
Citation: Wang, C.; Liu, Z.-Y.; Mambo,

M. On the Proof of Ownership of

Digital Wallets. Cryptography 2024, 8,

57. https://doi.org/10.3390/

cryptography8040057

Academic Editor: Josef Pieprzyk

Received: 20 November 2024

Revised: 13 December 2024

Accepted: 14 December 2024

Published: 18 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

On the Proof of Ownership of Digital Wallets
Chen Wang 1 , Zi-Yuan Liu 1 and Masahiro Mambo 2,*

1 Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan;
wang880093@stu.kanazawa-u.ac.jp (C.W.); ziyaunliu@stu.kanazawa-u.ac.jp (Z.-Y.L.)

2 Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
* Correspondence: mambo@ec.t.kanazawa-u.ac.jp

Abstract: With the widespread adoption and increasing application of blockchain technology, cryp-
tocurrency wallets used in Bitcoin and Ethereum play a crucial role in facilitating decentralized asset
management and secure transactions. However, wallet security relies heavily on private keys, with
insufficient attention to the risks of theft and exposure. To address this issue, Chaum et al. (ACNS’21)
proposed a “proof of ownership” method using a “backup key” to prove ownership of private keys
even when exposed. However, their interactive proof approach is inefficient in large-scale systems
and vulnerable to side-channel attacks due to the long key generation time. Other related schemes
also suffer from low efficiency and complex key management, increasing the difficulty of securely
storing backup keys. In this paper, we present an efficient, non-interactive proof generation approach
for ownership of secret keys using a single backup key. Our approach leverages non-interactive
zero-knowledge proofs and symmetric encryption, allowing users to generate multiple proofs with
one fixed backup key, simplifying key management. Additionally, our scheme resists quantum attacks
and provides a fallback signature. Our new scheme can be proved to capture unforgeability under
the computational indistinguishability from the Uniformly Random Distribution property of a proper
hash function and soundness in the quantum random oracle model. Experimental results indicate
that our approach achieves a short key generation time and enables an efficient proof generation
scheme in large-scale decentralized systems. Compared with state-of-the-art schemes, our approach
is applicable to a broader range of scenarios due to its non-interactive nature, short key generation
time, high efficiency, and simplified key management system.

Keywords: digital wallet; digital signature; zero-knowledge proof; proof of ownership; symmetric
encryption

1. Introduction

Nowadays, with the popularization of personal computers and smartphones, digital
wallets have been widely applied in financial systems. Protecting these wallets and the
corresponding key pairs is becoming increasingly crucial as adversary hackers constantly
attempt to exploit security vulnerabilities to steal funds controlled by such wallets. In
practice, users rely on a few approaches to counter such attacks. The most straightforward
technique is to resort to secure hardware, i.e., hardware wallets [1]. Another widespread
practice is hot–cold wallets [2]. A hot wallet is permanently connected to the network,
initiating with a public key and address for received funds. On the other hand, cold wallets
store secrets without a network connection. Both approaches aim to protect wallets at the
network layer by isolating secrets from network connections, reducing the risk of adversary
access. However, if attackers succeed at the digital signature layer, neither hardware nor
hot–cold wallets remain secure.

Many digital wallets rely heavily on asymmetric key cryptographic systems as digital
signatures, such as (i) the Digital Signature Algorithm (DSA), which is based on discrete loga-
rithm cryptography first introduced by Diffie and Hellman [3], (ii) the Rivest–Shamir–Adleman
(RSA) [4], and (iii) the Elliptic Curve Digital Signature Algorithm (ECDSA), which is based
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on Elliptic Curve Cryptography (ECC) [5]. These are collectively referred to as classical
digital signature algorithms. With the development of large, fault-tolerant quantum com-
puters, such classical digital signature schemes face significant threats. Shor’s algorithm [6]
can solve the discrete logarithm and integer factorization problems in O(log N) polynomial
time N. This implies that any adversary possessing a large enough quantum computer can
compute a user’s private key within a feasible time once the public key is given. As a result,
the adversary can generate valid signatures of the victim user. Recent studies, such as those
in [7–9], have explored applying post-quantum cryptographic schemes. Although such
schemes enable users to protect their digital assets against quantum attacks, users may
fail or simply forget to migrate their classical digital signature-protected assets to systems
secured by post-quantum cryptographic schemes. By the time they realize the issue, their
secret key might already have been compromised. In such cases, post-quantum signatures
and their implementations are not sufficient to address the problem.

In the scenario described above, proving the ownership of digital wallets becomes
crucial for users. To prove ownership, simply employing zero-knowledge proofs, such
as zero-knowledge proof of knowledge (ZKPK) [10] protocols, is not suitable because an
adversary with knowledge of the stolen secret key can also generate a valid ZKPK proof.
To address this issue, Chaum et al. (ACNS’21) [11] introduced the concepts of “proof of
ownership” and “fallback signature,” allowing users to prove ownership of secret keys
and generate fallback signatures even when their secret keys are publicly exposed in a
decentralized environment. To realize these concepts, they proposed the scheme Sleeve, a
combination of the ECDSA signature with a hash-based eW-OTS+ digital signature (an
extension of the W-OTS+ signature proposed by Chaum). The security definition of a proof
of ownership framework is that the probability of an adversary without knowledge of
the secret witness successfully forging a valid proof is negligible, which means that the
proof scheme is sound. This implies that adversaries cannot forge a valid proof even if they
successfully break the classical digital signature, such as ECDSA. In the Sleeve scheme, the
proof system enables a user to generate a proof using a nested eW-OTS+ digital signature
scheme, which signs an unpredictable challenge generated by the verifier. Accordingly, if
this post-quantum hash-based signature is unforgeable, it is infeasible for adversaries to
forge the signature, thereby ensuring the soundness of the proof scheme. In their paper,
the unforgeability is proved under the assumption of the second-preimage resistance of a
hash function. However, their proof does not consider the quantum random oracle model
(QROM). Unlike them, we directly prove the soundness of our proof scheme under QROM,
allowing adversaries to perform quantum queries on random oracles.

In addition to providing a QROM-based security proof, we identify three major
issues in the Sleeve scheme that can be improved. First, the Sleeve scheme involves an
interactive proof protocol, requiring the prover to continuously generate proofs in response
to challenges for each verification request. This requirement limits application scenarios,
such as protecting long-term non-repudiation data, and undermines efficiency in a large-
scale decentralized system. Second, to enable proof of ownership in classical digital
signature schemes, the Sleeve scheme modifies the key generation approach to generate
an additional backup key. Consequently, the key generation time is longer than that of a
classical digital signature. The long key generation time can cause potential side channel
attacks [12], especially when a user needs to generate multiple secret and public key pairs
through repeated invocation of the key generation function, such as coin mixing [13] and
HD wallets [14]. Third, as mentioned in [11], the key storage involves enhanced security
measures utilizing cold–hot wallet technology to prevent any possible network access to
the backup key. In scenarios where a prover holds multiple secret keys, the Sleeve scheme
requires generating a corresponding backup key for each secret key. In our case, the proofs
for multiple secret keys can be generated using a single fixed backup key. This means that
regardless of how many secret keys users possess, they only need to store one backup key,
significantly saving storage space. Additionally, when the backup key must be stored in an
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offline environment, our scheme provides easier and more efficient storage and retrieval
compared with existing schemes.

