
Citation: Haywood, G.T.; Bhatti, S.N.

Defence against Side-Channel Attacks

for Encrypted Network Communication

Using Multiple Paths. Cryptography

2024, 8, 22. https://doi.org/10.3390/

cryptography8020022

Academic Editor: Josef Pieprzyk

Received: 12 March 2024

Revised: 10 May 2024

Accepted: 21 May 2024

Published: 28 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Defence against Side-Channel Attacks for Encrypted Network
Communication Using Multiple Paths
Gregor Tamati Haywood and Saleem Noel Bhatti *

School of Computer Science, University of St Andrews, St Andrews KY16 9SX, UK; gh66@st-andrews.ac.uk
* Correspondence: saleem@st-andrews.ac.uk; Tel.: +44-1334-461640

Abstract: As more network communication is encrypted to provide data privacy for users, attackers
are focusing their attention on traffic analysis methods for side-channel attacks on user privacy. These
attacks exploit patterns in particular features of communication flows such as interpacket timings and
packet sizes. Unsupervised machine learning approaches, such as Hidden Markov Models (HMMs),
can be trained on unlabelled data to estimate these flow attributes from an exposed packet flow, even
one that is encrypted, so it is highly feasible for an eavesdropper to perform this attack. Traditional
defences try to protect specific side channels by modifying the packet transmission for the flow, e.g.,
by adding redundant information (padding of packets or use of junk packets) and perturbing packet
timings (e.g., artificially delaying packet transmission at the sender). Such defences incur significant
overhead and impact application-level performance metrics, such as latency, throughput, end-to-end
delay, and jitter. Furthermore, these mechanisms can be complex, often ineffective, and are not general
solutions—a new profile must be created for every application, which is an infeasible expectation to
place on software developers. We show that an approach exploiting multipath communication can be
effective against HMM-based traffic analysis. After presenting the core analytical background, we
demonstrate the efficacy of this approach with a number of diverse, simulated traffic flows. Based
on the results, we define some simple design rules for software developers to adopt in order to
exploit the mechanism we describe, including a critical examination of existing communication
protocol behavior.

Keywords: side channel; privacy; multipath communication; Hidden Markov Model (HMM);
identifier locator network protocol (ILNP); Internet Protocol v6 (IPv6)

1. Introduction

The use of encryption on data packets can provide data privacy, thus protecting
sensitive information from direct inspection if intercepted during transmission. However,
it is still possible for an attacker to successfully employ side-channel attacks instead, thereby
examining traffic characteristics to attack user privacy even for encrypted traffic. This
typically involves the examination of traffic patterns and attributes of a sequence—a flow—of
packets that constitute a communication session or dialogue, such as packet sizes and packet
delay information [1].

For an attacker—an eavesdropper—to intercept the flow and launch such an attack, they
must be on path; that is, they must have access to part of the end-to-end path (from sender to
receiver) to read packets and process them. On the Internet, the nature of routing algorithms
means that, typically, there is a single end-to-end path used for all packets in a flow between
two communicating parties, even though routing protocols might discover multiple paths
between those two parties. However, as the design of communication protocols has
progressed, a trend towards a new feature has emerged: multipath transmission. While
this has mainly been motivated by a need for load distribution and robustness, multipath
transmission also has the potential to disrupt eavesdroppers who are present on only one
of several paths.

Cryptography 2024, 8, 22. https://doi.org/10.3390/cryptography8020022 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography8020022
https://doi.org/10.3390/cryptography8020022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0001-5583-5935
https://orcid.org/0000-0002-5566-9997
https://doi.org/10.3390/cryptography8020022
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography8020022?type=check_update&version=1

Cryptography 2024, 8, 22 2 of 26

1.1. Contribution

In this paper, we argue that multipath communication can act as a defence against traffic
analysis attacks based on side channels. It is not totally intuitive that sending traffic for
a single flow across multiple paths would yield such a defence, as one might consider that,
for a flow of a long duration, the patterns visible on a single path emerge on each of the
multiple paths. However, we examine this issue in depth and show that, indeed, multipath
communication can perturb traffic patterns sufficiently to thwart traffic analysis.

The key contributions of this paper are the following:

• A multipath mechanism that prevents analysis by known and unknown side channels
due to the underlying behavior being protected, which avoids the overheads associated
with other defences, as no artificial delay, junk packets, or padding is added to the
packet flow.

• A thorough analysis of protection against privacy attacks based on the use of Hidden
Markov Models (HMMs), which are common attacks for (encrypted) traffic based on
traffic analysis of a stream of packets—a flow.

• Recommendations that are based on challenges from our analysis for real-world
implementation in protocols.

1.2. Paper Structure

We first present some background in to the development of side-channel attacks based
on HMMs (Section 2). Then, we give a high-level view of how such attacks could be evaded,
thus setting the scene for the defence mechanism presented in this paper (Section 3). We then
describe the two key aspects of an effective and realistic defence: (i) having a communication
protocol architecture that permits easy, flexible multipath communication (Section 4) and
(ii) an analysis of HMM-based attacks on side channels to understand how they work
and which key features we wish to perturb in order to foil an attacker (Section 5). We
present a simulation-based evaluation of our approach based on models using various
datasets and our specific protocol approach (Section 6); we then present a set of challenges
and recommendations for application to real protocols (Section 7). We then conclude and
provide a summary and pointers to future work (Section 8).

2. Traffic Analysis for Network Communication

Traffic analysis attacks compromise data privacy by exploiting side channels to reveal
sensitive information in supposedly private communications. This is possible because the
side channels—although potentially not sensitive in and of themselves—are influenced by
sensitive patterns of secured communications. Unsupervised machine learning algorithms,
such as Hidden Markov Models (HMMs), can be trained on unlabelled data to estimate
these sensitive characteristics from the exposed information, thus making this a highly
feasible attack for an eavesdropper to perform. In addition to the immediate threat of
compromising data privacy, this advanced form of packet inspection can also form the
basis of censorship techniques [2].

2.1. Traffic Analysis Techniques

Even when common privacy and data confidentiality protections are in place, such
as encryption, some information about a communication is still exposed—such as the
size of each packet; interpacket arrival times (IPATs); the date, time, and duration of the
communication; and the fact that a communication occurred [3]. While these information
leaks are often indirect, they function as side channels that reveal information about
potentially sensitive data, which can then be exploited by an eavesdropper using various
machine learning-based techniques.

Each approach creates a statistical model of the sensitive communication it targets.
Once trained on sufficient data, the model can be used to estimate the likelihood of
a particular communication exchange resulting in some set of side-channel observations.
This can then be used to find the communication exchange most likely to have produced

Cryptography 2024, 8, 22 3 of 26

an observed sequence of side-channel observations. If this communication exchange
corresponds to the sensitive part of the communication, that attacker could extract
the sensitive data from the estimated exchange, thus bypassing traditional defences
like encryption.

HMMs are a machine learning technique that are very effective at solving this problem,
so they are widely used in the literature [4–6]. While other machine learning algorithms are
also used, they all target the same principle: that patterns in the sensitive communication
influence the observable side channels [7,8]. This work focuses on HMMs as an example,
but as the defence disrupts this principle, it is expected to provide resilience against any
machine learning algorithm that makes this assumption.

2.2. Use of the Hidden Markov Model (HMM)

HMMs are a widely used solution for modeling the characteristics of human language [9].
As such, they have also proven effective at modeling (and therefore analyzing) traffic with
behavior derived from natural language, such as real-time Voice over IP (VoIP) calls. This
section expands on how they can be used for traffic analysis.

VoIP can reduce the throughput capacity required for a communication by using
a variable bit rate for lossless compression and by using discontinuous transmission
rather than encoding and transmitting periods of silence. During periods of continuous
transmission, packets are sent at regular intervals, but the variable bit rate results in different
packet sizes depending on the phonemes sent—common phonemes are represented with
short codes, thus creating small packets, while uncommon sounds use longer codes, thus
resulting in larger packets. The encoded phonemes can be encrypted, so an eavesdropper
cannot trivially read them, but the packet size is still exposed. An attacker can construct
an HMM with hidden states corresponding to phonemes (and transition probabilities based
on natural language). The emitted values are packet sizes, and emission probabilities
can be estimated from the variable bit rate codec. Given a set of observed packet sizes,
an eavesdropper could then use the Viterbi algorithm to find the set of phonemes most
likely to have produced the observed communication [10]. This is sufficient to allow spoken
phrases to be recovered from the encrypted packets [5,6].

The same class of attack can be performed against SSH. As with encrypted VoIP,
an eavesdropper cannot trivially read the contents of an SSH packet. Unlike VoIP, the
character encoding bit rate is constant, but the timings between packets are not—in
interactive mode, SSH sends a packet in response to each keystroke so the IPAT depends
on the keystroke timings. These timings, in turn, depend on the relative position of the
keys on the keyboard—some keys are easier to press in quick succession than others. The
emitted values here are IPATs, which depend on the keys pressed for the two packets on
either side of the time period, so the hidden states correspond to SSH character pairs, with
transition probabilities dependant on the language being typed. Given this model, the
Viterbi algorithm can be used to find the sequence of characters most likely to produce
a given sequence of IPATs [4].

HMMs are particularly effective, as they can use unsupervised learning. If the
transition and emission probabilities are unknown—or even if the set of hidden states is
unknown—but unlabelled data are available, an HMM can be trained to search for any
pattern that might exist. In this case, the unlabelled data contain emission values, but not
the corresponding hidden states. An attacker who is positioned to perform this attack could
first use their position to collect training data, then train the model and start performing the
attack. Under this approach, the semantics of the hidden states would be unknown until
the attacker passed a small amount of labelled data through the model and then matched
the hidden states with the corresponding labels.

The efficacy of an HMM depends on its ability to correctly predict the set of hidden
states corresponding to a set of observations. The Baum–Welch algorithm provides
the mechanism to converge on locally optimal transition and emission probabilities for
an HMM via unsupervised learning, and with repeat runs can be used to estimate globally

Cryptography 2024, 8, 22 4 of 26

optimal parameters [11]. As training data are available to the attacker, and efficient training
algorithms exist, it can be assumed that an attacker knows the optimal parameters for
an HMM. So, as an attacker can easily create the best HMM for modeling a given scenario,
the efficacy of the HMM depends only on how closely the targeted process resembles
a hidden Markov process: if an accurate HMM for the process exists, the attacker will find
it, but if even the most accurate HMM does not closely resemble the process, the attacker’s
analysis will fail to accurately extract the sensitive information.

