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Abstract: Cryptanalysis has been studied and gradually improved with the evolution of cryptosys-
tems over past decades. Recently, deep learning (DL) has started to be used in cryptanalysis to
attack digital cryptosystems. As computing power keeps growing, deploying DL-based cryptanalysis
becomes feasible in practice. However, since these studies can analyze only one cipher type for
one DL model learning, it takes a lot of time to analyze multi ciphers. In this paper, we propose a
unified cipher generative adversarial network (UC-GAN), which can perform ciphertext-to-plaintext
translations among multiple domains (ciphers) using only a single DL model. In particular, the
proposed model is based on unified unsupervised DL for the analysis of classical substitutional
ciphers. Simulation results have indicated the feasibility and good performance of the proposed
approach. In addition, we compared our experimental results with the findings of conditional GAN,
where plaintext and ciphertext pairs in only the single domain are given as training data, and with Ci-
pherGAN, which is cipher mapping between unpaired ciphertext and plaintext in the single domain,
respectively. The proposed model showed more than 97% accuracy by learning only data without
prior knowledge of three substitutional ciphers. These findings could open a new possibility for
simultaneously cracking various block ciphers, which has a great impact on the field of cryptography.
To the best of our knowledge, this is the first study of the cryptanalysis of multiple cipher algorithms
using only a single DL model

Keywords: cryptanalysis; substitution ciphers; generative adversarial networks; unsupervised
deep learning

1. Introduction

Cryptanalysis refers to techniques for breaking into cryptographic security systems
and gaining access to the contents of encrypted messages, even when the cryptographic
key is unknown by Kirchhoff’s principle, which is the paramount principle in modern
cryptosystems [1,2]. It attempts to discover a meaningful pattern inside a given ciphertext
to recover the corresponding plaintext or key. Such cryptanalysis techniques have been
studied and gradually improved with the evolution of cryptosystems over past decades.
This cryptanalysis technology can be applied to encryption for audio encryption [3] and
face recognition [4] used in real life.

Recently, a new class of artificial intelligence (AI)-based cryptographic attacks on
digital cryptosystems have been proposed to gain efficient, meaningful cipher cracking
and classification results [5,6]. The AI algorithms based on deep neural networks have
led to huge improvements in computer vision [7], medical image processing [8], machine
translation [9], and the generation of virtual data [10–12] that are almost identical to the
real data, and the attacks on cyber information security over the past decade [13,14]. More
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recently, generative adversarial networks (GANs) [15,16] have produced great results for
image generation, translation, resolution enhancement, and synthesis [12,17–20]. These
advances in GAN models can even generate realistic face images from virtual people [12,21].
In addition, few studies break and emulate ciphertexts using GANs [22,23]. Reference [23]
demonstrated that CipherGAN was capable of providing the underlying cipher mapping
between unpaired ciphertext and plaintext for automated cryptanalysis without any prior
knowledge, such as the character frequency distribution observed in natural language. This
new class of AI-based cryptanalysis has been proposed to gain efficient and meaningful
cipher cracking results. Especially, generative adversarial networks (GANs) have produced
great results for image generation and translation. These advances in GANs models can
even generate realistic data. A language model must represent both the feature distributions
at sequential data point, and the possibly intricate temporal dynamics of those variables [19].
In particular, we want to properly represent the conditional distribution of temporal
transitions in multivariate sequential data. The recently introduced StarGAN is an efficient
method for multi-domain image-to-image translation, which takes in as input images in
different domains and learns to flexibly translate the input image into the output image in
the target domain, instead of learning a fixed translation, such as black-to-blond hair [24].
As a result, StarGAN can learn image-to-image translations with a single learning model
that covers multiple domains.

Inspired by StarGAN, we propose new cipher emulation attacks using GAN-based
unsupervised deep learning techniques for the automated analysis of classical substi-
tutional ciphers. StarGAN seeks to discover a mapping between several domains via
a single framework. Therefore, it perfectly matches our proposal of a multi-domain
cipher emulation attack on classical ciphers. This method has been shown to be effective
and is commonly used in computer vision applications such as creating samples of
natural pictures. In this study, we present the unified GANs for ciphertext-to-plaintext
translations in different domains with a single model. We demonstrate that the proposed
unified cipher-generative adversarial network (UC−GAN) can understand the confu-
sion property of classical ciphers, which is one of the principles of modern symmetric
cryptography. To the best of our knowledge, this is the first study of the unified unsu-
pervised deep learning-based cryptanalysis of multiple cipher algorithms using only
a single model.

The main contributions of this study are summarized as follows. First, we propose
the cipher emulation attacks based on unsupervised deep learning for the analysis of
classical substitutional ciphers. Our proposed method can break classical ciphers using
ciphertext-only without any prior knowledge, such as the character frequency distribution
observed in natural language or the spaces between words in plaintext.

Second, we demonstrate that our proposed UC−GAN can perform ciphertext-to-
plaintext translations among multiple domains (or ciphers) using only a single deep-
learning model. As a result, UC−GAN can emulate both “ciphertext in different domains-
to-plaintext” and “plaintext-to-ciphertext in different domains” translations.

Third, to show our model’s feasibility and good performance, we compare our ex-
perimental results with the conditional GAN and CipherGAN results. These two GAN
models can only perform the mapping between ciphertext and plaintext within a single
domain (or cipher). Therefore, multiple models should be built separately in order to learn
the mapping between ciphertext and plaintext in breaking more than two ciphers.

This paper is organized as follows. Section 2 explains and introduces the background
and related works. Section 3 describes our proposed method, while Section 4 presents our
experimental results. Finally, Section 5 discusses our experimental results, and Section 6
concludes this paper.

