_AXUCDN_ e -

7 ACDN N AN = AmnT+ AAN
/ AN / \
/ o !
I Vg \|
| [
| i |
| [ |
| [ |
I [ |
I ! j
\ ! /
\ (1-a) x poon SN (1-a) x puoon J

\ , \ /

N Fragment1 P N Fragment 2 7

Figure 11. Oriented graph of multi-fragment availability models CVS.

The value of the resulting availability indicator in the multi-fragment model is deter-
mined by Formula (12).
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Nf-1

A(t) = Z [Prai+1(t) + Praisa(t) + Prajre(t) + Prajv10(t) + Prairq2(0)].

i=0

6.2.3. Research and Analysis of the Results

(12)

The primary input parameters of RBD, Markov, and multi-fragment models were

determined on the basis of research and certification data [53,54] for the analogue versions
of CVS samples. Parameter values are presented in Table 3.

Table 3. Constant values of simulation processing input parameters for RBD and Markov models.

No. Name of Systems Component F;l::;e Value (1/h) R;E:;r ‘(];/I;:)e
1 Desktop and Mobile (DSN) Adsm 0.000925926 udsm  0.02083
) Content Dehv(eé}]; I;I;)etwork Service Acdn 0001388889  cdn 1
3 Wi-Fi Awifi  0.001488095 uwifi  0.04167
4 Mobile Network (MNT) Amnt 0.000462963 umnt 0.5
5 App Service (API) Aapsl 0.002083333 papsl 1.5
6 Queue Service (QS) Ags  0.001302083  ugs 1
7 Load Balancer (LB) Alb  0.001190476  ulb 1
8 SignalR Socket Service (SGR) Asgr 0.001666667  usgr 1
9 VPN Gateway Avpn 0.001736111 pvpn 1

10 App Service (Calls) Aaps2 0.00245098 paps2  0.66667
11 Autoscaling Service Aaps3 0.002777778  paps3 1

To investigate the system availability, the variable input parameter Aconj was taken,
reasoned in [54] and summarized in Table 4.
A comparison of RBD and Markov models is performed under the condition t —
(for stable availability). Under this condition, the solution is presented by a system of lin-

ear algebraic equations. The results of the calculations are shown in Table 5.

Table 4. Variable values of simulation processing input parameters for the multi-fragment model.

No. Parameter Variable Value (1/h)
1 The minimum value of CDN failure rate due to Acdn._min 0.001388889
hacker attack
’ The maximum value of CDN failure rate due to Acdn_max 0.041666667
hacker attack
3 Delta of change in CDN failure rate AAcdn 0.004027778
4 Probability of successful attack a 0...1
5  Number of fragments in multi-fragment model nf 10
Table 5. Comparison of results of RBD and Markov models.
Markov Model ) A
No. Element of System Pi RBD Model Ai IPi-(1-Aj
1 - 0.895362266 - -
2 dsm 0.039793882 0.957446805 0.002759313
3 cdn 0.001243559 0.998613037 0.000143404
4 wifi 0.031977218 0.965517247 0.002505535
5 wifi/mnt 6.66 x 10 0.99929627 3.75376 x 10
6 mnt 0.018653381 0.979591837 0.001754783
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7 apsl 0.001243559 0.998613038 0.000143404
8 gs 0.001165836 0.99869961 0.000134554
9 Ib 1.07 x 103 0.99881094 0.000123153
10 sgr 0.001492271 0.998336106 0.000171623
11 sgr/vpn 2.59 x 10-° 0.999997116 2.9295 x 1007
12 vpn 0.001554448 0.998266898 0.000178654
13 aps2 0.003291773 0.996336997 0.000371231
14 aps3 0.002487118 0.997229917 0.000282966
Acvs CVS 0.949039584 0.945631343 0.003408241

The simulation results showed that the difference between the cloud system availa-
bility indicators determined by RBD and Markov models have differences not exceeding
AA =0.0034. The weakest elements in the architecture in the absence of attacks are end-
user devices (DSM). Figure 12a illustrates the decrease in availability with increasing in-
put parameter Aconj within the interval of Table 3.
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0.91 i A— " 002 )
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/\CDNj t, hours

(a) (b)
Figure 12. Results of RBD-based and Markov models (a) and Markov model (b) for different value

ACDN.