2.3. Summary of Existing Countermeasures

Existing defence mechanisms usually do not modify the underlying patterns in the
secure communication, as this application behavior is not directly exposed to the protocol
and is often closely tied to the real-world behavior that drives the application, such as
natural language—so they potentially cannot be changed by any component of the system,
including the application. Instead, defences try to protect the side channels: packet sizes
might be hidden by the addition of padding, or interpacket arrival times could be modified
by artificially adding delay or inserting junk packets.

Tor provides an aggressive form of traffic analysis countermeasures by requiring all
packets to be padded or fragmented to a fixed size [12]. As the application behavior no
longer influences it, an analysis of the packet sizes cannot reveal sensitive information.
However, this defence does nothing to hide packet timings, so timing-based attacks are still
possible—preventing them requires additional defences with additional overheads [13]. As
it is not possible to use Tor with UDP, this defence is also application-specific, and it cannot
be used for many real-time protocols. Even when it is applicable, the resulting traffic is
highly distinctive, so an attacker can detect Tor traffic—this is a sufficient degree of traffic
analysis for some attacks, such as censorship [14,15].

This approach could be extended to mask packet timings by sending packets at a fixed
frequency corresponding to the minimum IPAT. However, as doing so has a prohibitively
high bandwidth cost, Wright, Coull, and Monrose instead proposed traffic morphing [16].
Under their scheme, packets produced by one class of traffic (e.g., VoIP) were padded or
delayed to reshape the exposed pattern into that of a different class (e.g., web traffic). When
such a mapping is possible, this has a lower bandwidth overhead than simply filling the
line to maximum capacity. However, as the bandwidth and latency costs are still significant,
and the privacy benefits are limited, later work concluded that an efficient solution to this
problem does not exist [1].

More recent work has continued to support this hypothesis. Walkie-Talkie, from
2017, reduced information leaks by delaying when a browser requested remote resources,
but it incurred bandwidth overheads of 31% and a temporal delay of 34% [17]. FRONT,
proposed in 2020, is a zero-delay defence, so it has no temporal cost but incurs a bandwidth
cost of around 33% in order to achieve a competitive degree of privacy protection [18].
Other approaches try to achieve an acceptable overhead tradeoff by sending only short
bursts of junk data at intelligently selected points to maximize disruption [19,20]. These
defences specifically aim to disrupt website fingerprinting attacks by changing application
behavior—so even in cases where the overhead tradeoff is acceptable, they do not represent
a general purpose solution. Furthermore, many of them exhibit poorer performance in
real deployments due to the complexity of packet dependencies and the consequences of
congestion and retransmission [21].

BLANKET is a general defence for any packet flow that introduces adversarial features
into live communications [22]. These features are designed specifically to disrupt deep
neural networks, which have emerged as a recent trend in traffic analysis [23,24]. As such,
while it is applicable to any packet flow and can achieve significant disruptions to such
attacks with only a 10% bandwidth overhead, the authors acknowledge that it must be
integrated with other defences to disrupt other non-neural attacks—this is identified as
an area of future work. It is a general defence for all applications, but is not a general
defence against all attacks.

Cryptography 2024, 8, 22 5 of 26

As reshaping the profile of a flow of packets has remained costly and offered only
limited returns, an alternative defence has been proposed: traffic splitting. The premise of
this defence is to spread packets across multiple paths so that an eavesdropper present
on only one sees only a portion of the full communication. While various multipath
communication protocols exist, they do not typically use such a defence and instead
prioritize throughput [25,26]. Existing work on traffic splitting instead operates at the
application layer, thus facilitating multipath communication via an overlay, such as a modified
version of Tor [27–29]. These defences avoid the overheads of padding or delaying packets
but face a number of other problems:

1. they are application-specific, as they operate at a high level of the stack;
2. they require the use of a third party overlay, thus constraining deployability and

potentially extending the trust boundary; and
3. they are “loud”—that is, an attacker can see that the defence is in use, and may be

able to leverage this in further attacks.

While there are a range of existing countermeasures, all of them face limitations. Many
incur unacceptable costs to bandwidth and latency. Some prevent only certain methods of
analysis and are not general defences. Most are application-specific and do not provide
a general purpose solution—this is a particular concern for real-time communication, which
is both vulnerable to the analysis of real-time characteristics and cannot be protected by the
most defences, as they are designed only to disrupt website fingerprinting.

3. Evading Traffic Analysis

As HMM attacks always work against hidden Markov processes, the defence against
them is to ensure that the target system is not a hidden Markov process. There are two
approaches to this: ensure the hidden process is not a Markov process; or ensure that
emitted values are not dependent on hidden states.

3.1. Limits of Existing Defences

If an application’s behavior is Markovian, this cannot easily be changed. The first
obstacle is that the application must be rewritten. Requiring that all potentially vulnerable
applications be examined and rewritten in such a way that a fundamental characteristic
of their behavior changes is infeasible—while it may be doable for some well-supported
applications, smaller and legacy application developers may lack the resources, so this is
not a general solution. Furthermore, it may not be possible to change the application’s
behavior: if the application is driven by a real Markov process (such as natural language),
these characteristics will always remain. Avoiding Markovian behavior in applications is
therefore not a feasible general defence against HMM traffic analysis—while traffic splitting
defences do try to take this approach, they only work in specific contexts.

As the Markovian aspect of the process cannot generally be changed, existing counter-
measures usually target emission behaviors. Emissions can be considered “noisy” channels—
they encode the hidden state, but there is some margin for error. By maximizing this
error and ensuring that all states have the same emission probabilities, the model’s ability
to extract meaningful information is disrupted. However, due to the nature of the side
channels (and therefore the nature of the emissions), this is both challenging and disruptive.

Packet size cannot be reduced beyond a certain limit without losing data. Similarly,
packets cannot be sent faster than they are produced (unless the protocol inserts “junk”
packets to fill the spaces), so the IPAT cannot be reduced indefinitely. Emission patterns
for these features could potentially be smoothed to a degree, but due to these inescapable
limits passed down by the driving Markov process, some patterns will remain. In the other
direction, increasing the packet size either requires the application supplying more data
(which may not be possible, particularly in real-time scenarios), or that channel capacity is
wasted sending only junk. Additionally, latency and jitter can be artificially increased by
adding extra randomized delay to packet transmission. Even if this defence were reliably
effective, these extra costs to important performance characteristics make it unappealing.

Cryptography 2024, 8, 22 6 of 26

To hide the different states, a defence must ensure all states have the same emission
probabilities. This means that all are subject to the same constraints: if an application
has a peak throughput, it must always operate at that throughput, and if there is
a peak delay between packets, it must always use that delay. An application cannot
intelligently hide these characteristics without inadvertently leaking new information
via new emission probabilities.

Hidden Markov Models are a realistic threat to the privacy of systems that can be
modelled as hidden Markov processes. This threat cannot be easily disrupted, as the
behavioral features that drive it are inherent to the nature of the applications, and the
exposed side channels cannot be masked without unmanageable performance and resource
costs [1].

3.2. Disrupting Interception

While hiding the vulnerable features of intercepted traffic is impractical, it is
possible to decrease the probability of interception. If the attacker cannot see the whole
communication—or at least must perform more work to see all of it—they will have less
data to analyze, and the difficulty of the attack is increased. If it is sufficiently difficult, the
sensitive patterns being targeted by the attack may become infeasibly difficult to detect. In
terms of the HMM, the attacker would see only the emissions corresponding to a subset of
the hidden states.

This defence is analogous to frequency hopping in radio communications. By switching
between frequencies according to some secretly agreed pattern, two parties communicating
by radio can decrease the probability of being overheard. An eavesdropper may be listening
on one frequency and overhear a portion of the exchange, but will not be able to follow
them as they hop frequencies. This principle can also be employed by radar systems that
seek to avoid detection. Radar detection techniques can track radar by listening for patterns
of radio signals at particular frequencies. To avoid detection, a radar can use a frequency
hoping spread spectrum: by rapidly switching frequency, the signal patterns can be hidden
in background noise [30].

In the context of Internet Protocol (IP) networks, multipath communication can be
used for a spread spectrum-like defence: packets are spread over a number of paths, with
the assumption that the attacker will not be present on all of them. As some packets are
“lost” to the eavesdropper, they must perform their traffic analysis on only a limited data
set. This is multipath evasion.

3.3. Multipath Evasion and Traffic Splitting

Multipath evasion has superficial similarities to traffic splitting solutions. Both work by
spreading packets across multiple paths to stop an eavesdropper from observing all of them.
However, existing traffic splitting approaches operate at the application layer [27–29]. As
such, they are unable to take advantage of multipath-aware network or transport protocols,
must rely on overlays, and are application-specific. The novel network layer solution in our
approach provides both a general, end-to-end defence for all higher-layer protocols, and is
able to take advantage of multipath routing directly.

Traffic splitting defences have typically been designed to disrupt web fingerprinting.
Different traffic splitting approaches can be directly compared by measuring the accuracy of
known state-of-the-art classifiers against the traffic produced when they are in use [23,31–33].
These traffic analysis tools specifically perform web fingerprinting, so they do not represent
a general form of traffic analysis and are not applicable to real-time communications or
other applications. As this work both targets a wider problem (that is, the general case)
and operates at a different layer of the network protocol stack, a direct comparison with
these solutions is not possible, and a different evaluation method must be employed, as
described in Section 6.

Cryptography 2024, 8, 22 7 of 26

4. Multipath Communication

A grossly simplified summary of addressing and routing for IP is as follows:

• Communicating hosts on the Internet have IP addresses, which are included in packets
and which serve two key purposes: they provide a global identity for a host and
also provide a (topological) location to allow for the correct forwarding of packets.
Each packet contains a source address for the sender and a destination address for
the receiver.

• Traditionally, routing algorithms for IP could discover multiple paths across the
Internet between a given source and destination. However, the usual behavior of
routing protocols is to select a single path (based on some metric) for communication
between a given source and destination based on the destination IP address.

Both addressing and routing in practice are more complicated, but the two issues
listed above are key concepts that are sufficient for our discussion.

4.1. Using Multiple Paths

If the routing algorithms do have knowledge of multiple paths between a given source
host, Hs, and destination host, Hd, then, potentially, it is possible for a communication
between Hs and Hd to use those multiple paths with a suitable protocol implementation.

Communication over multiple paths between Hs and Hd has advantages, including
the following:

• Spreading load across the network: The traffic load is distributed across the network
rather than being concentrated on a single path for a given source/destination. This
helps to prevent congestion in the network.

• Resilience for the flow: A communication flow (a sequence of packets) has better
resilience to loss and delay in the case of disruption or congestion on a single path.