2. Background and Related Works

In this section, we first describe the basic concepts of the GAN used to design the
main elements of our network model, followed by a review of classical cipher techniques.
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We then introduce existing AI-based cryptanalysis for substitution ciphers. Table 1 shows
some mathematical symbols used in the GAN model equations in this study.

Table 1. Mathematical symbols definition.

Symbol Definition

E[x] Expectation

E(x) Embedding

E(x)||c Concatenated embedding and target

‖x‖1 L1 norm (mean absolute error)

G Generator

D Discriminator

c Target domain label

c′ Original domain label

∇ Gradient

2.1. Generative Adversarial Networks

Generative adversarial networks (GANs) have been successfully developed into var-
ious real-world applications, including image synthesis, transfer, super-resolution, and
classification. The GAN algorithms simultaneously train a pair of neural networks (genera-
tor and discriminator) in competition with each other. Figure 1 illustrates the basic idea of
the GAN. There are two models in GAN architecture that might be able to generate fake
data that look like the real thing. When dealing with images, the generator model needs to
generate images. The second model is the discriminator network, which attempts to distin-
guish between fake and real data. Both models compete with each other. The generator
model attempts to fool the discriminator network; at that point, the discriminator model
adapts to the new fake data. This information can be used to improve the generator model.
Consequently, the trained generator can create fake data that are indistinguishable from
real data. The discriminator and generator models are set to compete against each other as
adversaries, each attempting to surpass the other, and in the process, both becoming better
and better. To sum up, the two models are playing a minimax game with the following
objective function [21,22]:

min
G

max
D

V(D, G) = E[log D(x)] +E[log(1− D(G(z)))] (1)

where, G is the generator network that accepts sample data, z from a noise distribution pz(z)
and produces the data in a target domain, D is the discriminator network that accepts the
sample x from the training dataset or the output from the generative model and predicts
the probability that x or G(z) came from the training dataset. When the model is trained by
computing Equation (1), the generator will ultimately be able to create more sophisticated
fake images. Figure 1 can be utilized as a general guideline for training GAN. Figure 1
shows the general architecture of the GAN model.

In recent years, there has been tremendous progress in the development of the GAN
model to generate more exquisite samples and obtain better training stability than the
original GAN model [25]. The original GAN cannot generate conditional data, meaning
there is no control over the modes of generating data. The conditional GAN model was
first proposed to acquire a conditional generative model by setting up the target label as
an additional input for the generator and the discriminator [26]. In addition, the Pix2Pix
model [27] was proposed for the first time to conduct the image-to-image translation tasks
in a single direction. However, the Pix2Pix model is a supervised learning model that is
characterized by training on pairs of datasets. CycleGAN [28] is the first unsupervised
image-to-image translation model using unpaired datasets, which translates between two
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domains in both directions [29] (see Figure 2). More recently, the unified generative model
was presented for unsupervised learning to translate images between multiple domains
with only one generator and discriminator, using domain classification loss with target
domain labels [30,31]. In this paper, we propose a new cipher emulation attack algorithm
based on the unified GANs to perform ciphertext in different domains (ciphers)-to-plaintext
translations using only a single deep learning model.
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2.2. Classical Substitution Ciphers

We briefly explain the classical substitution ciphers used in this study which include
shift cipher, Vigenere cipher, and substitution cipher [32]. A shift cipher encryption
method encrypts the original plaintext into unreadable ciphertext, where each letter in
the original message is replaced with a letter corresponding to a certain number of letters
up or down in the alphabet. The number of possible shifts is limited to between 0 and 25
in the English language, which is equal to the number of English letters. The receiver
decrypts the ciphertext by returning each letter in the encrypted data. A Vigenere cipher
is categorized as a poly-alphabetic cipher that encrypts a plaintext into a set of different
letters using the key with the total number of possible keys of 26m, i.e., all the possible
sequences of letters of length m. The substitution cipher deploys any permutation of
the 26 letters as a key. Therefore, the total number of possible keys are 26! ≈ 288.4 (! is
factorial, ≈ is approximation).
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2.3. AI-Based Cryptanalysis

Substitution ciphers have a confusion property that provides obscurity between the en-
cryption key and the corresponding ciphertext. In particular, confusion is the basic building
block of modern symmetric cryptography with the diffusion property. Therefore, under-
standing the structure and the vulnerability of substitution ciphers can be the basis of the
cryptanalysis of modern cryptography. Table 2 shows the various AI-based cryptanalysis
research. Reference [23] trains language data encrypted using shift and Vigenere ciphers in
a stable way using the CycleGAN model. The studies of AI-based cryptanalysis for modern
block ciphers were also introduced [33–35]. A recent work by Baek et al. [33] classifies
AI-based attacks into three methods: key recovery attack, cipher identification, and cipher
emulation attack. Regarding attacks on modern lightweight ciphers, such as Speck32/64,
the authors introduced a deep learning-based ciphertext distinguisher that classifies be-
tween the ciphertexts obtained by the Speck32/64 algorithm with 11 rounds and random
values [34]. In addition, using the neural distinguisher, the authors performed a partial
key recovery attack. Furthermore, recent work by Baksi et al. [35] proposed an improved
neural distinguisher, especially some lightweight ciphers such as Gimli, Ascon, Knot, and
Chaskey. However, some approaches using neural distinguishers by references [34,35] are
specific for some ciphers. In addition, there is a small improvement in accuracy results
rather than the original differential distinguisher. This means that AI-based approaches
will have to try various challenges against confusion and diffusion property, to break S-box
using state-of-the-art deep learning methods like GANs. Such improvements will be a
basic building block for AI-based cryptanalysis.

Table 2. AI-based cryptanalysis research.