Regarding the first issue we mentioned above, a natural idea to improve the Sleeve
scheme is to transmit the involved interactive proof scheme into a non-interactive one
employing the Fiat–Shamir transformation [15]. However, such a transformation does not
address the key generation time and backup key storage issues. Considering all these three
issues, following the concept of proof of ownership, we propose an approach utilizing
zero-knowledge proof and symmetric encryption techniques. Specifically, our construction
generates a non-interactive, post-quantum zero-knowledge proof of the relationship be-
tween the nested backup key and the secret key as the proof of ownership, enabling the
users to non-interactively generate proofs of ownership of the secret keys without requiring
inputs from other verifiers. In such non-interactive schemes, an adversary observing a
valid proof could replicate it. Then, with cloned proof and public parameters, the adversary
could pretend to other verifiers that he generated the valid proof. This potential clone attack
could be addressed using Certification Authority (CA) systems and additional specific
authentication algorithms. As this paper focuses solely on the proof of ownership scheme,
concerns related to clone attacks are only mentioned here and not further explored.

Furthermore, our scheme requires only one fixed backup key to generate proofs
of ownership for multiple secret keys, enabling a simplified key management system,
especially when large-scale proofs of ownership for the secret keys are needed. Our
protocol can also be nested within classical digital signature schemes in the real world and
offers a more efficient key generation process than the Sleeve scheme. Our contributions are
as follows.

• We propose a new efficient non-interactive proof of ownership scheme, featuring a
simplified key management system while supporting a post-quantum fallback digital
signature mechanism.

• We prove that the signing scheme in our approach achieves unforgeability under the
computational indistinguishability from the Uniformly Random Distribution property
of a proper hash function and that the proof scheme is sound in the quantum random
oracle model.

• With evaluation, compared with state-of-the-art schemes, our scheme has a relatively
efficient key generation phase and the most efficient proof generation phase in a
large-scale decentralized system.

2. Background
2.1. Digital Signature

We describe a simple scenario involving two users, Alice and Bob, where Alice wants
to send a message m to Bob securely. Alice wants to ensure that the message received by
Bob is unchanged and that Bob can verify that the message was sent by Alice. Bob wants
to confirm that the message received is intact and was sent from Alice, and he also wants
to be able to prove this to a third party. In this case, Alice calls Gen to generate {sk, pk}.
pk is public to all users, and sk is held by Alice secretly. Alice then executes Sign with the
private key sk and message m, generating a signature σ. Alice transmits {m, σ} to Bob, and
then Bob executes Verify with {m, σ, pk}. If Verify returns accept, then Bob has successfully
received an unchanged message m with the signature proof σ from Alice.

Definition 1 (Classical Digital Signature). A classical digital signature scheme as a tuple (Gen,
Sign,Verify):

• Gen(1n)→ (sk, pk) Given a security parameter of 1n and the cryptographic key strength of n
as input, outputs a private and public key pair (sk, pk).

• Sign(m, sk)→ σ Given a message m and private key sk as input, outputs a signature σ.
• Verify(m, pk, σ) → result Given a message m, the public key pk, and signature σ as input,

outputs 1 only if σ is a valid signature generated by Sign(m, sk).
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The correctness requires that, for any security parameter n and any message m,

Pr[Verify(m, pk, σ) = 0 | (sk, pk)← Gen(1n), σ← Sign(sk, m)] ≤ negl(n) (1)

For a classical digital signature, like ECDSA, unforgeability is a crucial security prop-
erty, typically demonstrated through the EUF-CMA security game. We present the defini-
tion of EUF-CMA 1.

Definition 2 (EUF-CMA1 Security). Given a signature scheme sig = (Gen,Sign,Verify) and the
security parameter n, we say that sig is EUF-CMA1-secure if any PPT algorithm A has negligible
advantage in the EUF-CMA1 game, defined as

AdvEUF−CMA1
A =Pr[Verify(pk, m∗, σ∗) = 1∧m∗ /∈ Q : (sk, pk)← Gen(1n),

(m∗, σ∗)← ASign(sk,·)(pk)]
(2)

where ASign(sk,·) denotes the adversary’s access to the signing oracle with private key sk for each
fresh message, and Q denotes the set of messages m queried by A.

To prove that our proof of ownership signature scheme achieves unforgeability, we
assume an extra property for the hash function in our scheme.

Definition 3 (Indistinguishability). For security parameter n and a hash function H we in-
troduced, we say that the hash function has computational indistinguishability from Uniformly
Random Distribution if, for every PPT distinguisher D and arbitrary choices of parameter M, the
following probability is negligible:

|Pr[x ← H(M), D(x) = 1]− Pr[x ← U, D(x) = 1]| (3)

for the uniform distribution U.

2.2. MPCitH-Based Signature

Multi-party computation in-the-head (MPCitH) is a paradigm to construct a zero-
knowledge proof (ZKP) system from a multi-party computation (MPC) protocol, first
introduced by Ishai et al. [16]. This technique can be utilized to generate signature schemes
like ZKBoo [17], Picnic signature [18], and BBQ signature [19]. Given a one-way function f
and an input–output pair (x, y) such that f (x) = y, one can construct a digital signature
scheme with secret key x, public key y, and a non-interactive zero-knowledge proof of
knowledge (NIZKPoK) of the secret x as a signature. Unlike other NIZK schemes relying
on hardness assumptions for security, the security of these schemes solely depends on
the security of the one-way function, typically a symmetric encryption algorithm like a
hash function or AES function, thus enhancing the reliance of MPCitH-based signatures
against post-quantum attacks. Regarding MPCitH zero-knowledge proofs, a prover creates
a boolean computational circuit of d branches and commits to them, revealing d− 1 views
to the verifier as proof of knowledge. To achieve non-interactive properties, the prover
utilizes the Fiat–Shamir heuristic [20] to deterministically, yet unpredictably, decide which
d− 1 views to send to the verifier. To clearly demonstrate the Fiat–Shamir transformation
from a zero-knowledge interactive proof (ZKIP) to a NIZKPoK, as we mentioned above,
following [21], we first demonstrate a definition of a multi-round general public coin
interactive proof (PCIP) system (including the ZKIP system), which is also called an
identification scheme.

Definition 4 (Public coin interactive proof system (PCIP)). A (2n + 1)− move public coin
interactive proof system(PCIP) Π = (P,V) for a language L defined by means of a witness relation
R ⊆ X×W such that (x, w) ∈ R, is a (2n + 1)− move two-party interactive protocol of the form,
with C as a finite non-empty set, w a secret input of prover P, and V a verification predicate of Π:
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Prover P(x) Verifier V(x)
a1−−−−−−−→
c1←−−−−−−− c1

$←− C
...

an−−−−−−−→
cn←−−−−−−− cn

$←− C
z−−−−−−−→

Verifier V accept if V(x, a1, . . . , an, cn, z) = 1 is satisfied

where a1 . . . an are commitments generated by the prover and c1 . . . cn are challenges randomly sam-
pled from C by the verifier, z is the final output from the prover, and predicate V(x, a1, . . . , an, cn, z)
outputs 1 only if the proof (x, a1, . . . , an, cn, z) is valid.