• Perturbing traffic capture: Having the packets within a (logical) communication flow
distributed across multiple (physical) paths makes it harder for an attacker to intercept
all of the packets in a flow, as the attacker will need to monitor multiple paths.

Past and current work has focused on the first two of these items, e.g., SCTP [34],
MP-TCP [26], and QUIC [25]. The provision of multipath capability for QUIC is a work
in progress at the time of writing. Our work focuses on the last of these items while still
providing the benefits of the first two at the same time.

4.2. Practicalities of Multiple Paths in Networking

An IP address of 128 bits for IPv6 [35] (the most recent version of the Internet
Protocol) consists of two parts: a network prefix (the upper 64 bits), also called a routing
prefix (sometimes just referred to as an address prefix); and an interface identifier (IID) (the
lower 64 bits). The prefix can be seen as the ‘name’ of a network: it is globally unique,
administratively allocated through global registries, and the prefix values are used in
routing protocols to find paths between networks. The IID value can be seen as the ‘name’
of an interface and is locally generated and managed: it should be unique within the
scope of a given prefix, but it does not need to be globally unique. It transpires that the
various mechanisms that are defined for generating IID values use algorithms that are
likely to yield values with a high probability of being globally unique, e.g., stateless address
autoconfiguration [36].

The current address usage for IPv6 treats a single IP address as a one-to-one binding
between a prefix value and an IID value, and it treats each address as an atomic unit. The
address is used as an identifier for a communication endpoint as part of the communication
protocol state at the transport layer (layer 4), but it is bound to a physical interface (layer 1).

This means, in practice, that multipath communication is enabled through the use of
multiple IPv6 addresses, with the assumption that each address represents a different path
(even if the paths are not completely disjoint). Additionally, of the protocols listed above—SCTP,
MP-TCP, and QUIC—each provides a multipath capability that is specific only to a particular

Cryptography 2024, 8, 22 8 of 26

transport protocol above the network layer (layer 3) of the communication protocol stack.
However, if a privacy mechanism was provided at the network layer (layer 3), then it could
be used by any transport layer (layer 4) protocol. At the time of writing, none of those
protocols have support for privacy as described in this work as part of their design.

4.3. The Identifier Locator Network Protocol (ILNP) and Privacy

The Identifier Locator Network Protocol (ILNP) explicitly recognizes that the two different
parts of the IPv6 address function as different namespaces, each with its own semantics.
For ILNP, the prefix is renamed as a locator (given the symbol (L64), as it is 64 bits in IPv6),
as the prefix is effectively a topological locator as far as the routing system is concerned.
The IID is given different semantics: it is renamed to a node identifier (NID) and is bound
to the communicating node, not a single interface on that node. The binding between L64
and NID is dynamic: a NID value can be bound to more than one L64, and a node can
have multiple NID values. Effectively, this means that a node can be located on multiple
networks by binding a NID value to multiple L64 values, and changing that binding
effectively ‘moves’ the nodes to a new network.

Our experiments with ILNP have shown that (i) this flexibility in the use of multiple
L64 values and multiple networks can be implemented over existing IPv6 networks, with
ILNP operating effectively as a superset of IPv6, e.g., an experiment on the Linux operating
system [37]; and (ii) that the dynamic generation and use of multiple ephemeral NID values is
also possible over existing IPv6 networks, e.g., with the FreeBSD operating system [38,39].

Our mechanism based on ILNP works at the network layer, so it will work for standard
TCP and UDP architectures, and does not require specialized transport protocols such as
MP-TCP or QUIC. This also has the benefit that it will work for existing applications that
use TCP and UDP, thus not requiring the applications to be redesigned or re-engineered to
work with new transport protocols.

The work presented here is the underlying basis for an implementation using ILNP
at the network layer on IPv6 as a general feature rather than at the transport layer for
a specific transport protocol. However, in Section 7, we discuss the challenges in protocol
design and implementation posed by our work.

5. Analysis of HMMs

From the attacker’s perspective, packets sent on a path they cannot observe are lost.
Clearly, this would disrupt a model that assumed no loss; however, an HMM that sensibly
models for loss will be more resilient. Evaluating this defence therefore requires examining
how loss is handled in an HMM.

A loss event can be considered an observation, like the packet size or IPAT. If transport
headers are not encrypted, the packet numbers could be used to explicitly detect lost packets
and insert the loss observations into the appropriate point in the sequence of events. If the
packet numbers are not exposed, the attacker must estimate when loss occurs, possibly
by assuming loss if the IPAT exceeded a threshold or by correctly predicting the path
selection algorithm if a multipath evasion defence were in place. If loss observations are
only implied, the input data will be less reliable than in the case of explicit loss observations,
and the attacker must perform extra work to make these guesses—potentially by running
several possible estimated sequences through the HMM. This explicit loss observation
scenario is preferable for the attacker, so it is the worst case for the defender. This analysis
assumes that this worst case occurs—if loss is not explicitly detectable, this defence will be
more effective.

HMMs have only two components—emission and transition probabilities—so they must
handle loss with one of these parameters. This gives two possible approaches: an emission
model, and a transition model.

Cryptography 2024, 8, 22 9 of 26

5.1. The Emission Model

If loss observations are treated like packet size or IPAT observations, they can be incorporated
into the HMM in emission probabilities as a new possible emittable value—referred to as
loss emissions. This approach is the emission model, as shown in Figure 1.

Emission Model for Loss Handling

Figure 1. A potential Markov chain for a given set of observations, which uses the emission model
to account for lost packets. The black circles represent the hidden states of the Markov model.
Transitions between states are indicated with green arrows, and emissions are indicated with blue
arrows. The shaded blue squares indicate observed packets, while the dashed squares indicate lost
packets. The likelihood of this chain of hidden states producing this set of observations can be found
by multiplying together the transition probabilities between each successive state and the probability
of each observation being emitted from the corresponding state (i.e., the emission probabilities). Under
the emission model, observing a lost packet is treated as an emission, just like any other observation
about a packet.

As loss is introduced at the network layer (either intentionally by multipath evasion
or inadvertently through normal loss conditions), the loss rate is independent of the HMM
state—the loss of any packet is equally probable, regardless of the (hidden) transport
state. The loss emission probability will therefore be the same for all states. As multipath
evasion would introduce a loss rate of 50% even if only two paths were used (and one
was observed), this artificial loss will dominate the much lower loss rate introduced by
network conditions. The artificial loss rate will remain approximately constant throughout
the communication, as it is determined by the number of paths in use. The attacker can
therefore estimate the loss rate from the frequency of the loss observations:

pl =
loss observations
total observations

(1)

Normally, the Viterbi algorithm guesses the most probable state by combining the
transition and emission probabilities to find a state that is both (i) likely to occur at this
point in the chain, and (ii) is a good candidate to explain the observed emission. However,
in the case of loss, the emission probability will be pl regardless of the state. Based on
the emission probabilities, every state is equally likely, so the model must infer the most
likely state based on transition probabilities alone. The more packets that are lost, the
fewer observations an attacker can use to infer hidden states. In the worst case, where
the attacker observes no packets, any attempt to use an HMM will just produce the most
likely chain of transitions, and the attacker will be unable to infer anything about the
specific communication being observed. Under the emissions model, loss observations will
therefore reduce the precision of the attack.

5.2. The Transition Model

The emission model can be transformed to a new model. This is possible because the
loss emission probability is constant. The transition model, shown in Figure 2, is created by
combining this loss rate into the transition probabilities, thus creating a new set of transition
probabilities, which have loss as a side effect. This approach is not practical to implement,
but it is helpful for analytical purposes.

Treating loss as a side effect of transitions rather than as the emission from a particular
state has two consequences for the way the model is built. First, it requires an infinite set
of transitions: where other HMMs require a table of transition probabilities with one row

Cryptography 2024, 8, 22 10 of 26

per current state and one column per possible next state, this model requires one table of
this size for each possible number of loss events—that is, a table of transition probabilities
with no loss and a table with a single loss event as a side effect, as well as a table with two
consecutive loss events, and so on. As the maximum number of loss events that may occur
as a side effect of a transition (i.e., between two observations) is unlimited, this produces
an infinite set of transition probabilities.

A second consequence of treating loss as a side effect is that the chain of states produced
by this model will not include states corresponding to loss events—compared to the
emission model, these states are effectively “skipped”. However, as the emission model
selects states corresponding to loss events based on transition probabilities alone anyway,
the same approach (that is, just assuming the most probable set of states occurred) could
be used to fill in these gaps with the most probable values. This would produce the same
Markov chain as the emission model. Filling in these “pseudo-states” transforms the output
of this model into the same output as the emission model.

Transition Model for Loss Handling

Figure 2. A potential Markov chain for a given set of observations, which uses the transition
model to account for lost packets. As in Figure 1, black circles are HMM states, green arrows are
transitions, blue arrows are emissions, blue squares are packet observations, and dashed squares are
loss observations. Unlike the emission model, loss in the transition model occurs as a side effect of
transitions (indicated by the dashed green arrow). This results in missing states compared to the
other approach; however, these can later be filled in with estimated pseudostates, which are shown
as dashed circles.

The transition model does not emit loss events, but the relative probabilities of other
emissions are the same. The model’s emission probabilities, P′(xi|yi) (when yi is not a loss),
can therefore be derived from those of the emission model (denoted P(xi|yi)) by scaling:

P′(yi|xi) =
P(yi|xi)

1 − pl
(2)

The transition probabilities for the transition model can also be derived from those in
the emission model. Each transition in the new model combines several transitions in the
old, as it encompasses a subchain of skipped loss event states—these states are later filled
in as the pseudostates. Ẋ is the set of t intermediate pseudostates ẋn between the states xi
and xi+1 (which have nonloss emissions). For ease of notation, ẋ0 = xi. The probability of
the transition from xi to xi+1 with intermediate pseudostates Ẋ can be found in the same
way as any chain. This can be expressed as follows:

P′(Ẋ, xi+1|xi) =

(
t−1

∏
u=0

pl · P(ẋu+1|ẋu)

)
· (1 − pl) · P(xi+1|ẋt) (3)

The Viterbi algorithm [10] constructs a table of the probabilities of the most likely
paths to produce certain observations:

TP[i, j] = max
k∈S

(
TP[k, j − 1] · P(xi|xk) · P(yj|xi)

)
(4)

By combining the emission probabilities from Equation (2) and the transition probabilities
from Equation (3), the Viterbi algorithm’s probability table for the transition model can be
expressed in terms of the parameters of the emission model:

Cryptography 2024, 8, 22 11 of 26

T′
P[i, j] = max

k∈S

{
T′

P[k, j − 1] · P′(xi|xk) · P′(yj|xi)
}

= max
k∈S

{
T′

P[k, j − 1] ·
(

t−1

∏
u=0

pl · P(ẋu+1|ẋu)

)
· (1 − pl) · P(xi+1|ẋt) ·

P(yi+1|xi+1)

1 − pl

}

= max
k∈S

{
T′

P[k, j − 1] ·
(

t−1

∏
u=0

pl · P(ẋu+1|ẋu)

)
· P(xi+1|ẋt) · P(yi+1|xi+1)

} (5)

Under the emission model, the pseudostates in Ẋ would instead be additional states
in TP (the emission model’s probability table). Each state has a loss event, so P(yi|ẋi) = pl .
The transition probabilities will be the same as those in the ∏ portion of Equation (5) (as
the states are the same). So, the transition model will perform maximization over the whole
product, while the emission model will perform it piecewise for each state in Ẋ. As the
results are multiplied in both cases, each approach will produce the same result—they
are equivalent. As the two models are equivalent, they have the same characteristics, and
analysis of one generalizes to the other. As transition and emission probabilities are the
only parameters of a Markov model, this covers all mechanisms by which an HMM could
handle loss.