Method Objectives Data Basic Model

Gomez et al. [23] Cipher cracking Shift and Vigenere ciphers CycleGAN

Baek et al. [33] AI-based attacks review Block ciphers Dense, CNN

Gohr et al. [34] Ciphertext distinguisher Lightweight ciphers
(Speck32/64) Resnet

Baksi et al. [35] Ciphertext distinguisher
Lightweight ciphers
(Gimli, Ascon, Knot,

and Chaskey)
MLP, CNN, LSTM

Sirichotedumrong
et al. [10] Image transformation scheme CIFAR-10, CIFAR-100 GAN

Ding et al. [36] Private key generation Medical images
(Stream cipher) GAN

Panwar et al. [37] End-to-end image
encryption survey - GAN, Diffusion, CNN

Also, some approaches studied advanced cryptanalytic approaches in image domains.
A new GAN-based image transformation technique for privacy-preserving DNN that
can apply images without visual information to DNN and increase the robustness for
ciphertext-only attack has been proposed [10]. A novel deep learning-based key generation
network (DeepKeyGen) is proposed as a stream cipher generator for generating private
keys that can be used for encryption and decryption of medical images [36]. K. Panwara
et al. [37] summarized the latest trends in deep learning-based end-to-end encryption
techniques. Existing deep learning-based encryption systems are classified into three
categories: encryption with style transfer, style transfer with enhanced diffusion properties,
and combining deep neural networks with chaotic systems, and each methodology is
discussed and related conclusions are made. However, their approaches focus only on the
image domain with image encryption. On the other hand, we have focused on the natural
language domain with a substitutional cipher on symmetric cryptosystems.



Cryptography 2023, 7, 35 6 of 21

3. Overview of the Proposed UC−GAN Cryptanalysis Model

We propose a UC−GAN network model for multi-domain cryptanalysis that is
based on StarGAN using a single unified generator and discriminator model. In our
model, as in CipherGAN, our objective is to train the generator on multiple cipher
and plain domains without any prior knowledge. However, the two models differ in
the number of generators. Figure 3 shows the process of UC-GAN and CipherGAN
generating plaintext from the ciphertext. As the CipherGAN model is based on the
CycleGAN model, each generator must be used for each ciphertext domain. However,
the proposed UC-GAN model uses only a single unified generator for multiple ciphertext
domains based on the StarGAN model.
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We therefore present an enhanced form of StarGAN for multi-domain cryptanalysis.
We specifically consider training objectives and network designs regarding conditional
techniques. In addition, we use embedding space for continuous relaxations [23,38] before
main training. Furthermore, we suggest an adversarial loss that supports the conversion of
all source domain data into the target single data (multi-cipher to single-plain) or (single-
plain to multi-cipher) with only one training process. Similar to CipherGAN, the goal of our
approach is to train the generator G on various cipher and plain domains with no previous
information. The fundamental distinction is that we employ a single unified generator (G)
and discriminator (D) across several cipher domains. The primary distinction between our
model and CipherGAN is that the CipherGAN requires a ratio of the number of G and D to
the number of ciphertext/plaintext domains. Therefore, our method is greatly improved in
representing multi-domain on discrete random variables. The experiment results show that
our proposed model can break and emulate multiple substitution ciphers (Caesar, Vigenere,
and substitution cipher) in only one training process.

Figure 4 shows the process of creating data used for model training. To build
UC−GAN, we use embedding E for continuous relaxations before the main process as
embedding space Wemb and timing space Wtime. The embedding E consists of a one-hot
vector step and a simplex to embedding step. In the one-hot vector step, each character
is represented by a one-hot vector with the length of v (v = 26 in our setting). To make
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embedding vector E(x), it computes r = t·Wemb and E(x) = r||Wtime , where the original
one-hot vector t from the original data x, with embedding space Wemb and additional timing
space Wtime. Such continuous relaxation makes it possible to back-propagate when we are
training neural network models with preserved information. In our setting, we assume
that the original data x consists of the number of N characters. Therefore, t ∈ {0, 1}N×v and
WEmb ∈ Rv×E and Wtime ∈ RN×T are trained parameters which we have to update when
the training is processed. Finally, the input data of the model are created by concatenating
the embedding data and the target domain label.
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ation; (b) label concatenation. Finally, concatenated E(x) ‖ c is an input for the unified generator G.

Figure 5 shows the training process of UC-GAN when using ciphertext as an input.
The generator of UC-GAN can generate plaintext from ciphertext. In this case, inputs of
generator are embedded ciphertext and target domain label indicating plaintext. In our
proposed model, we have four domains PT, CT1, CT2, and CT3. These domain labels are set
as the plaintext domain PT to 0, Caesar ciphertext domain CT1 to 1, Vigenere CT2 to 2, and
substitution cipher CT3 to 3. The discriminator produces two probability distributions that
distinguish whether the source used as the input of the discriminator is real or generated
by the generator (Dsrc), and checks whether the domain of the source is the same as the
target domain label c (Dcls).
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the target domain label. After embedding the generated fake plaintext, the fake ciphertext can be
generated by using it as an input to a generator, and results for domain classification and real or fake
classification can be obtained by using it as an input to a discriminator. It is trained the same way
when using plaintext as an input.

The loss for generator G consists of three losses: adversarial loss, domain classification
loss, and reconstruction loss. Adversarial loss for the generator is a value for learning
the generator using the results of the discriminator. Afterward, the model learns in the
direction in which the loss is reduced so that the output generated from the generator
is classified as real by the discriminator. We use adversarial loss with the least squared
loss [39]. The adversarial loss for generator is described as follows:

Ladv_g = Ex,c[(Dsrc(E(G(E(x), c)))− 1)2] (2)

where, x is the input of the generator, which can be either plaintext or ciphertext. c is the
target domain label, and the generator G transforms x into the domain corresponding to c.
E is an embedding function and D is a discriminator.