Then, the definition of a general Fiat–Shamir transformation for a PCIP system (in-
cluding the ZKIP system) is demonstrated as

Definition 5 (Fiat–Shamir transformation for general PCIP (mFS)). Given an (2n + 1)-move
PCIP Π = (P,V), a hash function H with appropriate domain and range in C, and a verification
predicate VFS, we define the non-interactive proof system FS[Π] = (PH

FS,VH
FS) as follows. The

prover PH
FS outputs

(x, a1, ..., an, z)← PH
FS

where ai for i = 1, ..., n are commitments, together with z computed by PH
FS. The challenges are

computed as follows:

c1 = H(x, a1) and ci = H(ci−1, ai) for i = 2, . . . , n,

The result output from the verifier VH
FS is determined by the predicate VFS with

(x, a1, c1, . . . , an, cn, z) as input. VFS(x, a1, c1, . . . , an, cn, z) = 1 if V(x, a1, c1, . . . , an, cn, z) = 1,
where c1 = H(x, a1), ci = H(ci−1, ai), i = 2, . . . , n.

In our design, we aim to prove the ownership of a secret key by embedding a backup
key value and generating a NIZKPoK of the backup key. Additionally, we seek to enable
a fallback signature scheme that is resilient to post-quantum attacks. To achieve this, we
integrate the Banquet protocol [22] as our fallback signature scheme and modify it to
produce a NIZKPoK for the backup key value within our proof generation algorithm. We
employ Banquet for the following reasons:

• Although the Picnic scheme [18] can efficiently sign a message by performing a proof
under the MPC-friendly block cipher LowMC [23] as one-way functions, the security
of LowMC encryption suffers from various attacks, such as those described in [24,25].
We have mentioned that the security of an MPCitH-based signature scheme heavily
depends on the security of symmetric encryption. Thus, we did not employ Picnic for
our scheme.

• RAINer [26] and AIMer [27] are designed to achieve smaller signature sizes and
improve efficiency using RAIN and AIM as one-way functions. However, research
in [28,29] shows that the RAIN and AIM functions are vulnerable to algebraic attacks.
Considering the crucial importance of security for our scheme, we have decided not
to employ these two approaches.

• BBQ [19] and Banquet [22] aim to improve security using well-studied AES as the
one-way function to address potential attacks. Considering that Banquet is more
efficient and has a smaller signature size, we have utilized Banquet for our scheme.
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Based on MPC-in-the-Head (MPCitH) techniques, the Banquet protocol constructs
a 7-move interactive identification scheme for proving knowledge. This scheme can be
converted into a non-interactive proof using the Fiat–Shamir transform, a method believed
to be secure against quantum attacks. The simplified scheme operates as follows: given a
key pair consisting of a random secret key sk = k and a public key pk = (x, y) such that
AESk(x) = y, signing a message m involves a proof generation algorithm Prove, generating
a non-interactive zero-knowledge proof of knowledge of k in a way that binds m to the
proof. The verifier’s challenges are derived from random oracles, with the message and
public key as initial input. This ensures that these parameters are tied to the signature.
Given an AES function AESk(x): K×X→ Y, which presents as a binary circuit, the Banquet
scheme is described by three algorithms:

• Genb(1n): given security parameter n as input, sample x ∈ X = {0, 1}n and k ∈ K = {0, 1}n,
and compute y = AESk(x), outputs public key pk← (x, y) and secret key sk← k.

• Signb(sk, m): given a message m and secret key sk as input and compute σ← Prove(sk, m),
output σ.

• Verifyb(pk, m, σ): given signature σ and public key pk as input, compute the verifica-
tion algorithm Verify(pk, σ, m), which outputs 1 if the result of Verify is 1; otherwise,
output 0.

2.3. Proof of Ownership of Digital Signature Scheme

In classical digital signature schemes, security relies on the secrecy of the private key.
An adversary can forge signatures on arbitrary messages if the secret key is revealed. As
discussed in Section 1, an attacker can apply a quantum attack to compromise the secret key
of the classical asymmetric signature scheme. In this scenario, the classical digital signature
is no longer secure, and any attacker can steal personal funds owned by the user by forging
signatures with stolen secret keys. To solve such an issue, the notion of proof of ownership,
first introduced by Chaum et al. [11], can be applied to construct a secure and extended
digital signature scheme:

• Gen(1n)→ (bk, sk, pk): given a security parameter 1n, which defines the cryptographic
key strength of n as input, it outputs a backup key bk, a secret key sk, and the corre-
sponding public key pk.

• Sign(m, sk) → σ: given a message m and a private key sk as input, it outputs a
signature σ.

• Verify(m, pk, σ) → result: Given message m, public key pk, and signature σ as input,
outputs accept only if σ is a valid signature generated by Sign(m, sk).

• Proof(bk, c) → π: given backup key bk and a challenge as input, compute a NIZKP
with π = Prove(bk, c), output π.

• Verify–Proof(π, m, pk, σ)→ result: given secret key sk, proof π, message m, public key
pk, and signature σ as input, outputs accept only if proof verification Verify(π, c) = 1,
and σ is a valid signature generated by Sign(m, sk).

Compared with a classical digital signature scheme, a proof of ownership scheme adds
an additional security layer by introducing a backup key for the secret key and generating a
proof π with a backup key bk and challenge c as input. In the event of a secret key leakage,
provers can use the Proof algorithm to generate a proof. Verifiers can use the Verify–Proof
algorithm to verify both the validity of a digital signature and the ownership of the secret
key. The security definition of proof of ownership of digital signature schemes is as follows.

Definition 6 (Proof of ownership). For any probabilistic polynomial time (PPT) algorithm A,
it holds

Pr[(pk, sk, bk)← Gen(1n) : (π∗)← A(sk, c) ∧ Verify− Proof(pk, sk, m, σ, π∗, c∗) = 1]

< negl(λ)
(4)



Cryptography 2024, 8, 57 7 of 20

for all probabilities are computed over the random coins of the generation and proof verification
algorithm and adversary. c∗ is the challenge generated by the adversary to generate π∗.

3. Related Work

In this paper, we address the scenario of a stolen secret key from classical digital
signatures and propose a method to generate a post-quantum proof. The instinctive
approach to proving the ownership of a secret in the digital signature is to use a replacement
or additional secure algorithm. At this point of writing, many researchers have proposed
a “drop-in replacement” in the form of a software library or hardware module. But since
these algorithms have unique resources, performance, and platform considerations [30,31],
coupled with insufficient proof of knowledge [32], they still need more extensions to be
designed and carried out. Although fail-stop signature schemes [9] provide a forgery-
proof mechanism, they neither prove ownership of the secret key nor provide fallback
mechanisms, highlighting the need for additional improvements.