Analysis of Loss Models

While the emission model is simpler to implement and does not require an infinite set
of transition probabilities to handle unlimited successive loss observations, the transition
model is helpful for understanding the impact of loss. As the models are equivalent, the
behavior of the emission model will match the behavior of the transition model.

All Markov models are built upon the Markov assumption: that the probability of
the next state depends only on the current state and not on past states [40]. This means
that transition probabilities are independent of any variable except the current state. If this
Markov assumption does not hold for a system, it cannot be modeled with (or attacked
by) HMMs.

Assumption 1. The probability of the next hidden state depends only on the current hidden state.

Under the transition model, state transitions occur between nonloss observations.
This results in a new set of transitions, which occur between states for which the attacker
observed the emission rather than between all hidden states of the application. This new set
of transitions must also exhibit Markovian behavior in order for this method of modeling
loss to produce accurate results—if it does not, then the transition model no longer models
a Markov process, so using an HMM will not be meaningful. In order for the transition
model to correspond to a Markov process, the transitions between observed states (those
for which the emission was seen by the attacker) must be Markovian:

Assumption 2. The probability of the next observed state depends only on the last observed state.

An HMM’s predictions in the event of loss are contingent on these assumptions. If
Markov Assumption 1 does not hold, the process is not Markovian, and it cannot be
accurately modeled with an HMM, regardless of loss. If Markov Assumption 2 does
not hold, the transition model’s (and therefore also the emission model’s) loss handling
mechanism will not meaningfully account for loss. So, both assumptions must hold in
order for an HMM to correctly model loss.

When no loss occurs (that is, the attacker observes the emission from each hidden
state), the hidden states and their transitions will be the same as the observed states and
their transitions. So, if the underlying (i.e., hidden) process is Markovian, both assumptions
will hold. In regular Internet communication, loss is rare—if it is not, application behavior
is disrupted, and the connection may fail. So, in a typical real-world scenario, an attacker

Cryptography 2024, 8, 22 12 of 26

can use an HMM for a traffic analysis by assuming that loss does not occur and that
these assumptions hold. In the rare event that loss does occur, it may disrupt the model
briefly, but it will not have a lasting impact, as the Markov assumption means the system is
memoryless: transition probabilities between states not immediately after the loss event
will be independent of the earlier history, so they will recover from loss.

When loss observations occur, the transition model accounts for it by making transitions
with loss as a side effect and then filling in the skipped pseudostate later. So, if there is
a single loss observation, xl , between two nonloss observations, x0 and x1, the transition
probabilities P(x1|x0) and P(x1|xl) must both be independent—that is, the probability of
x1 occurring must be conditional only on x0 (Markov Assumption 2), and it must also be
conditional only on xl and not the preceding history (Markov Assumption 1).

If Markov Assumption 1 holds, then the probability of x1 is not conditional on any
state preceding xl ; thus, it is not conditional on x0, so Assumption 2 does not hold. That
is, if the underlying (hidden) process is Markovian, then the transition model will not
correctly account for loss, so loss observations will result in a loss of accuracy.

If the second assumption holds, then Assumption 1 does not hold: the probability
of the next state is conditional on earlier history, so the process is not Markovian. If the
process is not Markovian, an HMM will not be able to model it correctly.

In all cases, the transition model is an imperfect solution to accounting for loss. Either
it accurately accounts for loss, in which case the underlying process is not Markovian and
the rest of the model is invalid, or the underlying process is Markovian, but the measures
for accounting for loss will not work. As the models are equivalent, this also applies to the
emission model.

As Markov models are memoryless, they can recover from loss, even if they cannot
model for it. Should loss occur, the HMM will fail to model the scenario accurately, so
the predictor’s accuracy will be disrupted. However, this disruption will be localized to
the loss event, and the model will soon forget the loss and return to correctly exploiting
Markovian behavior. As loss is typically rare, this self-healing normally provides sufficient
resilience for HMMs, and their inability to model for loss does not majorly disrupt their
utility. However, if the attacker sees only packets on one of several paths, and packets
are sent out in a round-robin fashion, then loss will be much higher (at least 50%), and
all transitions will be disrupted by the loss events in their proximity. When all transitions
are impacted by loss, the HMM is unable to recover, as there is no period in which it can
perform “correct” analysis.

While the two Markov assumptions expressed above can be considered in binary
terms for analysis of how a Markov model will perform, in practice, many processes that
are modeled with HMMs are not strictly Markovian—the model is just a sufficiently accurate
approximation of the system’s behavior. Rather than either assumption being strictly true
or false, they exist on a spectrum. The more accurately Assumption 1 holds, the more
accurately the process can be modeled by an HMM, but the more vulnerable it is to loss;
the more accurately Assumption 2 holds, the more resilient an HMM will be to loss, but
the worse it will model the underlying process in general. Therefore, there are cases where
loss may not disrupt the attacker so effectively; however, in such situations, the attacker’s
ability to analyze traffic is already limited—the viability of this defence scales with the
viability of the attack. Regardless, the disruption caused by loss makes such attacks harder
than they would be otherwise.

6. Evaluation

The evaluation methodology is based on a simulation of traffic—a single stream of
output symbols—from a single source, which was then split into multiple streams. The
single stream consisted of data items as they would be transmitted by a single source,
i.e., individual messages sent as individual packets as part of a communication flow. The
multiple streams represented the multiple paths over which individual packets from the
single stream have been transmitted in order to offer the multipath protection proposed.

Cryptography 2024, 8, 22 13 of 26

The effectiveness of multipath evasion as a traffic analysis defence was evaluated by
examining the characteristics of the individual streams. The simulated traffic was produced
using several generalized models with different packet distributions. Then, as a worst case
scenario for a victim, we derived simulated traffic characteristics from a natural language
corpus where the initial distribution is well-known.

The data and results presented in this section plus the simulation software used to
create the data and the visualizations are all freely available from [41].

6.1. General Markov Model Simulations

To test the effectiveness of this defence in general, traffic was produced using a simulated
Markov process (corresponding to the hidden communication state), and the multipath
defence was applied. As the base process was Markovian, Assumption 1 from above held.
So, the attacker would be able to perform traffic analysis with an HMM only if the second
assumption also held: that the observations they made were also governed by a Markov
process. As discussed, it was not expected that both assumptions could be true, but the
results would reflect the degree to which either assumption held.

Markov processes can be detected by comparing unigram (single symbol) and bigram
(2-symbol sequence, a single pair) frequencies. In a Markov process, the probability of the
next state depends on the current state, so each transition will have a different probability and
resulting observable frequency. In a non-Markov process, the probability of the next state is
independent of the current state, so the transition probabilities will instead reflect the unigram
probability of the next state—the probability of that state occurring next regardless of the current
state. So, to test for Markovian behavior, the unigram and bigram frequencies can be compared:
if they differ, the difference is caused by an interstate pattern—this is Markovian behavior.

As this analysis is concerned only with the behavior of the Markov process, the
emission probabilities of an HMM were ignored—this corresponds to a special case of
an HMM where every state emits a unique value with 100% probability. For an attacker, this
is the best case (worst case scenario for a victim)—every emission they observe gives them
perfect information about the hidden state. If a state’s emission probabilities can instead
produce a range of emissions, the attacker’s certainty in the hidden state responsible for
producing a given emission is reduced, as there may now be many possible states that
could have caused this behavior. A hidden Markov model can be described as a Markov
model exposed over a noisy channel—the hidden information is visible, but imperfectly.
Evaluating only a (nonhidden) Markov model therefore shows how this defence will
perform in the worst case—in a typical scenario, the emission probabilities will introduce
more noise, thus further weakening the attack.

6.2. Methodology

The output symbols (representing packets in a communication flow) were generated
by a set of simulated Markov processes with different characteristics, i.e., a single chain of
symbols. This single chain of symbols was then protected by a simulated m-way multipath
defence by splitting them into m new chains in a round-robin fashion—these new chains
correspond to the packet flows that would be seen on each of the m separate paths.

6.2.1. Traffic Distributions and Transition Probabilities

The simulator generated a table of transition probabilities according to a selection of
probability distributions. The distributions used were as follows:

• A uniform random distribution from 0 to 1000;
• A normal distribution with a mean of 250 and standard deviation of 150;
• An exponential distribution with a rate parameter of 1.0;
• The same exponential distribution but with 1 added to each frequency sampled so

that all transition probabilities were nonzero.

Cryptography 2024, 8, 22 14 of 26

These parameters were selected to yield a large range of frequencies, with some being
orders of magnitude more frequent than others and with each being greater than or equal
to 0 (negative frequencies from the normal distribution were treated as 0).

6.2.2. Markov Models

Using each of the tables generated from each distribution, the simulation defined
a Markov model as a set of Markov chains via a random walk according to the transition
probability table—the unigram probabilities. An initial state was included in the table of
transition probabilities, but all transitions to it were given a probability of 0.

A total of 28 possible states were used (including the starting state). This resulted
in a sufficiently complex Markov process to model the English language, with one state
per letter and some punctuation. A more complex model could use more states for more
language features, such as one for each of the ∼44 phonemes of spoken English [42].
However, Markov models can also be composed by replacing a state in one model with
a new Markov process (or the reverse). Due to this composition, the behavior of a Markov
process with N states will be representative of the behavior with more or fewer states, so
using 28 states is sufficient to test the behavior of the model.

For each distribution, transition probabilities between each pair of states—bigram
probabilities—were selected by sampling frequencies for each transition and then
converting those frequencies to relative frequencies (normalization), which were used
as the bigram probabilities.