The domain classification loss for generator is a value that the discriminator determines
whether the output generated by the generator is converted to the desired target domain
label. The domain classification loss for generator is described as follows:

L f
cls = Ex ,c[− log Dcls(c|E(G(E(x), c)))] (3)

Reconstruction loss is a cycle-consistency loss used in cycleGAN, which is a value
calculated by calculating the difference with the input when returning to the domain of
the original input after passing through the generator twice. First, the original image is
transformed into an image of the target domain, and then the original image is reconstructed
from the transformed image. We used the L1 norm for reconstruction loss. The domain
classification loss for generator is described as follows:

Lrec = Ex,c,c′ [
∣∣∣∣x− G(E(G(E(x), c)), c′)

∣∣∣∣1] (4)
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where, G takes in the translated image G(E(x), c) and the original domain label c’ as the
input and tries to reconstruct the original image x. Therefore, the loss for the generator is
described as the summation of Equations (2)–(4):

Lg = Ladv + λclsL f
cls + λrecLrec (5)

where, λcls and λrec are hyper-parameters for L f
cls and Lrec. The generator is trained to

minimize Equation (5).
The loss for discriminator D consists of three things. These are adversarial loss,

domain classification loss, and Wasserstein gradient penalty loss. The adversarial loss for
the discriminator is a value that the discriminator learns to determine the actual ciphertext
or the actual plaintext for real and to determine the generated sentence for fake. The
adversarial loss for discriminator is described as follows:

Ladv = Ex[(Dsrc(E(x))− 1)2] +Ex,c[(Dsrc(G(E(x), c)))2] (6)

The domain classification loss for the discriminator is the value by which the discrimi-
nator determines whether the source used as the input to the discriminator matches the
target domain label. The domain classification loss for discriminator is described as follows:

Lr
cls = Ex ,c′ [− log Dcls(c′

∣∣E(x))] (7)

where, Dcls takes in the real data E(x) and the original domain label c′ as the input.
Actually, the loss architecture of vanilla GAN [40] is based on Kullback–Leibler diver-

gence (KL divergence), which is a type of statistical distance. However, gradient vanishing
problem occurs sometimes, therefore it makes worse results. To prevent such issues, the
Wasserstein gradient penalty loss [41] has been proposed. They used 1-Wasserstein distance
(Earth Movers’s distance) with constrained 1-Lipschitz function instead of KL divergence.
Additionally, improved versions have been proposed for enforcing the Lipschitz constraint,
by directly constraining the gradient norm of the discriminator’s output with respect to
its input [42]. We used this gradient penalty for a stable training process on continuous
relaxed random variables which is described as follow:

Lgp = Ex̂[ (||∇x̂Dsrc(E(x̂))||2 − 1) 2] (8)

where, x̂ is a random samples x̂ ∼ Px̂, where Px̂ is a sampling uniformly along straight lines
between pairs of points sampled from the data distribution and the generator distribution.
Therefore, the loss for the discriminator is described as the summation of Equations (6)–(8):

LD = Ladv + λclsLr
cls + λgpLgp (9)

where, λcls and λgp is hyper-parameters for Lr
cls and Lgp. The discriminator is trained to

minimize Equation (9).

Network Architecture

Figure 6 shows the overall structure of our network components. The network com-
prises 4 convolution blocks (1D Convolution-Layer Norm-ReLU) for channel expansion, a
bottleneck layer consisting of 5 residual layers, and 2 convolution blocks (1D Convolution-
Layer Norm-ReLU) to make the channel to 26. The last layer of the generator outputs the
form of a vector with 26 components, and only one component is highlighted by Softmax,
and the corresponding position means the position of the alphabet. Three convolution
layers make up the discriminator network, which extracts the characteristics of the re-
covered plaintexts. However, there are significant distinctions between our network and
StarGAN. First, we train language domains using a 1-dimensional (1D) convolution layer.
Second, there are no deconvolutional operations in our generator network’s upsampling
layers. Third, we decreased the depth of the generator and the discriminator to obtain
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a more reliable training outcome. We employ layer normalization for the generator and
discriminator, respectively, and rectified linear units (ReLU) and leaky rectified linear units
(LeakyReLU) as activation functions. Additionally, the hyperparameters are adjusted for
steady training.
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Figure 6. Schematic of the overall network components of the proposed UC−GAN. All layers consist
of 1-dimensional (1D) convolution to train language domains. In addition, N and Oi are the size
of output texts from the previous layer. The figure above shows the process in which ciphertext is
used as an input, the generator generates plaintext, and the discriminator evaluates the generated
plaintext. It is trained the same way when using plaintext as an input.

4. Experimental Results

We now assess how effectively our GAN-based method recovers substitution cipher.
However, our adversarial approach may theoretically be used for many kinds of data. We
also offer experimental support for this assertion in the first experiment. In the second set
of experiments, we compare the Pix2Pix network model against the CipherGAN model for
plain-to-cipher and cipher-to-plain recovery. In the third set of experiments, we compare
the results of our UC−GAN model with the CycleGAN model.