Another approach is to use a backup key that overrides the regular signing key when
the secret key is leaked. In Chaum et al. [11], the researchers propose the use of a hash-
based W-OTS+ scheme to generate a proof for the regular secret key, which can be used as
a backup signature scheme when the regular key is compromised or lost. However, the
Sleeve scheme limits the scenario of longer-term non-interactive protection of data because
the proof generation of a Sleeve scheme requires a challenge as a common input to compute
the proof, which can also be treated as an interactive identification scheme. Moreover, the
key generation time of the Sleeve scheme is 5–10 times slower than ECDSA, and it is hard to
apply the Sleeve scheme as a classical digital signature scheme due to the low efficiency.

In [33], researchers enhance the security of digital signature schemes by randomly
choosing a pre-image value related to the secret key in the key generation step and generat-
ing two zero-knowledge proofs of the public key generation. Although the authors aim to
create a post-quantum extension scheme for the classical digital signature schemes, their
scheme can also be utilized to prove the ownership of a revealed secret key. Compared
with our scheme, the authors attempt to compute the secret key of an ECDSA encryp-
tion scheme with a corresponding pre-image value utilizing the proper hash function
and generating two zero-knowledge proofs for the hash computation and elliptic curve
computation. However, the extended signature scheme needs to be simplified. We argue
that the zero-knowledge proof for the public generation is necessary because, under the
quantum computing attack, one adversary can compute the secret key of a classical ECDSA
scheme with a given public key. The ZKBoo scheme they used as a zero-knowledge proof
scheme is not as competitive in execution time as other schemes like Picnic [34], BBQ [19],
Banquet [22], and AIMer [27], which have been evaluated in Section 2.2.

4. Our Approach

We describe a scenario for digital wallets using classical digital signatures (like ECDSA)
under the attack of secret key leakage. Users need to prove ownership of their digital funds,
a requirement that can be effectively addressed through our proposed approach. While
the Sleeve scheme proposed by Chaum et al. [11] offers a solution, it suffers from a long
key generation time and requires an interactive proof scheme, significantly restricting its
application, as discussed in Section 1.

To address these challenges, we propose a proof of ownership scheme that utilizes
non-interactive zero knowledge (NIZK) to prove the knowledge of the nested backup key.
Unlike the original scheme, our design efficiently generates ECDSA secret keys using AES
encryption and a hash function, with a single, randomly selected backup key as input.
Meanwhile, the challenge in our scheme is generated solely by the prover, employing a
proper hash function with the public parameters. With these innovations, our scheme
enables a prover to non-interactively generate multiple proofs with one query to the backup
key while also reducing the key generation compared with the Sleeve scheme. The required
building blocks and our proposed scheme are introduced as follows:
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• ECDSA: ECDSA is commonly implemented in digital wallets as a signing scheme due
to its use of an unpredictable random number generator for private key generation.
This generator produces outputs that perfectly match the output space of a one-way
hash function, which is also widely used in digital wallets.

• Hash function: In our approach, the hash function’s output space is a finite field that
aligns well with the curve in ECDSA.

• AES function: AES is a 128-bit block cipher based on a substitution–permutation
network. The key length is allowed to be 128, 192, or 256 bits and can be considered as
a 4× 4 matrix of elements in F28 . The AES S-box computes a multiplicative inverse in
the field F28 . In our case, the key k of the AES function should be properly selected
so the key generation repeats the AES computation y = AESk(x) until there are no
S-boxes in the computation of y with input 0.

• Zero-knowledge proof: Our approach uses a non-interactive and post-quantum secure
zero-knowledge proof generated from the Banquet protocol [22]. We modify Banquet’s
signing and verification scheme by removing the message input and generating a
NIZKPoK for an AES encryption key. In Banquet signature, signing a message m
involves adding the message into a hash function of the challenge and verifying it.
Without message input, the generated NIZKPoK does not suffer from security or
efficiency issues. The zero-knowledge proof demonstrates that for given (x, y), the
prover possesses an AES encryption key k satisfying AESk(x) = y. The parameters
and functions used in the proof are the following: the security parameter n, the total
number of parties N in the underlying MPC protocol, the total number of S-boxes
L, the number of parallel repetitions τ, the commitment function Commit, challenge
computing hash functions (H1, H2, H3), and the hash expand function Expand and
random tape sample function tape.

With the setting definition mentioned above, our protocol can be evaluated as five algo-
rithms: Gen, Sign, Verify, Proof, and Verify–Proof, which will be demonstrated sequentially.

• Realization of Gen: The function Gen, shown in Algorithm 1, is an extended function
of the Gen algorithm of the ECDSA. Additional steps are taken to generate a backup
key bk and use it to compute the secret key sk and the public key pk. It samples
bk← {0, 1}n, x ← {0, 1}n, and computes AESbk(x) = y. Here, during the AES process,
checking whether 0 is the input of S-boxes is required. This confirms that a prover
can correctly generate a NIZK of the knowledge of the backup key in Algorithm 4.
The sampled value x will be stored by the prover and will be the input value in
Algorithm 4.

• Realization of Sign: the function Sign, shown in Algorithm 2, is the same as the
signature phase of the ECDSA.

• Realization of Verify: The function Verify is shown in Algorithm 3. In our approach,
Verify only verifies the validity of a signed message.

• Realization of Proof: The function shown in Algorithm 4 takes (bk, x) as an input
pair; the value x is the AES input in Algorithm 1, corresponding to the secret key
for which we want to generate proof of ownership. It computes the AES function as
y = AESbk(x) and a NIZKPoK of backup key bk with settled language l ← {(x, y) |
∃bk s.t. AESbk(x) = y}, obtaining proof πn, and outputs the proof π = (πn, x, y).

• Realization of Verify–Proof: Algorithm 5 takes a secret and public key pair (sk, pk) and
proof π as input and verifies the correctness of the zero-knowledge proof generated
by Algorithm 4 as well as the correctness of the secret and public key pair (sk, pk).
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Algorithm 1 Proof of ownership ECDSA: key generation Gen

Input: ECC base point G; ECC order P; security parameter n
Output: (bk, sk, pk)

Sample a backup key bk← {0, 1}n

Sample a random value x ← {0, 1}n

Compute the result of AES function y = AESbk(x)
for There are zero input S-boxes in AES computation do

Resample x, bk← {0, 1}n

Recompute y = AESbk(x)
end for
Compute secret key sk = H(x, y)
Compute public key pk = sk · G mod P
return (bk, sk, pk)

Algorithm 2 Proof of ownership ECDSA: signing Sign

Input: ECC base point G; ECC order P; secret key sk; message m
Output: σ

Generate signature random value r
Compute r−1 where r ∗ r−1 = 1 mod P
Compute R = (rx, ry) where R = r · G mod P
Compute the hash of the message: h = H(m)
Compute s where s = r−1 ∗ (h + rx ∗ sk) mod P
Destroy r, r−1

return σ = (rx, s)

Algorithm 3 Proof of ownership ECDSA: verification Verify

Input: ECC base point G; ECC order P; secret key sk; message m; public key pk;
signature σ