Each generated Markov chain was 106 states long. A total of 103 chains were generated
for each simulated Markov model. As Markov processes are memoryless, the length of
each chain is unimportant. In a real-world sceanrio, while a short text message might
have only 10s or 100s of characters, they will exhibit the same behavior as subsegments of
arbitrarily large messages, so these values were selected for the convenience of parallelizing
the simulation.

This gave a total of 109 transition observations per simulated Markov model, as
indicated in Table 1. As these values were split over fewer than 10 paths by the multipath
evasion simulated, this resulted in at least 108 transition observations per path. With
28 possible states, there are 784 possible transitions. The smallest changes in relative
frequency of any transition would occur when all frequencies yielded by the underlying
distribution were high (that is, 103 from the uniform model, for example). A change of 1 in
the sampled frequency would result in a change of 1

784,000 in the relative frequency (that is,
∼ 1 × 10−6). Even in this unlikely case, these parameters would reflect this change with
a shift of 100 in the final observed frequency counts. So, if a bigram pattern existed, it was
expected to have a visible impact on the results.

Table 1. Summary of simulation parameters.

Parameter Value Description

Types (Nt) 5 Normal, Uniform, Exponential, Nonzero Exponential
English Corpus (worst case, model known by attacker).

States 28 Letters in English alphabet, plus a space character and
a starting state.

Chain size (Sc) 106 Representing, for example, a document or a long-lived
interactive communication.

Chains per model (Nc) 103 Representing multiple communications per model use.
Each chain is different but follows the same model.

Transitions per model 109 Sc × Nc, giving a possible attacker a large number of transitions
for a successful attack.

Models (Nm) 250 Randomized Markov models of each type to reduce random
error due to possible outliers.
(Number of runs to evaluate Ud for each path.)

Cryptography 2024, 8, 22 15 of 26

This process was repeated for 250 different randomized Markov models of each type
to reduce random error from atypical distributions that could occur from the random walk.
Preliminary experiments showed that this was sufficient, as the different random models
showed very similar behavior.

The unigram frequencies of each state and the bigram frequencies of each pair of
states were recorded for each simulated chain. Then, a two-path (m = 2) multipath evasion
defence was simulated by splitting the generated chain into two new chains—one with
every odd state, and the other with every even state. This is the same transformation
as would be seen when splitting a flow of packets across two network paths using
a round-robin algorithm. Each of these new chains was similarly evaluated using the
unigram and bigram frequencies. These frequencies were then summed to produce
an aggregate result that was not biased towards patterns in one path or the other. The final
unigram count was necessarily the same as in the base case where the same unigrams were
used, but the bigram counts could differ because of the way the symbols were split across
the two (m = 2) paths. The counts from the two paths can be safely summed, as Markov
processes are memoryless, so they are not influenced by earlier behavior—the overall
behavior in the rest of the chain will be the same regardless of whether it started with the
first or second state. This same process was repeated to produce aggregate unigram and
bigram counts from m = 1 to m = 8 paths.

6.3. Results

The heatmap in Figure 3 shows the transition probabilities calculated from the frequency
counts for a particular Markov model generated according to the exponential distribution.
The counts for successive runs of the same simulated Markov model were summed to give
aggregate counts, and transition probabilities, Pb, were calculated as

Pb(sasb) =
Fm(sasb)

N
(6)

where Fm(sasb) is the measured (observed) frequency for bigram sasb, and N is the total
number of observations of all bigrams.

When only a single path was used, the Markovian behavior of the application was
exposed to the attacker: each row of the heatmap varied, as the transition probabilities
depended on the current state. When two paths were used, the attacker’s view was changed:
there was less variation between rows—most probabilities fell between 0.015 and 0.025 rather
than between 0.01 and 0.06 like the first heatmap. Some Markovian behavior was still
exposed, but it was no longer as distinctive of a characteristic. As the number of paths
increased, the proportion of packets seen by the attacker decreased. The banding pattern
clearly visible in the final figures was caused by the transition probabilities converging on
the unigram probabilities of the second symbol: there was no pattern extending over eight
states, so the observations the attacker could make were independent of one another. The
attacker’s observations reflect the unigram probabilities of the source they sampled, and
they appear independent of the current state. So, an attack based on a Hidden Markov
Model approach was no longer possible.

Figure 4 shows the same behavior being exhibited by the simulation when a normal
distribution of bigram frequencies was used. The transition probabilities appear to converge
on unigram probabilities more rapidly, as there was less variation in the base case in need
of “smoothing”.

In both cases, when multiple paths were used, the observed behavior was not Markovian.
This violates Assumption 2. So, even if the underlying process may be Markovian, as the
observed states were not Markvoian, the model could not account for loss, and the attack is
expected to be disrupted.

Cryptography 2024, 8, 22 16 of 26

Transition Probabilities, Pb, for Exponential Distribution

� �� ��
�

��

��

� �� ��
�

��

��

� �� ��
�

��

��

� �� ��
�

��

��

�

����

����

����

����

����

����

����

1H[W�6WDWH 1H[W�6WDWH

&
X
UU
H
Q
W�
6
WD
WH

&
X
UU
H
Q
W�
6
WD
WH

��3DWK ��3DWKV

��3DWKV ��3DWKV

Figure 3. Heatmap of observed transition probabilities calculated from bigram frequencies for
a simulated Markov model with an exponential distribution of (true) transition probabilities. As
the number of paths used by the multipath evasion defence increased, the transition probabilities
converged on the unigram probabilities, as the probability of each state is independent of the
previous observations.

Transition Probabilities, Pb, for Normal Distribution

� �� ��
�

��

��

� �� ��
�

��

��

� �� ��
�

��

��

� �� ��
�

��

��

�

����

����

����

����

����

����

����

1H[W�6WDWH 1H[W�6WDWH

&
X
UU
H
Q
W�
6
WD
WH

&
X
UU
H
Q
W�
6
WD
WH

��3DWK ��3DWKV

��3DWKV ��3DWKV

Figure 4. Heatmap of transition probabilities for a Markov model with normally distributed transition
probabilities. Like Figure 3, the transition probabilities converged on the unigram probabilities.

Cryptography 2024, 8, 22 17 of 26

6.4. Convergence on Unigram Probability

With Fm(sasb) defined as above for Equation (6), the unigram-based estimator for
bigram frequencies, Fu(sasb), is calculated as the proportion of the occurrences of sa that
are expected to be followed by sb:

Fu(sasb) =
Fm(sa) · Fm(sb)

N
(7)

As Markovian behavior is avoided with use of multiple paths, the transition probabilities
will converge on the unigram probabilities. This can be seen by measuring the error between
the observed bigram frequency and the expected bigram frequency based on the unigrams
alone and using the error function:

eb(sasb) =
1
N

N

∑
n=1

|Fu(sasb)n − Fm(sasb)n| (8)

Using the absolute error (the difference between the observed bigram frequencies and
unigram-based estimate) is more tolerant of outliers than a squared error estimate. Outliers
are likely in this kind of analysis, as the unigrams of the underlying Markov process may
have sparse probabilities (e.g, “Q” in English), thus resulting in some very rare bigrams,
regardless of the defence used. As Markov processes are memoryless, these sparse events
are not a risk: even if an attacker sees occasional distinctive, rare events, they will not be
able to leverage this for a longer-term attack unless other bigram patters are still visible.
So, a metric that is resilient to outliers gives a better indication of how much the measured
bigram frequency differs from what was expected. This was expressed as the proportion of
transitions that the two models—bigram and unigram—disagree on.

A high value for eb indicates that the unigram probabilities are insufficient to accurately
model the process, and the bigram frequencies reveal new information—in this case, the
sensitive patterns within the communication. A low value for eb shows the opposite: if
a unigram model can accurately predict bigrams, there is no interstate pattern to exploit, so
the bigram frequencies reveal no new information, and a Markov model will not provide
any greater insights. So, we can define the utility function for the efficacy of the defence,
Ud, as the complimentary error function:

Ud = 1 − eb(sasb) (9)

where 0 ≤ Ud ≤ 1, with 1 indicating the best utility for defence and 0 indicating the poorest
utility for defence.

The values for Ud for each source distribution model are shown in Figure 5. Each
subfigure shows the results from a full set of random bigram models created by drawing
bigram probabilities from the specified distribution.

When a single path was used, the bigram frequencies in the output chain were directly
driven by the Markov process. As the unigram-based estimators cannot account for this,
they were highly inaccurate. With two paths, the influence of the Markov process was
lessened—alternate values are sent over alternate paths, so the observed bigrams consist of
every other symbol. This is still influenced by the Markov process—for example, a highly
probable transition followed by another highly probable transition will result in a common
bigram. However, as the number of paths increased, this influence faded. This can be seen
in the rapid improvement in Ud: even at only two paths, the unigram estimator was much
more accurate, and by five paths, Ud was very close to 1.

Even when there is no Markovian behavior, some random error still occurs. This
was measured by simulating a random walk based on unigram probabilities alone—each
symbol in the produced chain was selected independently from the previous values. The
first row of Table 2 shows the values of Ud between the expected and measured bigram
frequencies for this simulated chain. So, if no Markovian behavior is present, this represents
the best value for Ud.

Cryptography 2024, 8, 22 18 of 26

Table 2 also shows Ud for each simulated Markov model and for different numbers
of paths. The final row is discussed in the following section. For all simulated models, Ud
rapidly increased towards 1 with the addition of a single path. For all models other than
the English Corpus (final row), it converged at 1.0 (2 s.f.) when four or more paths are used.
At 3 s.f., the value of convergence was 0.998 due to the random perturbation introduced by
the nature of the stochastic process. This is the same as Ud seen in the first row, where there
was no Markovian behavior. So, when four or more paths were used, no more Markovian
patterns remained visible in the output, and Assumption 2 did not hold.

Defence utility, Ud, with multiple paths for different distributions (1.0 is best)

(a) (b)

(c) (d)

Figure 5. Ud for the bigram frequencies estimated based on unigrams and the measured bigram
frequencies from 1 to 8 paths. Each subfigure shows the results for a set of random Markov chains
with bigram frequencies drawn from a particular distribution. When a single path was used, the
unigram-based estimator was unable to accurately model the process, as it could not account for
the significant amount of information in the bigram probabilities. However, when more paths
were used, the impact of bigram probabilities decreased, thus eventually becoming negligible, at
which point the unigram-based estimator could accurately model the processes to result in a better
defence. (a) Normal Distribution. (b) Uniform Distribution. (c) Exponential Distribution. (d) Nonzero
Exponential Distribution.