4.1. Datasets

We employ the Brown corpus, a collection of digitized text samples in American
English, for our experiments. There are four domains in the training dataset and the test
dataset plaintext (PT), Caesar cipher (CT1), Vigenere cipher (CT2), and substitution cipher
(CT3). The dataset is encrypted with Caesar, Vigenere, and Substitution ciphers. Table 3
briefly explains how we may obtain these ciphertexts. We delete all special characters and
spacings. Furthermore, each data row in our dataset consists of N = 100 characters. As
a result, we can extract 4,537,600 characters. For the training dataset, each domain has
a number of 9600 data rows to consider both the known-plaintext attack (KPA) scenario
and the ciphertext-only attack (COA) scenario. In KPA settings, the attacker can access the
encryption method, which means the attacker has the number of n pairs. Otherwise, in
COA settings, the attacker has only ciphertexts, which means they have the number of n
ciphertexts. We extract 9600 data rows for each 4 domains to show accurate unsupervised
learning results. Therefore, the training dataset has 9600× 4×N(100) = 3,840,000 characters.
In addition, we set the data row to 3200 (320,000 characters) in the test dataset. To show the
exact effectiveness of our model, the remaining 377,600 characters are abandoned. Table 3
shows examples of the plaintext and corresponding ciphertext encrypted with different
substitution ciphers:
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Table 3. Examples of plaintext and ciphertext encrypted with different classical cipher methods.

Plaintext Encrypted Sentence Encryption Method/Key

eelementaryschoolodequindrewhich
hasbeenattendedthisyearbyfourofth

ekowalskichildrenincloudingchristine

hhohphqwdubvfkrrorghtxlqguhzklfkkdvehhqd
wwhqghgwklvbhduebirxuriwk

hnrzdovnlfkloguhqlqforxglqjfkulvwlqh
Caesar/3 shift to the right

hiqkpiszdvdyfltuosiktyntgvjckmh
nkexhhisgwxjtgiizkmxehewhbjtauskzkipu

zeqynmhnlpixhrntfptagmsmflwovxnth
Vigenere/defg

ttstdtfzqknleiggsgrtjxofrktvioeiiqlwttfqzztfr
trziolntqkwnygxkgyzitagv

qslaoeiosrktfofesgxrofueikolzoft

Substitution/
qwertyuiopasdfghjkzxcvbnm

4.2. System Equipment

Table 4 lists the system configuration for training the proposed network models.

Table 4. System configuration for training.

Component Description

CPU Intel Cori7-7700

GPU GTX 1080Ti

Language Python

Memory 16 GB

System type 64-bit operating system

OS type Window 10/64

4.3. Default Hyperparameter

Using the Adam optimizer, our model was trained with a batch size of 32, and a
learning rate of 1.8 × 10−4. The learning rate is exponentially warmed up over 5000 steps
and then remains constant. Each epoch equals 1200 rounds. To obtain more precise results
for text recovery, we update the generator once after the discriminator twice. The domain
classification loss λcls, reconstruction loss λrec and gradient penalty λgp hyperparameters
are set to 1, 10, and 10, respectively. For each of Wemb and Wtime, we set the embedding
space E and the concatenation space T to 256. The proposed method was implemented
using Python for encryption and Pytorch for our experiment UC-GAN, and we train on a
single NVIDIA Geforce GTX 1080Ti GPU. The GPU in general provides speedups that are
at least 5 to 10 times greater than the Central Processing Unit (CPU).

4.4. Cipher Emulation Results

As described above, we demonstrate that our UC-GAN can successfully break
the Caesar, Vigenère, and Substitution ciphers using only one unified generator. In
addition, our unified method can learn these discrete distributions for all multi-ciphers-
to-plain domains (See Figure 7a). Our encryption emulation can reconstruct all types
of ciphertexts from a single plaintext, such as PT→CT1, PT→CT2, and PT→CT3 for
the plain-to-multi-ciphers domain (See Figure 7b). In addition, the proposed model
can emulate all types of ciphertext to a single plaintext for multi-cipher-to-plain. We
measured the accuracy of the model using test data per each epoch. To test the model,
the test data was used as the input of the model, and one generator generates three
ciphertexts according to the labeled target. The model accuracy was calculated by
comparing the generated ciphertext with the target ciphertext. Figure 7c,d show the
accuracy of the test data per epoch and the highest accuracy in each cipher. As shown in
Figure 7, the model reached nearly 100% accuracy for all types of ciphers in 115 training
epochs. However, the convergence speed was different for different ciphers and Caesar
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and Substitution were broken faster than Vigenère. Table 5 shows the results of the
ciphertext generated by the model from the plaintext and the target ciphertext created by
the three cipher methods. Texts that do not match between the target ciphertext and the
generated ciphertext are marked in red, showing that most of the texts match. Table 6
demonstrates the actual network result for the cipher-to-plain recovery experiment.
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Table 5. Generated ciphertext and target ciphertext for plain-to-cipher emulation experiment.

Encryption Method Original Plaintext Target Ciphertext Generated Ciphertext

Caeser
medicalpiratesannuallyyouwillcomeu
pwithafrighteningtotalthatswhythef
datheamericanmedicalassociationa

phglfdosludwhvdqqxdoobbrxzloofrphx
szlwkdiuljkwhqlqjwrwdowkdwvzkbw
khigdwkhdphulfdqphglfdodvvrfldwlrqd

phglfdosludwhvdqqxdooxxrxzloofrphxs
zlwkdiuljkwhqlqjwrwdowkdwvzkxwkh
igdwkhdphulfdqphglfdodvvrfldwlrqd

Vigenere
medicalpiratesannuallyyouwillco

meupwithafrighteningtotalthatswhyt
hefdatheamericanmedicalassociationa

piiofeqvlvfzhwftqyfrocduxanrogtshyu
clxmgivnmkxjtlrlzrxfrwlfzvamewljl
geynherkumhgqqjjlgfrdwxufmfzlssg

piiofeqvlvfzhwftqyfrosduxanrogtshyucl
xmgivnmkxjtlrlzrxfrwlfzvamew

ljlgeynherkumhgqqjjlgfrdwxufmfzlssg

Substitution
medicalpiratesannuallyyouwillcom
eupwithafrighteningtotalthatswhyt
hefdatheamericanmedicalassociationa

dtroeqshokqztlqffxqssnngxvosse
gdtxhvoziqykouiztfofuzgzqsziqzlvinz
ityrqzitqdtkoeqfdtroeqsqllgeoqzogfq

dtroeqshokqztlqffxqssnngxvosseg
dtxhvoziqykouiztfofuzgzqsziqzlvinz
ityrqzitqdtkoeqfdtroeqsqllgeoqzogfq