Output: result
Compute s−1 where s ∗ s−1 = 1 mod P
Compute the hash of the message h = H(m)
Compute u1 = s−1 ∗ h mod P
Compute u2 = s−1 ∗ rx mod P
Compute V = (vx, vy) where V = u1 · G + u2 · pk
if vx ̸= rx then

return 0
end if
return 1

Algorithm 4 Proof of ownership ECDSA: proof generation Proof

Input: backup key bk; sampled value x in Algorithm 1
Output: π

Compute the AES function y = AESbk(x)
Set language l ← {(x, y) | ∃bk s.t. AESbk(x) = y}
Compute NIZKPoK of bk from l, obtain proof πn
Output π = (πn, x, y)
return π



Cryptography 2024, 8, 57 10 of 20

Algorithm 5 Proof of ownership ECDSA: proof verification Verify–Proof

Input: ECC base point G; ECC order P; secret key sk; public key pk; proof π
Output: result

Parse π = (πn, x, y)
Check Verify(πn) = result
Compute skv = H(x, y)
Compute pkv = skv · G mod P
if result = 1, skv = sk, and pkv = pk then

return 1
else

return 0
end if

5. Security of Our Design
5.1. EUF-CMA1 Security of Signing Scheme

Firstly, similar to the proof in [35], we aim to prove that our signature scheme, whose
main signature algorithms are Algorithms 1–3, is EUF-CMA1 secure. The security of the
ECDSA scheme is given by [36]. Although many signature schemes are proven unforgeable
under the random oracle model, our proof framework requires only the indistinguishability
property. Specifically, instead of assuming that the hash function behaves precisely as
a random oracle, we assume a hash function H that upholds the security property of
indistinguishability defined in Definition 3 to generate the secret key.

We perform a security game to prove the EUF-CMA1 security of our scheme. The
following lemma aims to show that the EUF-CMA1 security of our scheme is achieved with
a suitable hash function and ECDSA.

Lemma 1. Assume that ECDSA is EUF-CMA1 secure and the generation algorithm Gen from
Algorithm 1 is constructed with a hash function H, which is indistinguishable from the uniform
distribution as defined in Definition 3. Then, our scheme is EUF-CMA1 secure as given by the
security game of Algorithm 6:

Algorithm 6 EUF-CMA1 game of our scheme

Procedure Init(n)
L← ∅
(bk, sk, pk)← Gen(1n)
return pk

Procedure Sign(m)
If m ∈ L: Abort
σ← Sign(sk, m)
If σ = ⊥: Return ⊥
L← L∪m
return σ

Procedure Fin(m∗, σ∗)
If m∗ ∈ L: Abort
If Verify (pk, m∗, σ∗) = 0: Abort
return 1

Note that the security game in Algorithm 6 is the One-Message Existential Unforge-
ability with Chosen Message Attack game, i.e., (EUF-CMA1). For the general form, i.e.,
standard (EUF-CMA), the sign procedure does not abort when the message is in the list L:



Cryptography 2024, 8, 57 11 of 20

• Procedure Init: the Init procedure takes a security parameter n as input, generates
(bk, sk, pk) as Algorithm 1 with security parameter n, generates an empty list L to
store relevant information, and publishes the public key pk as output.

• Procedure Sign: A forger chooses a message m and sends it to the Sign procedure as
input. Sign checks if the message m is already in the list L. If the message is in the list,
Sign will abort. Otherwise, Sign will sign the message using the secret key sk generated
in Init, add the message m to the list L, and send the signature σ back to the forger
as output.

• Procedure Fin: The forger attempts to generate a valid message and signature pair
(m∗, σ∗) and sends it to the procedure Fin as input. Fin first checks if the message m∗

has already been on the list L. If the message is in the list, Fin will abort. Otherwise,
Fin verifies the message and signature pair by checking if Verify(pk, m∗, σ∗) = 1. If
verification fails, Fin will abort the procedure. If verification is successful, Fin returns 1
as a result.

Proof. Assume the existence of a forger F of our signature scheme, which wins the game
from Algorithm 6 by outputting a forgery (m∗, σ∗) with non-negligible probability. Then,
we construct a PPT distinguisher algorithm D, which breaks the indistinguishability prop-
erty of H with high probability. We construct D as follows:

• D receives the string x of Definition 3 as input. The string x is generated in one of two
ways: either x ← H(M), where H is a hash function applied to the arbitrarily chosen
message M, or by x ← U, where U represents a uniform distribution.

• In Algorithm 1, users compute the secret key using a hash function. With the input
string x, D can modify the key generation algorithm by setting the secret key sk′ as
the string x and computing the public key as pk′ = sk′ · G mod P.

• Considering that the backup key bk is not used in the game procedure Sign and Fin,
D can simulate the EUF-CMA1 security game in Algorithm 6 using such a pair of
(sk′, pk′). To simulate the procedure Init, D keeps the secret key sk′ and publishes
the public key pk′ as output. To simulate the Sign procedure, D receives a message
m from a forger and uses sk′ to sign the message by σ ← Sign(sk′, m) and send the
signature σ back to the forger as output. With non-negligible probability, the forger F
outputs (m∗, σ∗).

• Then, D determines its output using a verification algorithm, Verify, as follows: If
Verify(m∗, σ∗, pk′) = 1, then output 1; otherwise, output 0.

Then, the success probability of signature forgery by F in Algorithm 6 can be estimated
with the following two considerations:

• Following the EUF-CMA1 security of ECDSA mentioned in Definition 2, we have
that it is negligible for an ECDSA forger winning the EUF-CMA1 game by outputting
a valid message and signature pair (m∗, σ∗) such that Verify(pk′, m∗, σ∗) = 1. When
the distinguisher D receives x generated by uniform distribution x ← U, then D
can generate an ECDSA key pair (sk′, pk′) with x. Note that when D simulates the
EUF-CMA1 game, the Sign and Fin procedures are the same between ECDSA and
our scheme. Then, the distinguisher D can simulate an ECDSA forger playing the
EUF-CMA1 game with received x ← U. Considering that the probability of the
ECDSA forger winning the EUF-CMA1 game is negligible, the probability Pr[x ←
U,Verify(m∗, σ∗, pk′) = 1] is negligible for the uniform random distribution U.

• Distinguisher D determines its output using a verification algorithm Verify, which
also determines whether a forger wins the simulated EUF-CMA1 security game or
not. If Verify(m∗, σ∗, pk′) = 1, the output of D is 1, and the forger wins the simulated
EUF-CMA1 security game. Then, we have that Verify(m∗, σ∗, pk′) = 1 and D(x) = 1
have the same probability with the same x received either from x ← H(M) or x ← U.
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Then, the probability definition of indistinguishability |Pr[x ← H(M), D(x) = 1]−
Pr[x ← U, D(x) = 1]| with the distinguisher D we constructed can be transformed as

|Pr[x ← H(M), D(x) = 1]− Pr[x ← U, D(x) = 1]|
=|Pr[x ← H(M),Verify(m∗, σ∗, pk′) = 1]− Pr[x ← U,Verify(m∗, σ∗, pk′) = 1]|
=|Pr[x ← H(M),Verify(m∗, σ∗pk′) = 1]− negl(n)|.