Cryptography 2024, 8, 22 19 of 26

Table 2. Ud when using m = 1 . . . 8 paths (2 s.f.).

Distribution 1 2 3 4 5 6 7 8

Unigram Only 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Normal 0.67 0.73 1.0 1.0 1.0 1.0 1.0 1.0
Uniform 0.52 0.95 0.99 1.0 1.0 1.0 1.0 1.0
Exponential 0.29 0.86 0.98 1.0 1.0 1.0 1.0 1.0
Nonzero Exponential 0.65 0.97 1.0 1.0 1.0 1.0 1.0 1.0
English Corpus 0.25 0.45 0.74 0.82 0.88 0.91 0.94 0.96

6.5. Specific Markov Model Analysis

In addition to tests with simulated Markovian behavior, the defence was tested against
real-world Markovian data. The English language was used as the data source, as natural
language exhibits Markovian behavior, and large bodies of English text are in the public
domain. The texts used were the following:

• Bram Stoker’s Dracula (published in 1897);
• Homer’s The Odyssey (translated in 1897);
• Homer’s The Iliad (translated in 1899).

The texts were combined to give 2,682,565 characters. All texts are from approximately
the same time, so spelling and other language features are similar. As different clusters
of letters are more common than others in English spelling, this chain of characters will
exhibit Markovian behavior: for example, “S” will often be followed by “H”, while “Q”
will rarely be followed by anything other than “U”. While a more complex Markov model
with sufficient training data could account for character case and uncommon punctuation,
a simpler model was used here: all alphabetic characters were converted to uppercase,
and all nonalphabetic characters were replaced with the “ ” (space) character. This was
sufficient for testing the behavior of a Markov process by the same principle of composition
as used above. This also allowed the corpus to be modeled by a Markov process with the
same number of states as those used above (27 plus the starting state).

After preprocessing, the 2.5-million state Markov chain with 27 possible states was
subjected to the same analysis as the simulated chains above: it was multiplexed over
m = 1 . . . 8 paths, one of which was exposed to an attacker. This resembles a scenario
like an eavesdropper listening to an SSH session, where each keypress is transmitted in
a different packet.

Figure 6 shows the transition probabilities observed by the attacker when different
numbers of paths were in use. With a single path, the Markovian behavior was visible:
each row was different. Even the very common symbols—“E” and the wildcard “ ”—were
not equally probable after every symbol. With two paths, the banding pattern seen in
Figures 3 and 4 became visible in some areas, such as for transitions to “R”, “S”, and “T”.
However, the convergence onto unigram probabilities did not appear to be so rapid nor so
pronounced as in the simulated “Q”.

Figure 7 shows the values for Ud when applied to the English corpus. The value for
Ud for a single path was lower than for other models. As the number of paths increased,
it increased as expected, but not as sharply as in Figure 5. Table 2 shows that value with
eight paths was still 0.96. This is significantly better than the initial value of 0.25, but not as
good as the that achieved for simulated models. This suggests that, while the simulated
models were truly Markovian, the English Corpus only approximates Markovian behavior,
so Assumption 1 perhaps does not apply so strongly. Regardless, the use of multiple paths
resulted in a better value for Ud, and so an HMM-based attack was made harder.

Cryptography 2024, 8, 22 20 of 26

Transition Probabilities, Pb, for the English Corpus

$ & (* , . 0 2 4 6 8 : <
�

$

'

*

-

0

3

6

9

<

$ & (* , . 0 2 4 6 8 : <
�

$

'

*

-

0

3

6

9

<

$ & (* , . 0 2 4 6 8 : <
�

$

'

*

-

0

3

6

9

<

$ & (* , . 0 2 4 6 8 : <
�

$

'

*

-

0

3

6

9

<

�

����

����

����

����

����

����

����

1H[W�6WDWH 1H[W�6WDWH

&
X
UU
H
Q
W�
6
WD
WH

&
X
UU
H
Q
W�
6
WD
WH

��3DWK ��3DWKV

��3DWKV ��3DWKV

Figure 6. Each heatmap shows the transition probabilities observed by an attacker listening as the
text is sent across some number of paths. In each case, the attacker is present on one path. As the
number of paths increased, the banding pattern seen in Figures 3 and 4 can be seen again, although it
is not as distinctive.

Defence utility, Ud, for the English Corpus (1.0 is best)

Figure 7. Ud for the English corpus dropped off as the number of paths increased, but not as sharply
as in Figure 5, and did not reach as low a value. However, it still reached a high value for 5 paths, as
in Figure 5.

Cryptography 2024, 8, 22 21 of 26

7. Discussion and Recommendations
7.1. Limitations of the Defence When Applied to the English Corpus

The lower value for Ud for the English corpus is driven by two features: the imperfections
of the language model; and the sparsity of the data.

While a Markov process can provide an approximation, the English language is not
a purely Markovian process. Trigrams and larger character clusters have frequencies that
do not depend only on bigram frequencies. This is particularly clear in the “2 Paths”
part of Figure 6: certain rows were highly distinctive because the bigrams they showed
corresponded to the first and third symbols of common trigrams. This characteristic of
the language means the memoryless assumption of the Markov model does not hold, so
an HMM will only function as an approximation. The less Markovian the underlying
model is, the less effective this defence will be, but the less effective the attacks will be
as well.

Certain characters were extremely rare, such as “J”, “Q”, “X”, and “Z”. As can be seen
in the later subfigures in Figure 6, it is the rows corresponding to these characters that did
not converge so quickly on the unigram probabilities. The sparsity of data for these rows
left them vulnerable to random variation, thus resulting in a higher error value. While they
did benefit from the defence, like all characters, they did not occur frequently enough in
the corpus to be accurately represented here.

Even against these limits, the defence provides a significant reduction in the power of
a Markov model. However, these limits both apply to real-world applications. Extremely
rare (i.e., sparse) features of a communication may still be visible, thus giving an attacker
brief glimpses of a communication, and applications driven by non-Markovian processes
with a state that has a long-term impact may have characteristics that this defence smooths
but does not fully hide.

7.2. Implementation Concerns

Multipath evasion could be implemented for any multipath protocol: the necessary
change is not the capability to use multiple paths but the manner in which multiple
paths are managed. While in theory this is a control plane concern that could be handled
transparently by the protocol, without careful consideration, an implementation could
introduce unintended consequences for higher level applications. In particular, care must
be taken in handling congestion control and retransmission.

Existing multipath protocols do not use this round-robin approach to path selection.
Most follow the pattern of MP-TCP, thereby using only one path until a single-path
congestion control algorithm prevents more packets from being sent before switching
to a new path. This approach minimizes the number of handovers between paths, which
is important when the handovers are costly. However, this also results in sporadic bursts
of traffic on each path, and link failure or congestion may not be detected until many
packets have been sent and lost. Spreading packets across all links simultaneously provides
a more even load for the network and better resilience to congestion or link failure. This is
particularly advantageous for protocols like ILNP, which have seamless handovers between
different paths [37]. In such cases, a round-robin algorithm is desirable for improving
a range of metrics, not just privacy.

Existing congestion control methods have been designed for single-path communications.
For example, TCP’s fast retransmit mechanism assumes that out-of-order delivery is rare.
This is true for single-path communications, where all packets typically take the same route
through the network and are delivered in order, but this is not necessarily true when using
multiple heterogeneous paths—sending alternate packets by a path with high latency and
a path with low latency could result in significant out-of-order delivery. With more paths,
this may frequently trigger fast retransmit, even though no loss has occurred.

This could be resolved by using multipath-aware congestion control algorithms that
account for these broken assumptions. One approach could be to use the same method
but to track congestion for each path independently—for ILNP, this could be achieved by

Cryptography 2024, 8, 22 22 of 26

looking at the source and destination L64 tuple of each packet. Better performance may
be achieved using more complex approaches that account for the different characteristics
of heterogeneous paths. Multipath-aware congestion control algorithms are an area of
future research; a contribution of this work is in highlighting that such algorithms have
implications for privacy.

7.3. Pathological Topology

A low probability of intercept defence only works if it actually decreases the probability
of interception. In the case of using multiple paths, this is not guaranteed. If the paths share
common links, an attacker need only be present on the overlapping segment to eavesdrop
on all paths. This may be a particularly feasible attack when the attacker is topologically
close to the target. For example, if one communicating node is multihomed and the other is
not, the single-homed node’s ISP will see all paths between them.

This is a general challenge for multipath communications—not just for privacy.
Multihoming only provides fault tolerance if the paths are sufficiently diverse so as not
to be taken out by the same fault. Similarly, using multiple paths to avoid congestion will
only work if the congestion does not occur on a common segment.

A related problem is the availability of multihoming. Home networks, for example,
rarely have multiple upstream links. Without multiple paths, multipath evasion is impossible.

One potential mitigation to these problems is to use locator rewriting [43]. ILNP’s
locators are not part of the transport end state, and they are excluded from checksums,
thus making them mutable. A locator rewriting relay (LRR) is a forwarding node that takes
advantage of this and changes the values of the source or destination L64s of packets
it forwards. An ILNP node could forward traffic to an LRR that then forwarded it to
the true destination in order to provide relay functionality at the network layer without
an encrypted tunnel. As ILNP connections can use multiple L64s, a node could also forward
each packet to one of several different LRRs to forcibly and explicitly introduce multiple
routes. Unlike physical multihoming, this allows a user to use routes that are known to be
geographically and topologically diverse—for example, they could use an LRR in Berlin and
an LRR in Madrid to force traffic through two different routes, while allowing a tolerable
increase in latency. Selecting disparate LRRs potentially reduces the overlapping segments
of the paths, although if the final node is single-homed, this last step will inevitably be
shared and therefore vulnerable.

7.4. Coarse Feature Analysis

A multipath evasion defence does not directly prevent the analysis of coarse features,
such as a communication’s date, time, and duration; however, it may make it harder.

Analysis based on the amount of data exchanged may be less accurate, as the attacker
must estimate how many packets were exchanged based only on what they saw. If they
can see packet numbers, they may be able to estimate the proportion of packets they saw
and scale their measurements accordingly. However, if they do not have this information,
they will not be able to estimate this. Estimating the number of bytes exchanged accurately
is also difficult, as the attacker must assume the unseen packets had a similar size to those
they saw. This may be a reasonable assumption, but it will not give them byte-level
accuracy.

Time-of-day and duration analysis are not disrupted by this defence. An attacker
could still see when a user was active and for how long, even if they did not see all the
activity the user performed. However, a similar defence is possible: multiple paths could
be used in sequence via some dynamic multihoming mechanism. In this case, the attacker
would not know the full duration of the flow, as they would see it only for a short period
before it moved to a new path. Combining these approaches would create a dynamic
multipath evasion defence, which would disrupt attacks on per-packet side channels and
hide the flow duration in both real time and the number of packets or bytes exchanged.