Estimates obtained using RBD and MMs with increasing CDN failure rates increase
the discrepancy from AA =0.0034 to AA =0.0051.

To solve systems of differential equations constructed according to the Kolmogorov—
Chapman matrix, in the paper we used the odel5s function [55]. The simulation results
are shown in Figure 12b. The change in time of the availability indicator, illustrated by the
Markov model, shows the asymptotic direction of the function to a stationary value dur-
ing the first t = 200 h of CVS operation.

The results of availability modelling using a multi-fragment model are illustrated in
Figure 13. Graphs in Figure 13a allow comparing the results of Markov and multi-frag-
ment models. The availability function obtained by the MFM method reaches a stationary
value after t = 8000 h of operation, and the specified value of stationary availability is A =
0.9189. This indicator can be determined by a simpler Markov model, taking the value of
the input parameter Acon equal to Aconmex,
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Figure 13. Results of Markov and multi-fragment models (a), and multi-fragment model (b) for dif-
ferent value a.

Figure 13b illustrates the influence of the input parameter a on the dynamics of
changes in the availability function. The mechanism of influence of this parameter is as
follows. As the parameter a increases, the time of transition of the availability function to
stationary mode decreases, so for a = 0.5, t = 8000 h; for a = 0.9, t =4000 h (that is twice as
fast).

6.3. System 3: Unmanned Robotic IoT System (URIS)
6.3.1. General Description of URIS

This case illustrates the operation of block 11 of the selection algorithm in Figure 5.
The use of the multiphase simulation device is associated with subsystems of the robot
system, which work in the mode of low intensity of requests for execution and undergo
online verification of the software only at certain times.

For such systems, installation of software patches is only possible when software de-
sign errors or vulnerabilities are detected after online verification. The time points of the
start of online verifications have a periodic schedule. When assessing cybersecurity, the
multiphase model allows you to describe the process of installing security updates, the
release of which (unlike patches) has a regular nature.

6.3.2. Development of the URIS Model
The URIS’ RBD is shown in Figure 14a.
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Figure 14. RBD (a) and multiphase model (b) of URIS.

The labelled graph simulating the behavior of the system during the period of one
phase (Figure 14b) has 7 states:

e  operational (SO and S1—with a detected failure of one hardware channel),
e inoperable (S2—with two detected hardware errors, S3 and S5—with detected soft-
ware errors; 54 and S6—states of software patching).

In the time intervals between the online verification of the subsystems of the robotic
IoT system, its behavior is modelled by the Markov process in the upper part of Figure 14b:
the IoT system can fail due to hardware failures (transitions SO — S1 and S1 — S2), soft-
ware failure is modelled by transitions SO — S3 and S1 — 54, and software restart is mod-
elled as state change S3 — S0 and 54 — S1.

If the IoT system goes into the patch installation states (S4 or 56) at the time of the
previous online verification procedure, its successful completion is simulated by changing
the states S4 — S0 and 56 — S1. Since verification and patching cannot be started within
the time interval of the duration of one phase, the transitions S3 — 54 and S5 — S6 are not
possible. Since the online verification procedures revealed the manifestation of DP before
entering the 54 and S6 states, the transitions $4 — S0 and S6 — S1 are weighted by the
uver parameter (the intensity of the verification and patching procedures).

Online verification procedures are carried out at certain times (in Figure 14b—the
moments to activate the linking matrix (13)). The logic to construct the transitions of this
matrix is as follows. If a software error appears during the previous phase, the patching
procedure is started (transitions S3 — S4 and S5 — 56). If the component of the robotic IoT
system was operational in the previous phase, it remains in the corresponding operational
state (50 — SO, S1 — S1); if the system enters an inoperable state, it remains in it (52 — 52).
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In the hypothetical case, if the patch started during the previous verification is not
completed, the IC remains in the patch state (5S4 — 5S4, S6 — S6). The linking matrix [L] is
used to calculate the initial conditions at the beginning of phase (i + 1) based on the prob-
abilities of the conditions at the end of phase (i), which are written mathematically in the
form of Equation (13).