If there exists a forger F of our signature scheme, it wins the EUF-CMA1 game from
Algorithm 6 by outputting a forgery (m∗, σ∗) with non-negligible probability. Then, we
have that Pr[x ← H(M),Verify(m∗, σ∗, pk′) = 1] is non-negligible. Therefore, |Pr[x ←
H(M),Verify(m∗, σ∗, pk′) = 1]− negl(n)| is non-negligible, and |Pr[x ← H(M), D(x) =
1]− Pr[x ← U, D(x) = 1]| is non-negligible, which is contrary to the assumption that the
hash function in our scheme holds indistinguishability.

5.2. Security of Proof Scheme

In the proof generation function, recall that the input is (bk, x) from the key gener-
ation phase. Compute AESbk(x) = y, then generate the NIZKPoK proof πn and output
π = (x, y, πn) (Algorithms 1, 4 and 5). The soundness of the NIZKPoK proof system re-
lies on the Fiat–Shamir transform [20,37] and obtains a better concrete-security reduction
than [38]. To ensure that no information is revealed in the NIZKPoK computation, the
backup key bk is selected such that for the AES computation y = AESbk(x), there are
no S-boxes in the computation of y with input 0, as analyzed in [19]. The analysis also
shows that |K′|/|K| ≈ 1/3 under the assumption that S-box inputs are independent. An
experiment confirms that the bit security of the inverting one-way function is reduced by
about log2 3 ≈ 1.4 bits for the AES-256 function. We argue that choosing bk from subset
K′ fits our statement that all n-bits keys decrease the security level of our scheme within
a negligible amount. We prove the security of proof generation in our scheme under the
security properties that AES is a one-way function with a security game in Algorithm 7. If
AES is a one-way function, for all polynomial time adversaries A

Pr[x ← {0, 1}n, k← K, y = AESk(x), k′ = A(x, y) : y = AESk′(x)] ≤ negl(n) (5)

Algorithm 7 One-way function game

Challenger sample a random value x and a key k
Challenger compute y = fk(x)
Challenger send (x, y) to the an attacker A
Attacker invert a key k′ = A(x, y)
if y = AESk′(x) then

return 1
end if
return 0

In our scheme, we use the key set K′, and we assume that adversary A has a high
success probability p of generating a key k′ and winning the security game in Algorithm 7.
We can construct a one-way function attack algorithm B(x, y) that returns A(x, y). We
assume that when k has no zero S-box input, A is guaranteed to succeed, and when k has
one or more zero S-box inputs, A fails. Then, when k ∈ K′, A succeeds with probability p.
For our construction, we invoke attack algorithm B, and then B succeeds with probability
p · |K′|/|K|. Notice that p is the success probability of the adversary A, and it is assumed
to be non-negligible. If |K′|/|K| is non-negligible, the success probability of the one-way
function attack B is non-negligible for a PPT adversary A. Therefore, our analysis relies on
the non-negligible |K′|/|K|. Considering that |K′|/|K| stands for the probability of S-box
input being 0 for an AES function and it is non-negligible, we claim that if the AES function
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is a one-way function, then the AES function used in our scheme is also a one-way function,
and for all polynomial time adversaries A:

Pr[x ← {0, 1}n, k← K′, y = AESk(x), k′ = A(x, y) : y = AESk′(x)] ≤ negl(n). (6)

5.3. Strong Unforgeability

In our design, we have analyzed the signing scheme using the EUF-CMA1 definition
and, therefore, do not rule out the case that an attacker can find a new signature for a
previously signed message. For instance, an attacker may manipulate a signature generated
by the signer and, using some method, pass the verification with the same message. For
strong unforgeability, we modify our signing scheme by combining Algorithms 2 and 4, as
well as Algorithms 3 and 5. Then, we have that even if the ECDSA signature generated
by Algorithm 3 is manipulated and passes the pre-verification of the ECDSA scheme in
Algorithm 5, an attacker can not pass the verification because the verification of NIZKPoK
is required. Regarding the NIZKPoK scheme, similar to the Banquet scheme, it requires
the following:

• It is difficult to find a set of intermediate seeds in the tree that derive the same leaf
seeds used in a signature, which means that more security concerns should be needed
in seed sampling.

• It is difficult to find a different seed that produces the same outputs when input to
the Expand function utilized as a seed generation function. In our scheme, Expand is
instantiated by hash functions, and we assume that the hash function is a random
oracle to meet the requirement, like the assumption in Definition 3.

With the above assumptions, our scheme is supposed to have strong unforgeability.

5.4. Post-Quantum Security

Our scheme aims to protect classical digital signature schemes against key-revealing
attacks while ensuring post-quantum security. This requires that our proof of ownership
scheme retain its security assurances even in the advent of quantum computing technolo-
gies. In the proof phase, as detailed in Algorithm 4, a NIZKPoK for the backup key bk is
generated, and the secret key sk is computed with a hash function H. The security levels
for the NIZKPoK, categorized as L1, L3, and L5 from the standards defined by NIST [39],
correspond to AES key sizes of 128, 192, and 256 bits, respectively. In our scheme, we utilize
AES-256 to ensure that the proof of ownership of our scheme maintains a high-security level
under post-quantum attack (equivalent to the security of AES-128 in classical computing).

To demonstrate that our scheme is post-quantum secure, derived from the NIZKPoK,
the security in the Quantum Random Oracle Model (QROM) should naturally be consid-
ered. The QROM, a more robust security version of the Random Oracle Model (ROM),
allows attackers to make superposition queries to the random oracle, thus modeling at-
tacks at the post-quantum level. Following [21], Corollary 13, we provide a reduction for
the Fiat–Shamir transformation by simulating a prover in the underlying ZKIP as Defini-
tion 4 to prove the security in QROM of NIZKPoK in our scheme. The following lemma
demonstrates the reduction.

Lemma 2. There exists a black-box quantum polynomial time four-stage quantum algorithm S such
that for any adaptive adversary A against our multi-round Fiat–Shamir transformed NIZKPoK of
underlying seven-move ZKIP making q queries to a uniformly random function H with appropriate
domain and range equal to C, and for any x◦ ∈ X:

Pr[x = x◦ ∧ v = accept : (x, v)← ⟨SA,V⟩] ≥
3!

(2q + 4)6 Pr
H

[
x = x◦ ∧VH

FS(x, π) = 1 : (x, π)← AH ]− ϵx◦
(7)

where the additive error term ϵx◦ is equal to 3!
|C| when summed over all x◦.
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Remark 1. x◦ holds that (x◦, w◦) ∈ R for the relation R of our NIZKPoK and underlying
ZKIP. SA simulates a prover in the underlying ZKIP system, and V is a verifier outputting the
verification result v. In our NIZKPoK, VH

FS is the verification predicate, and π is composed of
(a1, c1, . . . , an, cn, z) according to Definition 5.