To ensure the accuracy of our proposed model, we evaluated the accuracy for each
character and presented a confusion matrix (See Figure 8). Considering that the charac-
ter frequencies in the data are imbalanced, we constructed a confusion matrix with the
frequency ratio of each character. We observed that high-frequency characters performed
well while low-frequency characters showed relatively low performance. The characters
b, j, k, q, x, and z exhibit comparatively poor performance, and their infrequent usage
can be verified by analyzing the character frequency. We calculated a weighted F1 score
that considers the imbalanced character frequencies. We multiplied the F1 score calculated
for each character by its frequency ratio and then calculated the total calculated values.
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Looking at the calculated F1 score, with a value very close to 1, the proposed model shows
that it is possible to break three ciphers simultaneously. To exactly validate our generated
ciphertext results, we have made target ciphertext by CrypTool [43], which is officially
released for non-commercial use and provides different types of cryptographic algorithms
including classical cryptosystems and block ciphers.

Table 6. Generated plaintext and target plaintext for cipher-to-plain emulation experiment.

Encryption Method Original Ciphertext Target Plaintext Generated Plaintext

Caeser
gdxjkwhuplvvvxvdqdqqylhwkwrpufrq
udgzdoovrqrigufrqudgzdoodqgpuvqhoo
nhqqhgbzdoowkhpduuldjhzlooehtxlhwo

daughtermisssusanannviethtomrco
nradwallsonofdrconradwallandmrsn

ellkennedywallthemarriagewillbequietl

daughtermisssusanannviethtomrcon
radwallsonofdrconradwallandmrsn

ellkennedywallthemarriagewillyequietl

Vigenere
rtzykesjsvtjkmroqxtzkiukujjiwmttwljbh

xjxdrrgqelkuwfcdwfzkvnromsms
sxylfnrlxdzkitrgqftzexgoqtywxtussxy

opushandprodhimintotheperfectionth
eveteranmanagersawasathrillingposs

ibilitytheoldmanwasalmosttooposs

opushandprodhimintotheperfectio
nthepeteranmanagersawasathrillingpo
ssiyilitytheoldmanwasalmosttooposs

Substitution
hktltfztrzgzitzgvfeqxfeossqlzfou

izqlviqzolightrvosswtzityoklzlzthofg
wzqofofuqigdtkxsteiqkztkygkzitzg

presentedtothetowncauncillast
nightaswhatishopedwillbethefirstste

pinobtainingahomerulecharterfortheto

Presentedtothetowncouncillastnightaswh
atishopedwillpethefirststepinoptaininga

homerulecharterfortheto
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4.5. Computational Complexity and Memory Usage

Deep learning models require a significant amount of computation and memory to
train and evaluate. Two important metrics used to quantify the computational complexity
and memory usage of deep learning models are multiply-and-accumulate operations
(MACs) and memory usage. MACs are a measure of the number of arithmetic operations
required to perform forward and backward passes through a neural network model.
Therefore, the higher the amount of computation, the higher the index of MAC. Memory
usage refers to the amount of RAM or GPU memory occupied by the model and its
associated data structures during training or inference. Memory usage varies depending
on the size of the data being used. We calculated the MACs and memory usage of the
generator’s process that converts from ciphertext to plaintext when the batch size was 1.
A batch size of 1 means that we used 1 row consisting of N = 100 characters as the input.
The result is MACs of 0.28 B (billion) and memory usage of 21.54 MB. For Discriminator,
MACs of 0.04 B and memory usage of 13.92 MB were shown. Since the proposed model
has a small network structure based on 1D convolution, it shows lower complexity than
Resnet50 (4.13 B and 206.57 MB), which is mainly used for image-based research. As
it has low complexity, it shows that it is possible to train quickly even in a relatively
low-cost computation environment.

4.6. Model Result with Various Hyperparameters

The task of selecting a collection of ideal hyperparameters for a learning algorithm
is known as hyperparameter optimization or tuning in machine learning. To generalize
diverse data patterns, the same machine learning model may require different constraints,
weights, or learning rates that highly impacts the training processes. The effect of tweaking
hyperparameters on network training was examined utilizing several different experiments.
The highly important parameters including batch size and embedding space Wemb and
Wtime were investigated. The batch size refers to the quantity of data utilized to train the
network in each epoch. A big batch size hinders network convergence, whereas a small
batch size causes the network to fluctuate without attaining adequate performance. To
obtain the optimized parameters we conducted several experiments. Table 7 demonstrates
different hyperparameters settings used to run different experiments. Especially, we
empirically found that the embedding space Wemb, Wtime and batchsize bs are crucial factors
in achieving stable training results in our scenario. However, the values for lambda in
the classification loss λcls and the reconstruction loss λrec are highly sensitive to change
making it challenging to train. Therefore, following StarGAN [24], we fixed λcls to 1 and
λrec to 10 during our experiments. Similarly, changing the learning rate lr can result in
unstable training times. After many times experimenting, we found that 18 × 10−4 is the
best learning rate for our model. We then tested various values for bs, Wemb, and Wtime
with a fixed value for λcls, λrec, and lr. We changed the batch size by a factor of 4 and
the embedding space by a factor of 2, to ensure that these hyperparameters significantly
impacted the model.