Cryptography 2024, 8, 22 23 of 26

7.5. Resilience Against Other Attacks

While this work has focused on HMMs, there are other machine learning algorithms
that could be used for traffic analysis [7,8]. There are potentially limitless machine learning
algorithms that could be used to perform this analysis, so this defence cannot be tested
against all of them. However, as it works by removing the targeted pattern from the
exposed data, multipath evasion is expected to prevent all attacks targeting this pattern.
Traffic analysis against protected traffic must either target coarse features (including the
unigram distributions of packet features) or exploit some unknown vulnerable pattern that
is not hidden by using this defence. Further analysis of the defence’s utility against other
methods of analysis is an area of future research.

8. Conclusions, Summary, and Future Work

We have shown through simulation and analysis that the use of multipath communication
can perturb side-channel attacks on traffic (including encrypted traffic) where HMMs
are used.

The key findings of this paper are as follows:

• That the emission and transition properties of an HMM can be transformed to a single
transition model for an HMM. This is achieved by combining the loss rate into the
transition probabilities, because the loss emission probability can be evaluated as
a constant for a communication flow. Also, as Markov models are memoryless, loss
events have limited impact on the HMM modeling of a communication flow, especially
a flow that is a long-lived flow in time.

• As the Markov models only depend on the current state for computing the probability
of the next state, we treat a communication flow, even an encrypted flow, as a set of
transitions of states represented by the packets in the flow. If the set of probabilities
from current state to next state can be perturbed, then an attack based on observation
of those state transitions can also be perturbed.

• A communication system that distributes the packets in a communication flow across
multiple paths effectively perturbs the observation of correct state transitions. If
an observer only has visibility of one of these paths, the full transition model is
perturbed, even for long-lived flows, and an HMM-based attack is perturbed. So,
a multipath communication can act as a defence against an HMM-based attack. The
overall utility of such a defence improves as the number of paths over which flow is
distributed increases. Our simulation results show that there is a significant utility
to such a defence with three or more paths. However, in our worst case scenario,
where an attacker has full knowledge of the nature of the source, five or more paths
are required.

• The use of a protocol such as ILNP at the network layer (layer 3) of the communication
stack would enable the distribution of packets in the way described in this paper.
This would enable any transport protocol (layer 4), and therefore any application
protocol, to benefit from this mechanism. This method of distributing packets below
the transport layer will require transport layer mechanisms such as congestion control
to be redesigned for optimal performance.

We believe these be to fundamental results. The approach could be applicable at
multiple points in the communication protocol architecture, anywhere that packet flows
could be distributed across multiple paths.

8.1. Summary of This Paper

Although increased desire for data privacy encourages the use of data encryption, it is
still possible for an attack to obtain useful information from examining side channels (such
as IPATs and packet size distributions) using HMMs (Section 2).

Such exploitation of side channels relies on an attacker gaining access to the victim’s
packet flows. So, an effective defence must perturb an attacker’s access to the packet flow.

Cryptography 2024, 8, 22 24 of 26

One such defence is to distribute the flow across multiple network paths—to use multipath
communication (Section 3).

However, modern communication protocols might not necessarily be able to exploit
mutliple network paths, even though they might exist. The current use of addressing
within IP is a constraint when enabling efficient, flexible multipath mechanisms, which
must typically be implemented for each transport protocol indepedently. These constraints
can be overcome by using ILNP, which would offer a common facility to all transport
protocols (Section 4).

When confronted with a packet flow suitably distributed across mutliple paths,
HMM-based attacks can be effectively perturbed. The overall effectiveness of a multipath
defence does depend on (i) the nature of the original traffic and (ii) how much perturbation
is evident to side channels based on multiple paths (Section 5).

When evaluated based on the flexibility in multipath communication offered by
ILNP, we find that (i) the use of more paths is better, but within our test cases, significant
perturbation to HMM-based attacks is possible with four paths; and (ii) transmitting
packets round-robin across those paths provides, effectively, a random selection of packets
to an attacker that only has access to a single path (Section 6).

8.2. Future Work

This does present some challenges to the design of existing protocols, both in terms of
the way they use addressing and multiple network paths, and in the way that they transmit
packets on each path of a multipath communication. Both of these issues can be resolved
by the use of ILNP (Section 7).

For future work, an implementation and testing of this for real-world systems is
currently in progress, which is based on an implementation on the FreeBSD operating
system. Our focus in this work is on privacy, but existing protocol designs for multipath
communication have focused on performance-related features, such as distributing network
load or tolerance to network failure. So, future mechanisms that can cater to all of these
performance features, as well as privacy, need to be investigated.

However, if protection against side channels for existing transport protocols and
applications is required, then the use of ILNP with the mechanism described in our work
presents an effective defence against side-channel attacks based on HMMs.

Author Contributions: Conceptualization, G.T.H. and S.N.B.; methodology, G.T.H. and S.N.B.;
software, G.T.H.; validation, G.T.H.; formal analysis, G.T.H. and S.N.B.; investigation, G.T.H.;
resources, S.N.B.; data curation, G.T.H.; writing—original draft preparation, G.T.H. and S.N.B.;
writing—review and editing, G.T.H. and S.N.B.; visualization, G.T.H.; supervision, S.N.B.; project
administration, S.N.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by University of St Andrews.

Data Availability Statement: The data and simulation code supporting the conclusions of this article
are available at [41].

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

HMM Hidden Markov Model
HTTP HyperText Transfer Protocol
ILNP Identifier Locator Network Protocol
IPAT Interpacket Arrival Time
IPv6 Internet Protocol version 6
L64 ILNP Locator

Cryptography 2024, 8, 22 25 of 26

LRR Locator Rewriting Relay
QUIC now considered a name, but formerly Quick UDP Internet Connections
NID Node Identifier.
SCTP Stream Control Transmission Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
VoIP Voice over Internet Protocol

References
1. Dyer, K.P.; Coull, S.E.; Ristenpart, T.; Shrimpton, T. Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures

Fail. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; pp. 332–346.
[CrossRef]

2. Hall, J.L.; Aaron, M.D.; Andersdotter, A.; Jones, B.; Feamster, N.; Knodel, M. A Survey of Worldwide Censorship Techniques.
RFC 9505, 2023. Available online: https://www.rfc-editor.org/info/rfc9505 (accessed on 10 May 2024). [CrossRef]

3. Trammell, B.; Kühlewind, M. The Wire Image of a Network Protocol. RFC 8546, 2019. Available online: https://www.rfc-editor.
org/info/rfc8546 (accessed on 10 May 2024). [CrossRef]

4. Song, D.X.; Wagner, D.; Tian, X. Timing Analysis of Keystrokes and Timing Attacks on SSH. In Proceedings of the 10th USENIX
Security Symposium (USENIX Security 01), Washington, DC, USA, 13–17 August 2001.

5. Wright, C.V.; Ballard, L.; Coull, S.E.; Monrose, F.; Masson, G.M. Spot Me if You Can: Uncovering Spoken Phrases in Encrypted
VoIP Conversations. In Proceedings of the 2008 IEEE Symposium on Security and Privacy (sp 2008), Oakland, CA, USA, 18–21
May 2008; IEEE: New York, NY, USA, 2008. [CrossRef]

6. Wright, C.V.; Ballard, L.; Monrose, F.; Masson, G.M. Language Identification of Encrypted VoIP Traffic: Alejandra y Roberto or
Alice and Bob? In Proceedings of the USENIX Security Symposium, Boston, MA, USA, 6–10 August 2007.

7. Abbasi, M.; Shahraki, A.; Taherkordi, A. Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey. Comput.
Commun. 2021, 170, 19–41. [CrossRef]

8. Alqudah, N.; Yaseen, Q. Machine Learning for Traffic Analysis: A Review. Procedia Comput. Sci. 2020, 170, 911–916. [CrossRef]
9. Almutiri, T.; Nadeem, F. Markov models applications in natural language processing: A survey. Int. J. Inf. Technol. Comput. Sci

2022, 2, 1–16.
10. Forney, G. The viterbi algorithm. Proc. IEEE 1973, 61, 268–278. [CrossRef]
11. Baum, L.E.; Petrie, T.; Soules, G.; Weiss, N. A Maximization Technique Occurring in the Statistical Analysis of Probabilistic

Functions of Markov Chains. Ann. Math. Stat. 1970, 41, 164–171.
12. Dingledine, R.; Mathewson, N.; Syverson, P. Tor: The Second-Generation Onion Router. In Proceedings of the 13th USENIX

Security Symposium (USENIX Security 04), San Diego, CA, USA, 9–13 August 2004.
13. Abusnaina, A.; Jang, R.; Khormali, A.; Nyang, D.; Mohaisen, D. DFD: Adversarial Learning-based Approach to Defend Against

Website Fingerprinting. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto,
ON, Canada, 6–9 July 2020; pp. 2459–2468. [CrossRef]

14. Dantas, B.; Carvalho, P.; Lima, S.R.; Silva, J.M.C. Detection of Anonymised Traffic: Tor as Case Study. In Proceedings of
the Internet of Things, Smart Spaces, and Next Generation Networks and Systems, 20th International Conference, NEW2AN
2020, and 13th Conference, ruSMART 2020, St. Petersburg, Russia, 26–28 August 2020; Galinina, O., Andreev, S., Balandin, S.,
Koucheryavy, Y., Eds.; Springer: Cham, Switzerland, 2020; pp. 95–109.

15. Winter, P.; Crandall, J.R. The Great Firewall of China: How it blocks Tor and why it is hard to pinpoint. Login Usenix Mag. 2012,
37, 42–50.

16. Wright, C.V.; Coull, S.E.; Monrose, F. Traffic Morphing: An Efficient Defense Against Statistical Traffic Analysis. In Proceedings
of the Network and Distributed System Security Symposium, San Diego, CA, USA, 8–11 February 2009.

17. Wang, T.; Goldberg, I. Walkie-Talkie: An Efficient Defense Against Passive Website Fingerprinting Attacks. In Proceedings of the
26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1375–1390.

18. Gong, J.; Wang, T. Zero-delay Lightweight Defenses against Website Fingerprinting. In Proceedings of the 29th USENIX
Security Symposium (USENIX Security 20), Boston, MA, USA, 12–14 August 2020; USENIX Association: Berkeley, CA, USA,
2020; pp. 717–734.