Proof. Compared with the Banquet, our NIZKPoK removes the message m as hash input
during the computation of the first challenge. Accordingly, the Fiat–Shamir transformation
of our NIZKPoK, as defined in Definition 5, aligns with the Fiat–Shamir transformation
for general PCIP (mFS). To generate the reduction in mFS, the challenges of Fiat–Shamir
transformation are required to use distinct inputs to H with probability 1 for the application
of the simulator from [21], Theorem 7. In our case, this distinctness is ensured by the input
of commitment. Similarly to the construction in [22], the commitments of our NIZKPoK
are generated separately and have different sizes, ensuring distinct inputs for different
challenge computations.

Using the reduction from Lemma 2, we can prove that our NIZKPoK system holds
soundness in QROM with the following lemma.

Lemma 3. Assume that the underlying ZKIP system has (statistical or computational) soundness.
Then, in QROM, our NIZKPoK system also has (statistical or computational) soundness.

Proof. From Lemma 2, given that q is polynomial in the security parameter, the success
probability of any dishonest prover ANIZKPoK against our NIZKPoK and the success prob-
ability of a dishonest prover AZKIP challenging the underlying ZKIP are polynomially
related. If our NIZKPoK does not have soundness in QROM, the success probability of
ANIZKPoK is non-negligible. Then, the polynomially related success probability of AZKIP is
also non-negligible, which is contrary to the assumption that the underlying ZKIP system
has (statistical or computational) soundness.

Considering that the underlying ZKIP system of our NIZKPoK is identical to the
underlying zero-knowledge identification scheme [22] of the Banquet scheme, we can con-
clude that the underlying ZKIP system holds soundness if the underlying zero-knowledge
identification scheme holds. Given that the soundness of the zero-knowledge identification
scheme has been proved in [22] using the Schwarz–Zippel Lemma, using Lemma 3, we
demonstrate that our NIZKPoK system has soundness in QROM.

5.5. Security of Proof of Ownership

Now we argue the security of proof of ownership in our design (Gen, Sign,Verify,Proof,
and Verify–Proof). We claim that our scheme generates a single proof of ownership π as
per Definition 6. In Section 5.2, we have proved that the parameter-limited AES function
we use in our scheme can also be considered a one-way function, and the NIZKPoK used
in our scheme is sound. Furthermore, in Section 5.4, we have shown that the NIZKPoK in
our scheme also holds soundness in QROM. Therefore, a proof π generated by our scheme
satisfies Definition 6.

6. Extensions

Besides the proof of ownership of the digital signature scheme, we also provide a post-
quantum fallback signature scheme when adversaries with quantum computing abilities
attack the secret key of the classical digital signature scheme.

Fallback Signature Scheme

The fallback signature scheme is generated from the Banquet signature. In this case,
the backup key bk is converted to a secret key, and the value (x, y) generated in Algorithm 1
serves as the public key of the fallback signature scheme. In our design, the fallback digital
signature scheme, which produces post-quantum security guarantees, enables a digital
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wallet user to sign secret values even under a secret key revealing attack. Compared with
the Banquet scheme, our scheme modifies the key generation phase with the input (x, k)
generated from Algorithm 1, which satisfies the security requirement. We briefly describe
it with three algorithms: Gen,Sign,Verify:

• Gen f : given (bk, x, y) from Algorithm 1 and as input, set secret key sk ← bk, public
key pk← (x, y), output sk, pk.

• Sign f (sk, m): given a message m and secret key sk as input, compute σ← Prove(sk, m),
output σ.

• Verify f (pk, m, σ): given signature σ and public key pk as input, compute a verification
algorithm Verify(pk, σ, m), that outputs 1 if the result of Verify is 1; otherwise, output 0.

The security of our fallback scheme derives from the Banquet signature scheme of
Baum et al. [22]. They have proven that assuming that the functions used in the Signature
Generation phase Commit, H1, H2, and H3 are modeled as random oracles, Expand is a
pseudorandom generator (PRG) with output computationally εPRG-close to uniform; the
seed tree construction is computationally hiding, the execution and security parameters are
appropriately chosen, and the key generation function fx : sk 7→ pk is a one-way function;
the Banquet signature is EUF-CMA secure. Sign f and Verify f in our fallback scheme are
the same as Signb and Verifyb, and Gen f receives bk, x, y from Algorithm 1, satisfying that
fx : bk 7→ (x, y) is a one-way function. Then, our fallback scheme is also EUF-CMA
secure, like the Banquet signature. To prove the EUF-CMA security of our fallback scheme
in QROM, the most promising approach seems to be the general result for multi-round
Fiat–Shamir type signatures in [21,40]. However, in order to apply the QROM EUF-CMA
result [21], Theorem 23, it would require a σ-protocol formulated by our fallback scheme,
which is beyond our scope.

7. Evaluation

Our scheme and other state-of-the-art works only modify the key generation phase
of the ECDSA scheme, keeping the signing and verification phases unchanged. Since
the key generation phase is executed in real life, the runtime of the modified key gen-
eration algorithm should be as close as possible to the key generation time of ECDSA
while simultaneously ensuring that both the signing and verification times of ECDSA
remain unchanged.

To validate our results, we implemented the key generation phase of our scheme,
Sleeve, and [33] using Python, given that our and related works do not modify the signing
and verification phases of the ECDSA scheme. In our implementation, we follow the
key generation of the AES function in Banquet [22], ensuring that there is non-zero input
for the S-box computation, which slows down the key generation phase. For the hash
function, we use SHA-256 and ensure that the output fits well with the ECDSA curve. The
ECDSA curve we chose for our scheme is secp256r1 [5]. We first compare the operations of
the key generation phases from different schemes and observe that our scheme requires
additional AES operations, while the Sleeve scheme involves 1329 hash operations, which
significantly slow down its key generation phase. While random value generation and
index conversion are not included in our comparison of key generation operations, they
do affect the key generation time in practical implementations of all schemes, especially
in the Sleeve scheme, which involves more rounds of random value generation and index
conversion. Then, we run our experiment on a 3.4 GHz Intel Core i7-3770 CPU with 16 GB
of RAM, running 64-bit Windows 10 22H2. The performance of our scheme, demonstrated
in Table 1, indicates that our key generation time is approximately 30% slower than the
ECDSA scheme. Considering that our scheme enables a user to generate secret keys with
one fixed backup key. Then, with a chosen backup key, our scheme needs only one AES
operation, reducing the key generation time to within 10% slower than ECDSA, which is
comparable with the scheme of Tan and Zhou [33]. Additionally, we implemented the Sleeve
scheme, reporting that the key generation time is 5 to 10 times slower than that of a normal
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ECDSA key generation algorithm, which is significantly slower than our scheme and the
scheme of Tan and Zhou.

Table 1. Key generation phase.

Methods Operations Time (ms)

Our Scheme exp + 3AES + hash 1.09
Our Scheme (with fixed bk) exp + AES + hash 0.97
Tan and Zhou scheme exp + hash 0.91
Sleeve exp + 1329hash 4.48
ECDSA exp 0.84

Let exp represent a Elliptic Curve Scalar Multiplication (ECSM) operation of secp256r1, let AES represent a AES
function operation of AES-128, and hash represent a hash function operation of SHA-256.