In the first round of the experiment, we investigated the impact of batch size on
the different cipher attacks. First, we set the batch size to 8 and ran the training process
for both ciphers to plain and plain to cipher attacks. Figure 9a and b demonstrate the
network training process on a cipher to plain and plain to cipher, respectively. As can be
seen from Figure 9, the network could not converge for all types of ciphers in 120 epochs.
The converge speed is lower than the batch size of 32 meaning that the lower batch size
needs more training epochs to converge all ciphers. Afterwards, we set the batch size
to 128 and ran the training process. Figure 9c and d demonstrate the network training
process on a cipher to plain and plain to cipher, respectively, for a batch size of 128,
respectively. Similarly, the network could not converge for all types of ciphers. Figure 9
demonstrates the test accuracy result comparison for batch size 8 (Figure 9e) and batch
size 128 (Figure 9f).
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Table 7. Hyperparmeter tuning experiments.

Parameter Default Setting Experiment 1 Experiment 2 Experiment 3 Experiment 4

Learning rate (lr) 1.8 × 10−4 1.8 × 10−4 1.8 × 10−4 1.8 × 10−4 1.8 × 10−4

Batch size (bs) 32 8 128 32 32

Embedding space
Wemb and Wtime

256 256 256 128 512

Lambda for
classification loss

function (λcls)
1 1 1 1 1

Lambda for
reconstruction
function (λrec)

10 10 10 10 10Cryptography 2023, 7, x FOR PEER REVIEW 16 of 22 
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method test results for batch size 8; (f) proposed method test results for batch size 128.

Afterwards, we fixed other parameters and investigated the impact of embedding
space Wemb and Wtime on network training. In the first round of the experiment, we set
the embedding spaces Wemb and Wtime from 256 to 128 and run the network. Figure 10
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demonstrates the network training process for different embedding spaces Wemb and Wtime.
Figure 10a and b show the network could converge for all types of ciphers but with a lower
speed compared to the default setting for a cipher to plain and plain to cipher attacks,
respectively. Afterwards, we set the embedding spaces Wemb and Wtime from 256 to 512 and
run the network, respectively. Figure 10c and d demonstrate the network training process
for the embedding space Wemb and Wtime of 512 for a cipher to plain and plain to cipher
attacks, respectively. It has a large size compared to the default setting which demonstrates
to be inefficient and did not converge for all ciphers. Figure 10e and f demonstrate the
proposed method tests accuracy results for embedding spaces Wemb and Wtime 128, and
embedding spaces Wemb and Wtime 512, respectively. Looking at the results in Figure 10, it
shows that the results of learning can vary depending on the embedding spaces, and in
particular, it can be seen that convergence is slow or does not converge at all, resulting in
ciphers with very low accuracy.

Cryptography 2023, 7, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 10. The proposed method training process of different sizes of embedding spaces 𝑊 and 𝑊௧. (a,b) proposed method training process on embedding spaces 𝑊 and 𝑊௧ of 128, for a 
cipher to plain and plain to cipher attacks, respectively; (c,d) proposed method training process on 
embedding spaces 𝑊 and 𝑊௧ of 512 for a cipher to plain and plain to cipher attacks, respec-
tively; (e) tests accuracy results for embedding spaces 𝑊 and 𝑊௧ 128; (f) embedding spaces 𝑊 and 𝑊௧ 512. 

4.7. Model Comparison 
We conducted a comparison of the proposed model GAN-based state-of-the-art and 

the existing models. The Pix2Pix model and the CipherGAN model are the popular GAN-
based cryptanalysis models we used for model comparison. In effect, the original Pix2Pix 
model is based on supervised learning which is trained in one direction using a paired 
dataset. To compare the model between supervised and unsupervised settings, we di-
rectly implement an improved Pix2Pix model with our embedding technique for crypta-
nalysis. Therefore, the Pix2Pix model can only learn one cipher at one training, in one 
direction (plain to cipher or cipher to plain). CipherGAN is based on unsupervised learn-
ing using the cycleGAN structure. Unlike supervised learning, unsupervised learning is 
trained in both directions (plain to cipher and cipher to plain) using an unpaired dataset. 
However, CipherGAN can also be trained for only one cipher in one training. Pix2Pix is a 

Figure 10. The proposed method training process of different sizes of embedding spaces Wemb and
Wtime. (a,b) proposed method training process on embedding spaces Wemb and Wtime of 128, for a
cipher to plain and plain to cipher attacks, respectively; (c,d) proposed method training process on
embedding spaces Wemb and Wtime of 512 for a cipher to plain and plain to cipher attacks, respectively;
(e) tests accuracy results for embedding spaces Wemb and Wtime 128; (f) embedding spaces Wemb
and Wtime 512.
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4.7. Model Comparison

We conducted a comparison of the proposed model GAN-based state-of-the-art and
the existing models. The Pix2Pix model and the CipherGAN model are the popular GAN-
based cryptanalysis models we used for model comparison. In effect, the original Pix2Pix
model is based on supervised learning which is trained in one direction using a paired
dataset. To compare the model between supervised and unsupervised settings, we directly
implement an improved Pix2Pix model with our embedding technique for cryptanalysis.
Therefore, the Pix2Pix model can only learn one cipher at one training, in one direction
(plain to cipher or cipher to plain). CipherGAN is based on unsupervised learning using
the cycleGAN structure. Unlike supervised learning, unsupervised learning is trained in
both directions (plain to cipher and cipher to plain) using an unpaired dataset. However,
CipherGAN can also be trained for only one cipher in one training. Pix2Pix is a KPA
scenario because it requires a paired dataset, and CipherGAN is a COA scenario because it
uses an unpaired dataset.