19. Wang, Y.; Wang, Y.; Huang, J.J.; Chen, Y. TBP: Tree structure Burst-sequence Padding Defense Against Website Fingerprinting. In
Proceedings of the 2023 IEEE International Performance, Computing, and Communications Conference (IPCCC), Anaheim, CA,
USA, 17–19 November 2023; pp. 99–108. [CrossRef]

20. Al-Naami, K.; El-Ghamry, A.; Islam, M.S.; Khan, L.; Thuraisingham, B.; Hamlen, K.W.; Alrahmawy, M.; Rashad, M.Z. BiMorphing:
A Bi-Directional Bursting Defense against Website Fingerprinting Attacks. IEEE Trans. Dependable Secur. Comput. 2021, 18, 505–517.
[CrossRef]

21. Gong, J.; Zhang, W.; Zhang, C.; Wang, T. WFDefProxy: Real World Implementation and Evaluation of Website Fingerprinting
Defenses. IEEE Trans. Inf. Forensics Secur. 2024, 19, 1357–1371. [CrossRef]

https://doi.org/10.1109/SP.2012.28
https://www.rfc-editor.org/info/rfc9505
https://doi.org/10.17487/RFC9505
https://www.rfc-editor.org/info/rfc8546
https://www.rfc-editor.org/info/rfc8546
https://doi.org/10.17487/RFC8546
https://doi.org/10.1109/sp.2008.21
https://doi.org/https://doi.org/10.1016/j.comcom.2021.01.021
https://doi.org/https://doi.org/10.1016/j.procs.2020.03.111
https://doi.org/10.1109/PROC.1973.9030
https://doi.org/10.1109/INFOCOM41043.2020.9155465
https://doi.org/10.1109/IPCCC59175.2023.10253867
https://doi.org/10.1109/TDSC.2019.2907240
https://doi.org/10.1109/TIFS.2023.3327662

Cryptography 2024, 8, 22 26 of 26

22. Nasr, M.; Bahramali, A.; Houmansadr, A. Defeating DNN-Based Traffic Analysis Systems in Real-Time With Blind Adversarial
Perturbations. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, Vancouver,
BC, Canada, 11–13 August 2021; pp. 2705–2722.

23. Bhat, S.; Lu, D.; Kwon, A.; Devadas, S. Var-CNN: A Data-Efficient Website Fingerprinting Attack Based on Deep Learning. Proc.
Priv. Enhancing Technol. 2019, 2019, 292–310. [CrossRef]

24. Oh, S.E.; Sunkam, S.; Hopper, N. pFP: Extraction, Classification, and Prediction of Website Fingerprints with Deep Learning.
arXiv, 2019, arXiv:1711.03656.

25. Iyengar, J.; Thomson, M. QUIC: A UDP-Based Multiplexed and Secure Transport. RFC 9000(PS), IETF, 2021. Available online:
https://www.rfc-editor.org/info/rfc9000 (accessed on 20 May 2024). [CrossRef]

26. Ford, A.; Raiciu, C.; Handley, M.; Bonaventure, O.; Paasch, C. TCP Extensions for Multipath Operation with Multiple Addresses.
RFC 8684(PS), IETF, 2020. Available online: https://www.rfc-editor.org/info/rfc8684 (accessed on 10 May 2024). [CrossRef]

27. Abolfathi, M.; Shomorony, I.; Vahid, A.; Jafarian, J.H. A Game-Theoretically Optimal Defense Paradigm against Traffic Analysis
Attacks Using Multipath Routing and Deception. In Proceedings of the 27th ACM on Symposium on Access Control Models and
Technologies, New York, NY, USA, 8–10 June 2022; SACMAT ’22, pp. 67–78. [CrossRef]

28. De la Cadena, W.; Mitseva, A.; Hiller, J.; Pennekamp, J.; Reuter, S.; Filter, J.; Engel, T.; Wehrle, K.; Panchenko, A. TrafficSliver:
Fighting Website Fingerprinting Attacks with Traffic Splitting. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, New York, NY, USA, 9–13 November 2020; CCS ’20, pp. 1971–1985. [CrossRef]

29. Liu, L.; Hu, N.; Shan, C.; Jiang, Y.; Liu, X. SMART: A Lightweight and Reliable Multi-Path Transmission Model against Website
Fingerprinting Attacks. Electronics 2023, 12, 1668. [CrossRef]

30. Moon, T.; Park, J.; Kim, S. BlueFMCW: Random frequency hopping radar for mitigation of interference and spoofing. EURASIP
J. Adv. Signal Process. 2022, 2022, 4. [CrossRef]

31. Wang, T.; Cai, X.; Nithyanand, R.; Johnson, R.; Goldberg, I. Effective Attacks and Provable Defenses for Website Fingerprinting.
In Proceedings of the 23rd USENIX Security Symposium (USENIX Security 14), San Diego, CA, USA, 20–22 August 2014;
pp. 143–157.

32. Hayes, J.; Danezis, G. k-fingerprinting: A Robust Scalable Website Fingerprinting Technique. In Proceedings of the 25th USENIX
Security Symposium (USENIX Security 16), Austin, TX, USA, 10–12 August 2016; pp. 1187–1203.

33. Sirinam, P.; Imani, M.; Juarez, M.; Wright, M. Deep Fingerprinting: Undermining Website Fingerprinting Defenses with Deep
Learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS’ 18, New York,
NY, USA, 15–19 October 2018; pp. 1928–1943. [CrossRef]

34. Stewart, R.; Tuxen, M.; Nielsen, K. Stream Control Transmission Protocol. RFC 9260(PS), IETF, 2022. Available online:
https://www.rfc-editor.org/info/rfc9260 (accessed on 10 May 2024). [CrossRef]

35. Deering, S.; Hinden, R.Internet Protocol, Version 6 (IPv6) Specification. RFC 8200(S), IETF, 2017. Available online: https://www.rfc-
editor.org/info/rfc8200 (accessed on 10 May 2024). [CrossRef]

36. Gont, F.; Krishnan, S.; Narten, T.; Draves, R. Temporary Address Extensions for Stateless Address Autoconfiguration in IPv6.
RFC 8981(PS), IETF, 2021. Available online: https://www.rfc-editor.org/info/rfc8981 (accessed on 10 May 2024). [CrossRef]

37. Yanagida, R.; Bhatti, S.N. Seamless Internet connectivity for ubiquitous communication. In Proceedings of the PURBA2019,
Pervasive Urban Applications Workshop, London, UK, 9–13 September 2019; p. 12. [CrossRef]

38. Bhatti, S.N.; Haywood, G.; Yanagida, R. End-to-End Privacy for Identity & Location with IP. In Proceedings of the NIPAA-21—2nd
Workshop on New Internetworking Protocols, Architecture and Algorithms (ICNP 2021), Online, 1 November 2021; p. 6.
[CrossRef]

39. Haywood, G.T.; Bhatti, S.N.; Yanagida, R. ILNP—Identifier-Locator Network Protocol: FreeBSD 14.0 @ IETF118/Prague (Dataset).
Available online: https://research-portal.st-andrews.ac.uk/en/datasets/ilnp-identifier-locator-network-protocol-freebsd-140-
ietf118pragu (accessed on 10 May 2024). [CrossRef]

40. Markov, A.A. Theory of Algorithms; Published by the Academy of Sciences of the USSR: Moscow, Russia, 1954.
41. Haywood, G.T.; Bhatti, S.N. Cryptography2024-Data: Data and Source Files for Paper, “Defence against Side-Channel Attacks for

Encrypted Network Communication Using Multiple Paths”, from Cryptography 2024. Available online: https://doi.org/10.176
30/bf2ffcc2-8663-42a8-b019-ca18005236ba (accessed on 20 May 2024).

42. Bizzocchi, A. How Many Phonemes Does the English Language Have? Int. J. Stud. Engl. Lang. Lit. 2017, 5, 36–46. [CrossRef]
43. Atkinson, R.; Bhatti, S.N. Optional Advanced Deployment Scenarios for the Identifier-Locator Network Protocol (ILNP). RFC

6748(E), IRTF, 2012. Available online: https://www.rfc-editor.org/info/rfc6748 (accessed on 10 May 2024). [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2478/popets-2019-0070
https://www.rfc-editor.org/info/rfc9000
https://doi.org/10.17487/rfc9000
https://www.rfc-editor.org/info/rfc8684
https://doi.org/10.17487/rfc8684
https://doi.org/10.1145/3532105.3535015
https://doi.org/10.1145/3372297.3423351
https://doi.org/10.3390/electronics12071668
https://doi.org/10.1186/s13634-022-00838-7
https://doi.org/10.1145/3243734.3243768
https://www.rfc-editor.org/info/rfc9260
https://doi.org/10.17487/rfc9260
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://doi.org/10.17487/rfc8200
https://www.rfc-editor.org/info/rfc8981
https://doi.org/10.17487/rfc8981
https://doi.org/10.1145/3341162.3349315
https://doi.org/10.1109/ICNP52444.2021.9651909
https://research-portal.st-andrews.ac.uk/en/datasets/ilnp-identifier-locator-network-protocol-freebsd-140-ietf118pragu
https://research-portal.st-andrews.ac.uk/en/datasets/ilnp-identifier-locator-network-protocol-freebsd-140-ietf118pragu
https://doi.org/10.17630/8a1f128b-8362-446e-8e7e-fea5a2dab97f
https://doi.org/10.17630/bf2ffcc2-8663-42a8-b019-ca18005236ba
https://doi.org/10.17630/bf2ffcc2-8663-42a8-b019-ca18005236ba
https://doi.org/10.20431/2347-3134.0510006
https://www.rfc-editor.org/info/rfc6748
https://doi.org/10.17487/rfc6748

	Introduction
	Contribution
	Paper Structure

	Traffic Analysis for Network Communication
	Traffic Analysis Techniques
	Use of the Hidden Markov Model (HMM)
	Summary of Existing Countermeasures

	Evading Traffic Analysis
	Limits of Existing Defences
	Disrupting Interception
	Multipath Evasion and Traffic Splitting

	Multipath Communication
	Using Multiple Paths
	Practicalities of Multiple Paths in Networking
	The Identifier Locator Network Protocol (ILNP) and Privacy

	Analysis of HMMs
	The Emission Model
	The Transition Model

	Evaluation
	General Markov Model Simulations
	Methodology
	Traffic Distributions and Transition Probabilities
	Markov Models

	Results
	Convergence on Unigram Probability
	Specific Markov Model Analysis

	Discussion and Recommendations
	Limitations of the Defence When Applied to the English Corpus
	Implementation Concerns
	Pathological Topology
	Coarse Feature Analysis
	Resilience Against Other Attacks

	Conclusions, Summary, and Future Work
	Summary of This Paper
	Future Work

	References