We also evaluate the proof scheme of our scheme, Sleeve, and the Tan and Zhou scheme [33]
with a theoretical analysis in Table 2. Our analysis reveals that our scheme significantly
reduces the proof size by half and approximately doubles the computational efficiency
compared with the scheme presented in [33]. Given that tH , tE, and tA constitute only a
minor portion of the overall computational costs, the computational cost and the proof size
of all schemes are primarily determined by the methods employed in each scheme. Thus,
the comparative analysis between our scheme and Sleeve can be effectively reduced to a
comparison of their respective methodologies. In our scheme, the proof generation and
verification times are similar to the signing and verification times of the Banquet signature
scheme. According to [22], Banquet has a signing time of 6.36 ms and a verification time
of 4.68 ms for the L1 security level. In contrast, the eWOTS+ signature scheme, analyzed
in [11], has signing and verification times of 0.024 ms and 1.472 ms, respectively. Given
that eWOTS+ is a one-time signature and Sleeve is an interactive proof scheme, our scheme
is more efficient in the scenario of a large-scale decentralized system like Bitcoin but less
efficient in a centralized system like the Central Bank Digital Currency (CBDC) [41].

Table 2. Computation time and proof size comparison of the proof schemes.

Schemes Method Proof Size Proof Generation Time Verification Time

Sleeve eWOTS+ SW tPW tVM + tE

Tan and Zhou scheme NIZK 2SN tPN + tH 2tVN + 2tH + tE

Our scheme NIZK SN + 2n tPN + tA tVN + tH + tE

Let SW and SN represent the signature size of eWOTS+ and proof size of NIZK in our scheme. Let tPW and tVM
represent the signing and verification time of the eWOTS+ signature; tPN and tVN represent the proof generation
and verification time of the NIZK used in our scheme; let tH , tE, and tA represent the computation time of hash
function, elliptic curve, and AES encryption. We compare the proof size and the computational time of three
proof schemes.

In the Sleeve and Tan and Zhou scheme, each secret key requires a corresponding
backup key or pre-image during the key generation phase. In contrast, our scheme allows
a single backup key mapping to multiple secret keys, which enables a fixed backup key in
key generation processes and requires only a single query of the backup key to generate
all required proofs. Specifically, Algorithm 1 demonstrates that with a single bk as input,
multiple valid public and secret key pairs can be generated by varying randomly chosen
parameter x. In the context of a digital wallet, especially in the scenario of an HD wallet [14],
this means that our scheme can store only one backup key, thus saving the amount of storage
space and providing a simpler key management system compared with other schemes.

8. Applications

In our design, we address the issue of secret key revelation in digital signature schemes
and propose a method to prove the ownership of digital funds. Our approach allows digital
wallet users to generate a statement of ownership of the secret key using a single backup
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key. This can solve security problems such as hard forks and revocation of wallet addresses.
Compared with the proof of ownership scheme Sleeve, our design provides non-trivial
long-term data protection and data migration capabilities. This ensures enhanced security
and resilience in maintaining the integrity and ownership of digital assets over time.
Furthermore, our scheme prevents backup key leakage when a user needs to prove the
ownership of multiple secret keys.

Digital wallets: If there is evidence of a quantum attack against a digital wallet
environment, such as a blockchain system, users can utilize our construction to prove the
ownership of potentially compromised tokens by generating and publishing a NIZKPoK
for the secret key without any challenge from other verifiers and redeem tokens in an
alternative manner while the token is not locked up. Our scheme can also be utilized when
a digital wallet user suffers a quantum attack and needs to revoke the ownership of an
address the adversary has stolen. Suppose a user’s ECDSA key is stolen; in that case, they
can revoke the wallet address by creating proof of ownership with a backup key, informing
the network, and non-interactively being verified by other users. The user can then
introduce a new wallet address generated with the same backup key containing the funds
associated with the old wallet. We also address scenarios where a user manages multiple
secret keys, such as in coin mixing applications [13]. Additional security considerations
of the backup key storage from our scheme offer a more secure solution compared with
existing state-of-the-art approaches.

Beyond digital wallets: Our scheme can also be applied to sign long-term data requir-
ing non-repudiation protection, such as providing extra security for quantum-resistant,
time-stamped signed PDFs in Adobe Acrobat Reader DC. Our scheme can also facilitate
efficient encryption scheme migration for classical digital signature schemes. Given that
our proof of ownership digital signature scheme and fallback scheme can generate two
signatures with the same secret value, input sampling, and message, the migration process
only modifies the verification phase. It retains the old encryption without additional inputs.
This migration can be carried out in three steps, as defined below:

1. The signing parties sign a document using Algorithm 2, similar to a classical ECDSA
scheme, noticing that the document is vulnerable in a post-quantum environment.
The verifying parties receive and verify the signed document using Algorithm 3,
ensuring that the ECDSA signature scheme correctly signs the document. They then
inform the signing parties to initiate the migration process.

2. The signing parties generate a proof of ownership for the secret key using Algorithm 4
and then publish this proof. Verifying parties first ignore the published new signatures
and continue verifying old ones. Once the first verification is complete and the
proof of ownership is received from the signing parties, the verifying parties check
the computation correctness of the ECDSA signature key and verify the proof of
knowledge of the secret key generation using Algorithm 5.

3. The signing parties migrate the signing strategy by setting the inputted secret key
as the backup key generated in Algorithm 1 and signing the same document signed
in step 1. After receiving the new signatures, the verifying parties update their
verification strategy to verify the new ones while maintaining a concrete relationship
with the old ones.

9. Conclusions

This paper introduced a new proof of ownership digital signature scheme incorpo-
rating a quantum-secure fallback within an ECDSA digital signature framework. The
central concept involves embedding a backup key within the ECDSA secret key and gen-
erating a zero-knowledge proof for the backup key. We formally proved that our new
signature scheme achieves unforgeability under the computational indistinguishability
from the Uniformly Random Distribution property of a proper hash function and that the
proof system is sound under QROM. Furthermore, our extension scheme enables users
to generate post-quantum fallback signatures. Our non-interactive approach is suitable
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for longer-term digital data protection, such as PDF files for important financial contacts
and valuable digital arts in blockchain systems. The simplified key management system,
short key generation time, and efficient proof scheme make our approach well suited for
scenarios in which a user manages multiple secret keys, such as in hierarchical deterministic
(HD) wallets.

Our future work is as follows:

• A new zero-knowledge proof scheme: The size and computational time of the proof
scheme are linked to the circuit computation in our design. VOLE-in-the-head presents
a promising potential solution [42].

• QROM security: In this paper, we proved the soundness of our proof scheme under
QROM. However, our work does not provide a concrete proof of the fallback (Banquet
signature) scheme under QROM. The QROM security of the Banquet signature could
potentially be proven if we can modify the NIZKPoK in the Banquet signature into a ∑-
protocol [22]. Another possible method to prove the QROM secure Banquet signature
is to follow the proof framework in [43], where they provide a QROM security proof
for the Helium proof system [44] with online extractability [45].

• Post-quantum signatures: Our signature is designed to hide any post-quantum sig-
nature inside a classical digital signature scheme. So, in addition to NIZK-based
signatures, we will implement other types of post-quantum signature schemes, such
as lattice-based signatures.
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