Figure 11 shows the test results trained with the Pix2Pix model and the CipherGAN
model. Since the Pix2Pix model learns only one cipher in one training and is unidirec-
tional, the results of each training are combined and displayed. The results of cipher to
plain and plain to cipher are very similar (See Figure 11a,b). In both processes, Caeser
and Substitution approached 100% when epochs exceeded 30, and Vigenère approached
100% at 70 epochs. Therefore, a total of six training sessions are required to attack three
ciphers using the Pix2Pix model. CipherGAN also shows the combined results of each
training because only one cipher is learned in one training (See Figure 11c,d). Cipher-
GAN, like Pix2Pix, has similar results of cipher to plain and plain to cipher. However, the
test results of Substitution are different. Pix2Pix was trained stably and showed a graph
with gradually increasing accuracy, while CipherGAN dropped once after 40 epochs
and then rapidly rose and changed to a stable shape. In the case of Vigenère, training
was completed last, the same as Pix2Pix. The bar graph in Figure 11e and f shows the
highest test accuracy of each cipher for each model. All results show that over 99% of
the model can be trained to break each cipher. This shows that once the model is trained,
it can eventually be decrypted. Although there is a difference in the size of the epoch to
be trained, it can be seen that the proposed model reaches high accuracy much faster
when viewed as a training process for all ciphers. Table 8 shows the test results of our
proposed model and the test results of Pix2Pix and CipherGAN, which are comparative
models. However, UC-GAN can be considered more efficient because it simultaneously
broke three ciphers in one training.

Table 8. Experimental results of the Pix2Pix, CipherGAN, and UC-GAN.

Emulation Method Target
Network Model Accuracy (%)

Pix2Pix CipherGAN UC−GAN

Single cipher
To Plain

Caesar to Plain 99.96 99.53 99.40

Vigenere to Plain 99.84 99.79 98.33

Substitution to Plain 99.84 99.45 98.71

Plain to
Single cipher

Plain to Caesar 99.95 99.44 98.37

Plain to Vigenere 99.84 99.79 97.72

Plain to Substitution 99.84 99.45 99.82
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Figure 11. Test accuracy comparison of the Pix2Pix network (KPA) model with the CipherGAN
(COA) network model. (a) Ciphertext-to-plaintext result with Pix2Pix network model; (b) plaintext-
to-ciphertext result using Pix2Pix network mode; (c) plaintext-to-ciphertext result using CipherGAN;
(d) plaintext-to-ciphertext using CipherGAN; (e) Test accuracy result of the Pix2Pix network model in
plaintext-to-ciphertext recovery against the CipherGAN model; (f) test accuracy result of the Pix2Pix
network model in ciphertext-to-plaintext recovery against the CipherGAN model.

5. Discussion

We suggested a novel unsupervised deep-learning model that is more flexible and
efficient than existing information extraction techniques for translating ciphertext-to-
plaintext across various cipher domains. The proposed model is based on generative
adversarial networks (GANs). As described above, by competing for a generative
deep neural network against a discriminative deep neural network, the GAN model
creates samples that seem to come from the training set. Especially, CipherGAN is a
GAN-based model that is an unsupervised cryptanalytic method to break substitution
ciphers without any prior knowledge. However, CipherGAN requires the number of
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generators and discriminators to be in proportion to the number of ciphertext/plaintext
domains. Unlike CipherGAN, we proposed UC−GAN, which consists of a unified
generator and a discriminator using only a single deep neural network for multiple
domains. The proposed UC−GAN model was able to perform extremely well on
multiple substitution ciphers, achieving near-flawless accuracy. The experimental
results were carried out using three types of classical ciphers Caesar, Vigenere, and
Substitution ciphers. In addition, we compared the model performance of our model
with that of the CycleGAN model. The experimental results demonstrate that the
proposed UC−GAN model can perform similar test accuracy results to the CipherGAN
model, but unlike CipherGAN and the proposed UC-GAN uses only a single domain.
This means that the efficiency of emulation in multiple domains is 3 times faster than
CipherGAN. Second, UC−GAN shows that discrete GANs can be evolved much more
like the original GANs. In addition, as shown in Figure 6, the UC−GAN model is
notably insensitive to the random initialization of weights and demonstrates constant
trends in testing. Furthermore, we experimentally compared the performance of the
Pix2Pix network model with that of the CipherGAN network model for cracking
classical substitution ciphers. The experiment was conducted under two possible
circumstances; first, cipher-to-plain, and second, plain-to-cipher. In both cases, the
Pix2Pix network model performed relatively better than the CipherGAN model. Our
proposed model usage is not limited only to cipher cracking, but can also be utilized in
other multi-domain networks, such as image generation, voice convertor, or automated
speech translation for multiple audiences.

6. Conclusions

In this paper, we proposed a fully automated multi-domain cipher cracking system
for substitution ciphers without any prior knowledge, such as language frequencies.
Our approach is based on generative adversarial networks (GANs). We use GANs in a
new way by utilizing a unified generator and discriminator of the proposed UC−GAN
in just one deep neural network for multi-domain cryptanalysis. In this paper, we
showed that the proposed model has great breaking emulation results for multi-domain
cryptanalysis. We evaluated the proposed method using three types of classical ciphers:
the Caesar, Vigenere, and Substitution ciphers. The experimental results demonstrated
that the proposed model was able to crack multiple ciphers in a single training process.
The proposed model showed more than 97% in overall accuracy and more than 0.96
in weighted F1-score considering unbalanced character frequencies. Furthermore, we
showed that the proposed model has very stable training results with hyperparameter
tuning in several experiments.

Block ciphers are one of the important encryption systems in modern cryptography for
data confidentiality. The block ciphers are applied to a wide variety of practical applications
that are highly secure with complicated structures. Therefore, in the future, we plan to
utilize the current method to crack block ciphers or a component of block ciphers such as
S-boxes, which is the main component of block ciphers.
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