The replacement of Pi(t) with the values obtained in the previous iteration deter-
mines the repetition of equation (13), which makes it possible to calculate the initial con-
ditions at the beginning of each online verification interval (model phase).

The average unavailability index Uavg is calculated by the method described in [51],
using the following definite integral

Uang (1) = J; U()dt, where U(t) = 1 — Py(t) — P,(t). (14)

6.3.3. Research and Analysis of the Results

The values of the input parameters of the robotic IoT system model are averaged
based on statistical data on the operation of such systems [56]. Fixed values of input pa-
rameters are described in Table 6.

Table 6. Values of input parameters.

Symbol Illustration Value Unit
AHwW failure rate of single hardware channel 3x107  1/hour
Asw o the initial software failure rate 5x103 1/hour
Lisw system recovery rate after the occurrence of software 02 1/hour

fault
Asw k software failure rate after fixing all faults is zero 0 1/hour
Lver rate matches the average time verification procedure ~ 0.0667  1/hour

additional limitation presents elimination of 10 unde-

AAsw  tected software defects and uniformity of load for their Asw 0/10 1/hour
localization and elimination

The time interval for analysis of availability function

h
behavior 90,000 ours

When building the model, it is necessary to consider the change in the Asw parameter
when software errors are eliminated, which occurs after their manifestation and the arri-
val of the next verification time. However, this event is probable, and it is not possible to
say exactly at which time interval AAsw will decrease with AAsw. The following technique
was used when building a multiphase model of a robotic IoT system. At the start of a new
phase, the probability of the manifestation of a software error is defined as the sum of the
probabilities Pa(t) + Ps(t) of the previous phase. Then, the change in the intensity of soft-
ware errors in the new phase is determined by the formula

Mg (T + 1) = Mgy - [P4(7) + Ps(7)]. (15)

The task of model research is reduced to finding the value of ATvir—the period of
online verifications, during which the requirement to ensure that the system availability
function is not lower than 0.98 for 2 years (20,000 h) of operation.
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The view of the curves of the function of instantaneous unavailability (“saw”) and
average unavailability, obtained with the help of the model of the robotic IoT system, is
shown in Figure 15.
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Figure 15. Unavailability functions of a robotic IoT system with periodic online software verification
obtained using a multiphase model with time intervals (a) [0...5000] hours and (b) [0...90,000]
hours.

On the graph in Figure 15a, the scale of the time interval t = [0...5000] is reduced so
that the characteristic “saws” of the instantaneous failure curve are visible. In Figure 15b
it is observed that the Uavg curve decreases its values over time. This illustrates the pro-
cess of eliminating software defects.

The selection method determined the value of the parameter ATver =7 days (168 h),
which ensures that the value of the system unavailability function is not more than 0.02
for 2 years (20,000 h) of operation (Figure 15b).

Thus, a feature of the developed multiphase model is the consideration of the peri-
odic component of maintenance procedures together with the random component of fail-
ure and repair events of SW and HW. This makes it possible to increase the adequate
estimate of the indicator of the average unavailability function and to determine the inter-
val of the execution of online verification procedures to ensure an average level of una-
vailability not lower than 0.02. Considering cyber-attacks will increase the level of unpre-
paredness of the system compared to the achieved result. From the point of view of the
principle of operation of the multiphase model, to counter cyber-attacks, more frequent
security updates are required. However, there is a limit—the update period, after which
the unavailability of the system will increase due to downtime, which is not caused by
attacks, but by performing only security update procedures.

6.4. System 4: Web Service of Cloud System (WSC)
6.4.1. General Description of the WSC

In this case, block 14 of the model selection algorithm (Figure 5) is used under the
condition of component combination, that is, a multi-fragment model is not built from a
complete cloud system, but from its component, a web service.

The aspect of cybersecurity is considered when building a multi-fragment model
since the change in model fragments is due to a successful attack on the DNA component.

6.4.2. Development of the WSC Model

A model of a corporate web service was developed to simulate the patch installation
processes. The reliability block diagram (RBD) of the corporate web service (Figure 16)
includes four consecutive elements, each of which characterizes the health of the domain
name service (DNS), the web server (HTTP server), the application service (App), and the
database server (BD). In the developed model, it was decided to limit ourselves to the
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Figure 16. RBD of web service support services and labeled graph of the operation of web service
support services (one-fragment model).

The developed multi-fragment model of the WCS describes the preventive measures
of the security audit to detect and eliminate vulnerabilities and allows the elimination of
the vulnerability detected during the attack. The labeled graph of the multi-fragment
model for a system with two vulnerabilities is shown in Figure 17.

Figure 17. The labeled graph of the multi-fragment model of the web service.

According to the graph in Figure 17, initially, the web service operates in states of
failure and recovery of DNS services, web server HTTP requests, application servers and
database. After an attack on the DNS service (which enters the S5 state with intensity
DraibNs x Arai DNs), the system becomes inoperable, but can recover by restarting without
remediation with conditional intensity (1 — Dr) x piraibns, or with conditional intensity re-
mediation by Dr x praipns intensity. With the intensity Arrr, preventive measures (state S6)
are performed in the system, whereby 0 to nv vulnerabilities can be detected and elimi-
nated. After the manifestation and elimination of all vulnerabilities, the system continues
to function under conditions of failure and restoration of its services (say Sz...S7k+).

Since during prevention it is possible to detect and eliminate not only one but also
several vulnerabilities from the set [1...nv], the parameter «j of the probability of j (j €
[1...nv]) detecting vulnerabilities is considered in the model. Values a1, az, ... o, ... anv
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have

a discrete distribution law. As a basis, the geometric law of the distribution of coef-

ficients aj with the default parameters p = 0.7 (probability of detecting one vulnerability)
and q =1-p = 0.3 is adopted in the work.
A system of Kolmogorov—Chapman differential equations was constructed for the
digraph in Figure 17, in which three blocks were allocated for each fragment of the model.
The value of the availability function is determined by the expression:

6.4.3.

k
A@® = ) Pu(®. (16)
i=0

Research and Analysis of the Results

Input data (values of input parameters) for building a multi-fragment model of the
web service are presented in the Table 7.

Table 7. The value of the MFM of web services input parameters.

No. Parameter Value Unit
1 Failure rate caused by DNS software design faults 3x10-° 1/hours
5 Failure rate caused by Apache HTTP server software 15x 105 1/hours
design faults
3 Failure rate caused by Oracle WebLoglc application 5 x 104 1/hours
server software design faults
Failure rate caused by software design faults of

4 10+ 1/h

MySQL DBMS 310 /hours
5 DNS service recovery rate 1.49992 1/hours
6 Apache HTTP Web Server recovery rate 1.71420 1/hours
7 Oracle WebLogic Application Server recovery rate 0.99995 1/hours
8 MySQL DBMS server recovery rate 1.09085 1/hours
9 Rate of attacks on the vulnerability of the DNS service 6.3 x 103 1/hours

iticality of he vul ility of the D
10 Criticality of attacks on t e'vu nerability of the DNS 0.77 1/hours
service
11 The frequency of DNS service restart after an attack 5 1/hours
1 The probability of ehmma.tmg a vulnerability after it 015 1/hours
appears during an attack
13 The preventive information security audit test rate 4.63> 10+ 1/hours
P Y .. 1.14x 10+
14 The recovery after an information security audit rate 0.33...1 1/hours
15 The number of undetected vulnerabilities in the initial 10
stage

Figure 18 shows the results of single- and multi-fragment models for basic values of

input parameters. The following derived values of the resulting indicators were obtained:

the time when the multi-fragment model starts to show a gain in availability relative
to the Markov model, which considers attacks Tupl = 10,450.7 h.

the time when the multi-frame model starts meeting the availability requirement of
0.999 Tup2 =14,949.4 h.

the greatest decrease in the level of availability of the multi-fragment model relative
to the Markov single-fragment model AA = 0.0015.
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Figure 18. The results of the evaluation of the availability of the web service under the condition of
the basic values of the parameters.

Analysis of graphs in Figure 19a showed that the value of the parameter Aprr signifi-
cantly affects the value of the minimum of the availability function. This is explained by
the fact that with an increase in the number of preventive security audits, the total time
that the system is in a preventive state also increases. The value of the parameter Ar:r also
affects the speed of crossing the availability function of the given required level of 0.999
(when the intensity of prevention is reduced by 4 times, the time of Tup “exit” to the level
of 0.999 increases by 11%). Analysis of graphs in Figure 19b showed that the value of the
et parameter affects the value of the minimum of the availability function of the multi-
fragment model (increasing prr by 2 times gives an increase in the Amin indicator by
0.07%). Additionally, from Figure 19b, the influence of the urr parameter on the speed of
the intersection with the availability function of the required level of 0.999 can be detected
(with a decrease in the time of preventive maintenance, the system will begin to provide
the necessary level of availability requirements earlier).
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Figure 19. Comparison of the resulting functions of the multi-fragment model at different values of
the parameters Arir (a) and peer (b).

Thus, four cases were considered to demonstrate the proposed principles of com-
bined modeling. The investigated CISs illustrate individual cases of application of Mar-
kov, multi-fragment, multiphase and semi-Markov models as a single model choice op-
tion. The RBD model of the cloud video system is also considered a modeling option based
on the principle of component combining. A comparative analysis of the simulation re-
sults was performed, which illustrated the increase in the accuracy of the availability func-
tion assessment (as an indicator of reliability and cybersecurity) for various options of
applying the proposed method.
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7. Discussion

The suggested strategy for assessing cloud and IoT systems dependability, availabil-
ity and cybersecurity is based on continuous collecting, comparing (classification), choice
and combining Markov and semi-Markov models and can be called a C5 strategy. It pro-
vides systematic and step-by-step specifications and builds an adequate and accurate
model to evaluate key indicators of CIS. Every “C” is important for implementing the
approach because:

e the first one postulates continuous evolution of the model(s) together with the evo-
lution of the system caused by (1) changing of its parameters and parameters of the
physical and cyber environment, and (2) events that should be considered to assure
more accurate calculation or prediction of CIS indicators;

e the second “C” describes the necessity of collecting data about faults, failures, vul-
nerabilities, cyber-attacks, violations of data privacy, applied patches, etc. to obtain
as much actual data as possible for the assessment of CIS;

¢ the third one provides comparing and renewed classification of a model set based on
analysis of CIS operation (or reengineering) data. It allows actualizing the model base
and assuring completeness of the set of models that should be applied for assessment;

e the fourth “C” creates the possibility of choice and utilizing “off-the-shelf” models
with understandable techniques for their development and implementation;

e thelast one provides a composition of different models during the application of CIS
by time, component or mixed combining.

The C5 strategy is, in some sense, an analogue of the well-known continuous integra-
tion/continuous deployment (CI/CD) principle for the methodology of deploying soft-
ware projects in a cloud environment (DevOps). Principal CI/CD corresponds well to al-
most all components of C5 and can be refined in some way.

The discussed cases of availability and cybersecurity assessing CISs have demon-
strated applying elements of the C5 strategy for different domains.

The first case illustrates the increased accuracy of modeling for an adequate choice
of the Weibull distribution law on 2 x 10-5. In the second case, simulation results showed
that the difference between the cloud system availability indicators determined by RBD
and Markov models have differences not exceeding AA = 0.0034. Model multi-fragmenta-
tion considering the change in the CDN component failure rate caused by attacks allows
for increasing the accuracy of the assessment by 3 x 10-2.

In the third case, the choice of the mathematical apparatus of a multiphase model is
substantiated. The selection method determined the value of the parameter ATver =7 days
(168 h), which allows concluding that the value of the system unavailability function is
not more than 0.02 for 2 years (20,000 h) of operation. The fourth case illustrates the in-
crease in the accuracy of the availability indicator assessment by AA = 0.0015 relative to
the Markov single-fragment model.

More examples can be analyzed in other works [10,48]. These cases allow the conclu-
sion that cybersecurity assessment (integrity and accessibility attributes), first of all, is
supplementary to assessing the availability of CIS. Risks of successful cyber-attacks
should be analyzed and tolerated in terms of the influence on final availability. Addition-
ally, the proposed principles, algorithms, and models can be used to evaluate CIS privacy,
which is the close attribute of cybersecurity, by analysis of component vulnerabilities ac-
cording to the corresponding privacy attack vector.

8. Conclusions and Future Directions

This study was aimed at overcoming the contradictions associated with the use of
the mathematical apparatus of Markov and semi-Markov processes for the evaluation of
complex systems, which, of course, CISs are. Assessment of dependability and cybersecu-
rity of complex systems, especially CISs, is usually carried out by researches as follows.
Researchers who choose Markov models justify their choice over semi-Markov models by
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the fact that obtaining reliable values for additional parameters is problematic, therefore,
it is better to have a simpler Markov model, but with reliably determined parameters.
Researchers, for whom semi-Markov models are more familiar, base their choice on the
fact that such models more adequately describe the processes of failures, cyber-attacks,
repairs, prevention, etc., without considering the risks of expanding the space of parame-
ters to considered values. Both approaches also do not consider the decrease in the accu-
racy of the models over time after certain events in the system.

We have substantiated and illustrated the implementation of the approach based on
the C5 strategy, which partially overcomes these inconsistencies and introduces a flexible
strategy for the selection and combination of models. The considered cases describe the
elements of the procedures for the selection and combination of mathematical models of
different types of CIS, namely RBD-based, Markov, and semi-Markov models, and their
combinations including the application of multi-fragmental and multiphase models. A set
of the models can be added to non-Markov models considering specific features of do-
mains, safety issues, etc. [57,58]. It provides an opportunity to make decisions about the
building and evolution of the models during the life cycle of a dependable CIS, including
the operation stage to assure high accuracy of the assessment.

The novelty of the research results is that the proposed method of CIS assessment is
based on the fact that the strategy of model design consists of the step-by-step selection,
adaptation, and possible change of the type and parameters during the use of the system.
The CIS Markov and semi-Markov models classifier consisting of 52 elements was devel-
oped. Using this method, the single and combined models of CIS availability and cyber-
security were investigated. They are based on a theoretical set description of options for
combining MMs and SMMs, considering features of key processes, properties and param-
eters of system and environment. The analyzed relationships between them allow reduc-
ing model uncertainty and justifying the choice of means to ensure dependability at vari-
ous stages of the life cycle. In turn, such an approach increases adequacy and accuracy of
assessment, as illustrated in the discussed cases for the different CISs.

It is important to emphasize an additional possibility related to using the proposed
approach to increase CIS dependability and cybersecurity assessment trustworthiness.
For this, the results of simulations using various methods, including attack trees, simula-
tion modeling, etc., can be used for further comparison and analysis. The limitation of the
suggested method is that the combination of models by time and events is described ra-
ther heuristically. Analytical solutions are limited by the complexity of the models due to
the complexity of the systems. Most likely, it is about the development of a new class of
multiphase models with controlled transitions and fitted multiphase. Another limitation,
of course, concerns the accuracy of data for parameterization, which influences making
decisions about increasing accuracy when experimenting and changing models.

The most important directions for future research are the following;:

e development of the framework for C5 approach automation for different types of
cloud and IoT systems. The results of the paper (schemes and algorithms) can be used
for designing such a framework as a service or embedded technology for online sup-
port of operating systems;

e  more detailed development of the techniques for combining models and analytical
description of the combined once considering different reasons for switching and
composition of the models. It requires the specification of all important events and
conditions that should be taken into account and strong procedures of implementing
options for combining;

e collection of the data for estimation and prediction of CIS models” parameters. It con-
cerns, first of all, information about vulnerabilities and cyber-attacks, and application
of ML to calculate parameters;

e the C5 approach should be added by proactive techniques for assessment and assur-
ance of CIS dependability, cybersecurity, privacy, and resilience based on Big Data
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analytics [59,60] and machine learning [61] methods to analyze data and support de-
cision-making about choice and combining and recombining models;

e  application of this approach for combining hidden MMs and SMMs to assess privacy
[62] extending the model base.
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